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Prelude

The chords sounded smooth and nondissonant but
strange and somewhat eerie. The effect was so different
from the tempered scale that there was no tendency to
judge in-tuneness or out-of-tuneness. It seemed like a
peek into a new and unfamiliar musical world, in which
none of the old rules applied, and the new ones, if any,
were undiscovered. F. H. Slaymaker [B: 176]

To seek out new tonalities, new timbres...
To boldly listen to what no one has heard before.

Several years ago I purchased a musical synthesizer with an intriguing feature—
each note of the keyboard could be assigned to any desired pitch. This freedom
to arbitrarily specify the tuning removed a constraint from my music that I
had never noticed or questioned—playing in 12-tone equal temperament.1

Suddenly, new musical worlds opened, and I eagerly explored some of the
possibilities: unequal divisions of the octave, n equal divisions, and even some
tunings not based on the octave at all.

Curiously, it was much easier to play in some tunings than in others. For
instance, 19-tone equal temperament (19-tet) with its 19 equal divisions of the
octave is easy. Almost any kind of sampled or synthesized instrument plays
well: piano sounds, horn samples, and synthesized flutes all mesh and flow. 16-
tet is harder, but still feasible. I had to audition hundreds of sounds, but finally
found a few good sounds for my 16-tet chords. In 10-tet, though, none of the
tones in the synthesizers seemed right on sustained harmonic passages. It was
hard to find pairs of notes that sounded reasonable together, and triads were
nearly impossible. Everything appeared somewhat out-of-tune, even though
the tuning was precisely ten tones per octave. Somehow the timbre, or tone
quality of the sounds, seemed to be interfering.

The more I experimented with alternative tunings, the more it appeared
that certain kinds of scales sound good with some timbres and not with others.
Certain kinds of timbres sound good in some scales and not in others. This
raised a host of questions: What is the relationship between the timbre of a
1 This is the way modern pianos are tuned. The seven white keys form the major

scale, and the five black keys fill in the missing tones so that the perceived distance
between adjacent notes is (roughly) equal.
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sound and the intervals, scale, or tuning in which the sound appears “in tune?”
Can this relationship be expressed in precise terms? Is there an underlying
pattern?

This book answers these questions by drawing on recent results in psy-
choacoustics, which allow the relationship between timbre and tuning to be
explored in a clear and unambiguous way. Think of these answers as a model of
musical perception that makes predictions about what you hear: about what
kinds of timbres are appropriate in a given musical context, and what kind of
musical context is suitable for a given timbre.

Tuning, Timbre, Spectrum, Scale begins by explaining the relevant terms
from the psychoacoustic literature. For instance, the perception of “timbre” is
closely related to (but also distinct from) the physical notion of the spectrum
of a sound. Similarly, the perception of “in-tuneness” parallels the measurable
idea of sensory consonance. The key idea is that consonance and dissonance
are not inherent qualities of intervals, but they are dependent on the spectrum,
timbre, or tonal quality of the sound. To demonstrate this, the first sound
example on the accompanying CD plays a short phrase where the octave
has been made dissonant by devious choice of timbre, even though other,
nonoctave intervals remain consonant. In fact, almost any interval can be
made dissonant or consonant by proper sculpting of the timbre.

Dissonance curves provide a straightforward way to predict the most con-
sonant intervals for a given sound, and the set of most-consonant intervals
defines a scale related to the specified spectrum. These allow musicians and
composers to design sounds according to the needs of their music, rather than
having to create music around the sounds of a few common instruments. The
spectrum/scale relationship provides a map for the exploration of inharmonic
musical worlds.

To the extent that the spectrum/scale connection is based on properties of
the human auditory system, it is relevant to other musical cultures. Two im-
portant independent musical traditions are the gamelan ensembles of Indone-
sia (known for their metallophones and unusual five and seven-note scales) and
the percussion orchestras of classical Thai music (known for their xylophone-
like idiophones and seven-tone equal-tempered scale). In the same way that
instrumental sounds with harmonic partials (for instance, those caused by vi-
brating strings and air columns) are closely related to the scales of the West,
so the scales of the gamelans are related to the spectrum, or tonal quality,
of the instruments used in the gamelan. Similarly, the unusual scales of Thai
classical music are related to the spectrum of the xylophone-like renat.

But there’s more. The ability to measure sensory consonance in a reliable
and perceptually relevant manner has several implications for the design of
audio signal processing devices and for musical theory and analysis. Perhaps
the most exciting of these is a new method of adaptive tuning that can auto-
matically adjust the tuning of a piece based on the timbral character of the
music so as to minimize dissonance. Of course, one might cunningly seek to
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maximize dissonance; the point is that the composer or performer can now
directly control this perceptually relevant parameter.

The first several chapters present the key ideas in a nonmathematical way.
The later chapters deal with the nitty-gritty issues of sound generation and
manipulation, and the text becomes denser. For readers without the back-
ground to read these sections, I would counsel the pragmatic approach of
skipping the details and focusing on the text and illustrations.

Fortunately, given current synthesizer technology, it is not necessary to
rely only on exposition and mathematical analysis. You can actually listen to
the sounds and the tunings, and verify for yourself that the predictions of the
model correspond to what you hear. This is the purpose of the accompanying
CD. Some tracks are designed to fulfill the predictions of the model, and some
are designed to violate them; it is not hard to tell the difference. The effects
are not subtle.

Madison, Wisconsin, USA William A. Sethares
August 2004



Acknowledgments

This book owes a lot to many people.
The author would like to thank Tom Staley for extensive discussions about

tuning. Tom also helped write and perform Glass Lake. Brian McLaren was
amazing. He continued to feed me references, photocopies, and cartoons long
after I thought I was satiated. Fortunately, he knew better. The names Paul
Erlich, wallyesterpaulrus, paul-stretch-music, Jon Szanto, and Gary Morri-
son have been appearing daily in my e-mail inbox for so long that I keep
thinking I know who they are. Someday, the galactic oversight of our never
having met will be remedied. This book would be very different without Larry
Polansky, who recorded the first gamelan “data” that encouraged me to go
to Indonesia and gather data at its source. When Basuki Rachmanto and
Gunawen Widiyanto became interested in the gamelan recording project, it
became feasible. Thanks to both for work that was clearly above and be-
yond my hopes, and to the generous gamelan masters, tuners, and performers
throughout Eastern Java who allowed me to interview and record. Ian Dobson
has always been encouraging. He motivated and inspired me at a very crucial
moment, exactly when it was most needed. Since he probably doesn’t realize
this, please don’t tell him – he’s uppity enough as it is. John Sankey and I
co-authored the technical paper that makes up a large part of the chapter on
musicological analysis without ever having met face to face. Thanks, bf250.
David Reiley and Mary Lucking were the best guinea pigs a scientist could
hope for: squeak, squeak. Steve Curtin was helpful despite personal turmoil,
and Fred Spaeth was patently helpful. The hard work of Jean-Marc Fräıssé
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Variables, Abbreviations, Definitions

ai Amplitudes of sine waves or partials.
attack The beginning portion of a signal.
[B:] Reference to the bibliography, see p. 381.
cent An octave is divided into 1200 equal sounding parts called

cents. See Appendix B.
-cet Abbreviation for cent-equal-temperament. In n-cet, there are

n cents between each scale step; thus, 12-tet is the same as
100-cet.

CDC Consonance-Dissonance Concept, see [B: 192].
d(fi, fj , ai, aj) Dissonance between the partials at frequencies fi and fj with

corresponding amplitudes ai and aj .
[D:] Reference to the discography, see p. 395.
DFT Discrete Fourier Transform. The DFT of a waveform (sound)

shows how the sound can be decomposed into and rebuilt from
sine wave partials.

DF Intrinsic dissonance of the spectrum F .
DF (c) Dissonance of the spectrum F at the interval c.
diatonic A seven-note scale containing five whole steps and two half

steps such as the common major and minor scales.
envelope Evolution of the amplitude of a sound over time.
F Name of a spectrum with partials at frequencies f1, f2, ..., fn

and amplitudes a1, a2, ..., an.
fi Frequencies of partials.
fifth A 700-cent interval in 12-tet, or a 3:2 ratio in JI.
FFT Fast Fourier Transform, a clever implementation of the DFT.
FM Frequency Modulation, when the frequency of a sine wave is

changed, often sinusoidally.
formant Resonances that may be thought of as fixed filters through

which a variable excitation is passed.
fourth A 500-cent interval in 12-tet, or a 4:3 ratio in JI.



XVIII Variables, Abbreviations, Definitions

GA Genetic Algorithm, an optimization technique.
harmonic Harmonic sounds have a fundamental frequency f and partials

at integer multiples of f .
Hz Hertz is a measure of frequency in cycles per second.
IAC Interapplication ports that allow audio and MIDI data to be

exchanged between applications.
inharmonic The partials of an inharmonic sound are not at integer multi-

ples of a single fundamental frequency.
JI Just Intonation, the theory of musical intervals and scales

based on small integer ratios.
JND Just Noticeable Difference, smallest change that a listener can

detect.
K K means 210 = 1024. For example, a 16K FFT contains 16 ×

1024 = 16386 samples.
�i Loudness of the ith partial of a sound.
MIDI Musical Interface for Digital Instruments, a communications

protocol for electronic musical devices.
octave Musical interval defined by the ratio 2:1.
partial The partials (overtones) of a sound are the prominent sine wave

components in the DFT representation.
periodic A function, signal, or waveform w(x) is periodic with period p

if w(x + p) = w(x) for all x.
RIW Resampling with Identity Window, a technique for spectral

mapping.
[S:] Reference to the sound examples, see p. 399.
semitone In 12-tet, an interval of 100 cents.
signal When a sound is converted into digital form in a computer, it

is called a signal.
sine wave The “simplest” waveform is completely characterized by fre-

quency, amplitude, and phase.
SMF Standard MIDI File, a way of storing and exchanging MIDI

data between computer platforms.
spectral mapping Technique for manipulating the partials of a sound.
SPSA Simultaneous Perturbation Stochastic Approximation, a tech-

nique of numerical optimization
steady state The part of a sound that can be closely approximated by a

periodic waveform.
-tet Abbreviation for tone-equal-tempered. 12-tet is the standard

Western keyboard tuning.
transient That portion of a sound that cannot be closely approximated

by a periodic signal.
[V:] Reference to the video examples, see p. 411.
[W:] Web references, see p. 413
waveform Synonym for signal.
whole tone In 12-tet, an interval of 200 cents.
xenharmonic Strange musical “harmonies” not possible in 12-tet.
xentonal Music with a surface appearance of tonality, but unlike any-

thing possible in 12-tet.
⊕ Pronounced oh-plus, this symbol indicates the “sum” of two

intervals in the symbolic method of constructing spectra.
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The Octave Is Dead . . . Long Live the Octave

1.1 A Challenge

The octave is the most consonant interval after the unison. A low C on the
piano sounds “the same” as a high C. Scales “repeat” at octave intervals.
These commonsense notions are found wherever music is discussed:

The most basic musical interval is the octave, which occurs when
the frequency of any tone is doubled or halved. Two tones an octave
apart create a feeling of identity, or the duplication of a single pitch
in a higher or lower register.1

Harry Olson2 uses “pleasant” rather than “consonant”:

An interval between two sounds is their spacing in pitch or frequency...
It has been found that the octave produces a pleasant sensation... It is
an established fact that the most pleasing combination of two tones is
one in which the frequency ratio is expressible by two integers neither
of which is large.

W. A. Mathieu3 discusses the octave far more poetically:

The two sounds are the same and different. Same name, same “note”
(whatever that is), but higher pitch. When a man sings nursery rhymes
with a child, he is singing precisely the same song, but lower than the
child. They are singing together, but singing apart. There is something
easy in the harmony of two tones an octave apart - played either
separately or together - but an octave transcends easy. There is a way
in which the tones are identical.

1 From [B: 66].
2 [B: 123].
3 [B: 104].
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Arthur Benade4 observes that the similarity between notes an octave apart
has been enshrined in many of the world’s languages:

Musicians of all periods and all places have tended to agree that when
they hear a tone having a repetition frequency double that of another
one, the two are very nearly interchangeable. This similarity of a tone
with its octave is so striking that in most languages both tones are
given the same name.

Anthony Storr5 is even more emphatic:

The octave is an acoustic fact, expressible mathematically, which is
not created by man. The composition of music requires that the octave
be taken as the most basic relationship.

Given all this, the reader may be surprised (and perhaps a bit incredulous) to
hear a tone that is distinctly dissonant when played in the interval of an octave,
yet sounds nicely consonant when played at some other, nonoctave interval.
This is exactly the demonstration provided in the first sound example6 [S: 1]
and repeated in the first video example7 [V: 1]. The demonstration consists
of only a handful of notes, as shown in Fig. 1.1.

l & h H_ ˙̇_|    |    # 
l[h H_ ˙̇_|    |    # n

f      2f    f & 2f     f       2.1f    f & 2.1f

Fig. 1.1. In sound example [S: 1]
and video example [V: 1], the tim-
bre of the sound is constructed so
that the octave between f and 2f
is dissonant while the nonoctave f
to 2.1f is consonant. Go listen to
this example now.

A note is played (with a fundamental frequency f = 450 Hz8) followed by its
octave (with fundamental at 2f = 900 Hz). Individually, they sound normal
enough, although perhaps somewhat “electronic” or bell-like in nature. But
when played simultaneously, they clash in a startling dissonance. In the second
phrase, the same note is played, followed by a note with fundamental at 2.1f =
945 Hz (which falls just below the highly dissonant interval usually called the
augmented octave or minor 9th). Amazingly, this second, nonoctave (and even
microtonal) interval appears smooth and restful, even consonant; it has many
4 [B: 12].
5 [B: 184].
6 Beginning on p. 399 is a listing of all sound examples (references to sound ex-

amples are prefaced with [S:]) along with instructions for accessing them with a
computer.

7 Beginning on p. 411 is a listing of all video examples (references to video ex-
amples are prefaced with [V:]) along with instructions for accessing them with a
computer.

8 Hz stands for Hertz, the unit of frequency. One Hertz equals one cycle per second.
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of the characteristics usually associated with the octave. Such an interval is
called a pseudo-octave.

Precise details of the construction of the sound used in this example are
given later. For now, it is enough to recognize that the tonal makeup of the
sound was carefully chosen in conjunction with the intervals used. Thus, the
“trick” is to choose the spectrum or timbre of the sound (the tone quality) to
match the tuning (the intervals desired).

As will become apparent, there is a relationship between the kinds of
sounds made by Western instruments (i.e., harmonic9 sounds) and the kinds
of intervals (and hence scales) used in conventional Western tonal music. In
particular, the 2:1 octave is important precisely because the first two partials
of a harmonic sound have 2:1 ratios. Other kinds of sounds are most naturally
played using other intervals, for example, the 2.1 pseudo-octave. Stranger
still, there are inharmonic sounds that suggest no natural or obvious interval
of repetition. Octave-based music is only one of a multitude of possible musics.
As future chapters show, it is possible to make almost any interval reasonably
consonant, or to make it wildly dissonant, by properly sculpting the spectrum
of the sound.

Sound examples [S: 2] to [S: 5] are basically an extended version of this
example, where you can better hear the clash of the dissonances and the
odd timbral character associated with the inharmonic stretched sounds. The
“same” simple piece is played four ways:

[S: 2] Harmonic sounds in 12-tet
[S: 3] Harmonic sounds in the 2.1 stretched scale
[S: 4] 2.1 stretched timbres in the 2.1 stretched scale
[S: 5] 2.1 stretched timbres in 12-tet

where 12-tet is an abbreviation for the familiar 12-tone per octave equal tem-
pered scale, and where the stretched scale, based on the 2.1 pseudo-octave,
is designed specially for use with the stretched timbres. When the timbres
and the scales are matched (as in [S: 2] and [S: 4]), there is contrast between
consonance and dissonance as the chords change, and the piece has a sensible
musical flow (although the timbral qualities in [S: 4] are decidedly unusual).
When the timbres and scales do not match (as in [S: 3] and [S: 5]), the piece is
uniformly dissonant. The difference between these two situations is not subtle,
and it calls into question the meaning of basic terms like timbre, consonance,
and dissonance. It calls into question the octave as the most consonant in-
terval, and the kinds of harmony and musical theories based on that view.
In order to make sense of these examples, Tuning, Timbre, Spectrum, Scale
uses the notions of sensory consonance and sensory dissonance. These terms
are carefully defined in Chap. 3 and are contrasted with other notions of
consonance and dissonance in Chap. 5.
9 Here harmonic is used in the technical sense of a sound with overtones composed

exclusively of integer multiples of some audible fundamental.
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1.2 A Dissonance Meter

Such shaping of spectra and scales requires that there be a convenient way
to measure the dissonance of a given sound or interval. One of the key ideas
underlying the sonic manipulations in Tuning, Timbre, Spectrum, Scale is the
construction of a “dissonance meter.” Don’t worry—no soldering is required.
The dissonance meter is a computer program that inputs a sound in digital
form and outputs a number proportional to the (sensory) dissonance or conso-
nance of the sound. For longer musical passages with many notes, the meter
can be used to measure the dissonance within each specified time interval,
for instance, within each measure or each beat. As the challenging the octave
example shows, the dissonance meter must be sensitive to both the tuning (or
pitch) of the sounds and to the spectrum (or timbre) of the tones.

Although such a device may seem frivolous at first glance, it has many
real uses:

As an audio signal processing device: The dissonance meter is at the heart of a
device that can automatically reduce the dissonance of a sound, while leaving
its character more or less unchanged. This can also be reversed to create a
sound that is more dissonant than the input. Combined, this provides a way
to directly control the perceived dissonance of a sound.

Adaptive tuning of musical synthesizers: While monitoring the dissonance of
the notes commanded by a performer, the meter can be used to adjust the
tuning of the notes (microtonally) to minimize the dissonance of the passage.
This is a concrete way of designing an adaptive or dynamic tuning.

Exploration of inharmonic sounds: The dissonance meter shows which inter-
vals are most consonant (and which most dissonant) as a function of the
spectrum of the instrument. As the challenging the octave example shows,
unusual sounds can be profitably played in unusual intervals. The dissonance
meter can concretely specify related intervals and spectra to find tunings most
appropriate for a given timbre. This is a kind of map for the exploration of
inharmonic musical spaces.

Exploration of “arbitrary” musical scales: Each timbre or spectrum has a set
of intervals in which it sounds most consonant. Similarly, each set of intervals
(each musical scale) has timbres with spectra that sound most consonant in
that scale. The dissonance meter can help find timbres most appropriate for
a given tuning.

Analysis of tonal music and performance: In tonal systems with harmonic
instruments, the consonance and dissonance of a musical passage can often
be read from the score because intervals within a given historical period have
a known and relatively fixed degree of consonance and/or dissonance. But
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performances may vary. A dissonance meter can be used to measure the actual
dissonance of different performances of the same piece.

Analysis of nontonal and nonwestern music and performance: Sounds played
in intervals radically different from those found in 12-tet have no standard or
accepted dissonance value in standard music theory. As the dissonance meter
can be applied to any sound at any interval, it can be used to help make
musical sense of passages to which standard theories are inapplicable. For
instance, it can be used to investigate nonwestern music such as the gamelan,
and modern atonal music.

Historical musicology: Many historical composers wrote in musical scales (such
as meantone, Pythagorean, Just, etc.) that are different from 12-tet, but they
did not document their usage. By analyzing the choice of intervals, the disso-
nance meter can make an educated guess at likely scales using only the extant
music. Chapter 11, on “Musicological Analysis,” investigates possible scales
used by Domenico Scarlatti.

As an intonation monitor: Two notes in unison are very consonant. When
slightly out of tune, dissonances occur. The dissonance meter can be used to
monitor the intonation of a singer or instrumentalist, and it may be useful as
a training device.

The ability to measure dissonance is a crucial component in several kinds of
audio devices and in certain methods of musical analysis. The idea that disso-
nance is a function of the timbre of the sound as well as the musical intervals
also has important implications for the understanding of nonwestern musics,
modern atonal and experimental compositions, and the design of electronic
musical instruments.

1.3 New Perspectives

The dissonance curve plots how much sensory dissonance occurs at each in-
terval, given the spectrum (or timbre) of a sound. Many common Western
orchestral (and popular) instruments are primarily harmonic, that is, they
have a spectrum that consists of a fundamental frequency along with partials
(or overtones) at integer multiples of the fundamental. This spectrum can be
used to draw a dissonance curve, and the minima of this curve occur at or near
many of the steps of the Western scales. This suggests a relationship between
the spectrum of the instruments and the scales in which they are played.

Nonwestern Musics

Many different scale systems have been and still are used throughout the
world. In Indonesia, for instance, gamelans are tuned to five and seven-note
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scales that are very different from 12-tet. The timbral quality of the (primar-
ily metallophone) instruments is also very different from the harmonic instru-
ments of the West. The dissonance curve for these metallophones have min-
ima that occur at or near the scale steps used by the gamelans.10 Similarly, in
Thailand, there is a classical music tradition that uses wooden xylophone-like
instruments called renats that play in (approximately) 7-tet. The dissonance
curve for renat-like timbres have minima that occur near many of the steps
of the traditional 7-tet Thai scale, as shown in Chap. 15. Thus, the musical
scales of these nonwestern traditions are related to the inharmonic spectra of
the instruments, and the idea of related spectra and scales is applicable cross
culturally.

New Scales

Even in the West, the present 12-tet system is a fairly recent innovation,
and many different scales have been used throughout history. Some systems,
such as those used in the Indonesian gamelan, do not even repeat at octave
intervals. Can any possible set of intervals or frequencies form a viable musical
scale, assuming that the listener is willing to acclimate to the scale?

Some composers have viewed this as a musical challenge. Easley Black-
wood’s Microtonal Etudes might jokingly be called the “Ill-Tempered Synthe-
sizer” because it explores all equal temperaments between 13 and 24. Thus,
instead of 12 equal divisions of the octave, these pieces divide the octave
into 13, 14, 15, and more equal parts. Ivor Darreg composed in many equal
temperaments,11 exclaiming

the striking and characteristic moods of many tuning-systems will
become the most powerful and compelling reason for exploring beyond
12-tone equal temperament. It is necessary to have more than one
non-twelve-tone system before these moods can be heard and their
significance appreciated.12

Others have explored nonequal divisions of the octave13 and even various
subdivisions of nonoctaves.14 It is clearly possible to make music in a large
variety of tunings. Such music is called xenharmonic,15 strange “harmonies”
unlike anything possible in 12-tet.

The intervals that are most consonant for harmonic sounds are made from
small integer ratios such as the octave (2:1), the fifth (3:2), and the fourth
(4:3). These simple integer ratio intervals are called just intervals, and they
collectively form scales known as just intonation scales. Many of the just
10 See Chap. 10 “The Gamelan” for details and caveats.
11 [D: 10].
12 From [B: 36], No. 5.
13 For instance, Vallotti, Kirchenberg, and Partch.
14 For instance, Carlos [B: 23], Mathews and Pierce [B: 102], and McLaren [B: 108].
15 Coined by Darreg [B: 36], from the Greek xenos for strange or foreign.



1.3 New Perspectives 7

intervals occur close to (but not exactly at16) steps of the 12-tet scale, which
can be viewed as an acceptable approximation to these just intervals. Steps
of the 19-tet scale also approximate many of the just intervals, but the 10-tet
scale steps do not. This suggests why, for instance, it is easy to play in 19-tet
and hard to play in 10-tet using harmonic tones—there are many consonant
intervals in 19-tet but few in 10-tet.

New Sounds

The challenging the octave demonstration shows that certain unusual intervals
can be consonant when played with certain kinds of unusual sounds. Is it
possible to make any interval consonant by properly manipulating the sound
quality? For instance, is it possible to choose the spectral character so that
many of the 10-tet intervals became consonant? Would it then be “easy” to
play in 10-tet? The answer is “yes,” and part of this book is dedicated to
exploring ways of manipulating the spectrum in an appropriate manner.

Although Western music relies heavily on harmonic sounds, these are only
one of a multitude of kinds of sound. Modern synthesizers can easily gen-
erate inharmonic sounds and transport us into unexplored musical realms.
The spectrum/scale connection provides a guideline for exploration by speci-
fying the intervals in which the sounds can be played most consonantly or by
specifying the sounds in which the intervals can be played most consonantly.
Thus, the methods allow the composer to systematically specify the amount
of consonance or dissonance. The composer has a new and powerful method
of control over the music.

Consider a fixed scale in which all intervals are just. No such scale can
be modulated through all the keys. No such scale can play all the conso-
nant chords even in a single key. (These are arithmetic impossibilities, and
a concrete example is provided on p. 159.) But using the ideas of sensory
consonance, it is possible to adapt the pitches of the notes dynamically. For
harmonic tones, this is equivalent to playing in simple integer (just) ratios, but
allows modulation to any key, thus bypassing this ancient problem. Although
previous theorists had proposed that such dynamic tunings might be possi-
ble,17 this is the first concrete method that can be applied to any chord in any
musical setting. It is possible to have your just intonation and to modulate,
too! Moreover, the adaptive tuning method is not restricted to harmonic tones,
and so it provides a way to “automatically” play in the related scale (the scale
consisting of the most consonant intervals, given the spectral character of the
sound).

16 Table 6.1 on p. 101 shows how close these approximations are.
17 See Polansky [B: 142] and Waage [B: 202].
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New “Music Theories”

When working in an unfamiliar system, the composer cannot rely on musical
intuition developed through years of practice. In 10-tet, for instance, there
are no intervals near the familiar fifths or thirds, and it is not obvious what
intervals and chords make musical sense. The ideas of sensory consonance can
be used to find the most consonant chords, as well as the most consonant
intervals (as always, sensory consonance is a function of the intervals and of
the spectrum/timbre of the sound), and so it can provide a kind of sensory
map for the exploration of new tunings and new timbres. Chapter 14 develops
a new music theory for 10-tet. The “neutral third” chord is introduced along
with the “circle of thirds” (which is somewhat analogous to the familiar circle
of fifths in 12-tet). This can be viewed as a prototype of the kinds of theoretical
constructs that are possible using the sensory consonance approach, and pieces
are included on the CD to demonstrate that the predictions of the model are
valid in realistic musical situations.

Unlike most theories of music, this one does not seek (primarily) to ex-
plain a body of existing musical practice. Rather, like a good scientific theory,
it makes concrete predictions that can be readily verified or falsified. These
predictions involve how (inharmonic) sounds combine, how spectra and scales
interact, and how dissonance varies as a function of both interval and spec-
trum. The enclosed CD provides examples so that you can verify for yourself
that the predictions correspond to perceptual reality.

Tuning and spectrum theories are independent of musical style; they are
no more “for” classical music than they are “for” jazz or pop. It would be
naive to suggest that complex musical properties such as style can be mea-
sured in terms of a simple sensory criterion. Even in the realm of harmony
(and ignoring musically essential aspects such as melody and rhythm), sen-
sory consonance is only part of the story. A harmonic progression that was
uniformly consonant would be tedious; harmonic interest arises from a com-
plex interplay of restlessness and restfulness,18 of tension and resolution. It is
easy to increase the sensory dissonance, and hence the restlessness, by playing
more notes (try slamming your arm on the keyboard). But it is not always as
easy to increase the sensory consonance and hence the restfulness. By playing
sounds in their related scales, it is possible to obtain the greatest contrast
between consonance and dissonance for a given sound palette.

1.4 Overview

While introducing the appropriate psychoacoustic jargon, Chap. 2 (the “Sci-
ence of Sound”) draws attention to the important distinction between what

18 Alternative definitions of dissonance and consonance are discussed at length in
Chap. 5.
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we perceive and what is really (measurably) there. Any kind of “perceptually
intelligent” musical device must exploit the measurable in order to extract
information from the environment, and it must then shape the sound based
on the perceptual requirements of the listener. Chapter 3 looks carefully at
the case of two simultaneously sounding sine waves, which is the simplest
situation in which sensory dissonances occur.

Chapter 4 reviews several of the common organizing principles behind the
creation of musical scales, and it builds a library of historical and modern
scales that will be used throughout the book as examples.

Chapter 5 gives an overview of the many diverse meanings that the words
“consonance” and “dissonance” have enjoyed throughout the centuries. The
relatively recent notion of sensory consonance is then adopted for use through-
out the remainder of the book primarily because it can be readily measured
and quantified.

Chapter 6 introduces the idea of a dissonance curve that displays (for a
sound with a given spectrum) the sensory consonance and dissonance of all
intervals. This leads to the definition of a related spectrum and scale, a sound
for which the most consonant intervals occur at precisely the scale steps. Two
complementary questions are posed. Given a spectrum, what is the related
scale? Given a scale, what is a related spectrum? The second, more difficult
question is addressed at length in Chap. 12, and Chap. 7 (“A Bell, A Rock,
A Crystal”) gives three detailed examples of how related spectra and scales
can be exploited in musical contexts. This is primarily interesting from a
compositional point of view.

Chapter 8 shows how the ideas of sensory consonance can be exploited to
create a method of adaptive tuning, and it provides several examples of “what
to expect” from such an algorithm. Chapter 9 highlights three compositions in
adaptive tuning and discusses compositional techniques and tradeoffs. Musical
compositions and examples are provided on the accompanying CD.

The remaining chapters can be read in any order. Chapter 10 shows how
the pelog and slendro scales of the Indonesian gamelan are correlated with the
spectra of the metallophones on which they are played. Similarly, Chap. 15
shows how the scales of Thai classical music are related to the spectra of the
Thai instruments.

Chapter 11 explores applications in musicology. The dissonance score can
be used to compare different performances of the same piece, or to examine
the use of consonances and dissonances in unscored and nonwestern music.
An application to historical musicology shows how the tuning preferences of
Domenico Scarlatti can be investigated using only his extant scores.

Chapter 14 explores one possible alternative musical universe, that of 10-
tet. This should only be considered a preliminary foray into what promises to
be a huge undertaking—codifying and systematizing music theories for non-
12-tet. Although it is probably impossible to find a “new” chord in 12-tet, it
is impossible to play in n-tet without creating new harmonies, new chordal
structures, and new kinds of musical passages.
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Chapters 12 and 13 are the most technically involved. They show how to
specify spectra for a given tuning, and how to create rich and complex sounds
with the specified spectral content.

The final chapter sums up the ideas in Tuning, Timbre, Spectrum, Scale
as exploiting a single perceptual measure (that of sensory consonance) and
applying it to musical theory, practice, and sound design. As we expand the
palette of timbres we play, we will naturally begin to play in new intervals
and new tunings.



2

The Science of Sound

“Sound” as a physical phenomenon and “sound” as
a perceptual phenomena are not the same thing.
Definitions and results from acoustics are compared
and contrasted to the appropriate definitions and results
from perception research and psychology. Auditory
perceptions such as loudness, pitch, and timbre can
often be correlated with physically measurable properties
of the sound wave.

2.1 What Is Sound?

If a tree falls in the forest and no one is near, does it make any sound?
Understanding the different ways that people talk about sound can help get
to the heart of this conundrum. One definition1 describes the wave nature of
sound:

Vibrations transmitted through an elastic material or a solid, liquid,
or gas, with frequencies in the approximate range of 20 to 20,000 hertz.

Thus, physicists and engineers use “sound” to mean a pressure wave propa-
gating through the air, something that can be readily measured, digitized into
a computer, and analyzed. A second definition focuses on perceptual aspects:

The sensation stimulated in the organs of hearing by such vibrations
in the air or other medium.

Psychologists (and others) use “sound” to refer to a perception that occurs
inside the ear, something that is notoriously hard to quantify.

Does the tree falling alone in the wilderness make sound? Under the first
definition, the answer is “yes” because it will inevitably cause vibrations in
the air. Using the second definition, however, the answer is “no” because
there are no organs of hearing present to be stimulated. Thus, the physicist
says yes, the psychologist says no, and the pundits proclaim a paradox. The
source of the confusion is that “sound” is used in two different senses. Drawing
such distinctions is more than just a way to resolve ancient puzzles, it is also
a way to avoid similar confusions that can arise when discussing auditory
phenomena.
1 from the American Heritage Dictionary.
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Physical attributes of a signal such as frequency and amplitude must be
kept distinct from perceptual correlates such as pitch and loudness.2 The phys-
ical attributes are measurable properties of the signal whereas the perceptual
correlates are inside the mind of the listener. To the physicist, sound is a pres-
sure wave that propagates through an elastic medium (i.e., the air). Molecules
of air are alternately bunched together and then spread apart in a rapid os-
cillation that ultimately bumps up against the eardrum. When the eardrum
wiggles, signals are sent to the brain, causing “sound” in the psychologist’s
sense.

nominal

high

low

air molecules close
together = region of
high pressure

air molecules far 
apart = region of
low pressure

rapid oscillations in 
air pressure causes 
eardrum to vibrate

tuning fork 
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nearby air

ai
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Fig. 2.1. Sound as a pressure wave. The peaks represent times when air molecules
are clustered, causing higher pressure. The valleys represent times when the air
density (and hence the pressure) is lower than nominal. The wave pushes against
the eardrum in times of high pressure, and pulls (like a slight vacuum) during times
of low pressure, causing the drum to vibrate. These vibrations are perceived as
sound.

Sound waves can be pictured as graphs such as in Fig. 2.1, where high-
pressure regions are shown above the horizontal line, and low-pressure regions
are shown below. This particular waveshape, called a sine wave, can be char-
acterized by three mathematical quantities: frequency, amplitude, and phase.
The frequency of the wave is the number of complete oscillations that occur
in one second. Thus, a sine wave with a frequency of 100 Hz (short for Hertz,
after the German physicist Heinrich Rudolph Hertz) oscillates 100 times each
second. In the corresponding sound wave, the air molecules bounce back and
forth 100 times each second.
2 The ear actually responds to sound pressure, which is usually measured in deci-

bels.
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The human auditory system (the ear, for short) perceives the frequency of a
sine wave as its pitch, with higher frequencies corresponding to higher pitches.
The amplitude of the wave is given by the difference between the highest and
lowest pressures attained. As the ear reacts to variations in pressure, waves
with higher amplitudes are generally perceived as louder, whereas waves with
lower amplitudes are heard as softer. The phase of the sine wave essentially
specifies when the wave starts, with respect to some arbitrarily given starting
time. In most circumstances, the ear cannot determine the phase of a sine
wave just by listening.

Thus, a sine wave is characterized by three measurable quantities, two of
which are readily perceptible. This does not, however, answer the question of
what a sine wave sounds like. Indeed, no amount of talk will do. Sine waves
have been variously described as pure, tonal, clean, simple, clear, like a tuning
fork, like a theremin, electronic, and flute-like. To refresh your memory, the
first few seconds of sound example [S: 8] are purely sinusoidal.

2.2 What Is a Spectrum?

Individual sine waves have limited musical value. However, combinations of
sine waves can be used to describe, analyze, and synthesize almost any possible
sound. The physicist’s notion of the spectrum of a waveform correlates well
with the perceptual notion of the timbre of a sound.

2.2.1 Prisms, Fourier Transforms, and Ears

As sound (in the physical sense) is a wave, it has many properties that are
analogous to the wave properties of light. Think of a prism, which bends
each color through a different angle and so decomposes sunlight into a family
of colored beams. Each beam contains a “pure color,” a wave of a single
frequency, amplitude, and phase.3 Similarly, complex sound waves can be
decomposed into a family of simple sine waves, each of which is characterized
by its frequency, amplitude, and phase. These are called the partials, or the
overtones of the sound, and the collection of all the partials is called the
spectrum. Figure 2.2 depicts the Fourier transform in its role as a “sound
prism.”

This prism effect for sound waves is achieved by performing a spectral
analysis, which is most commonly implemented in a computer by running a
program called the Discrete Fourier Transform (DFT) or the more efficient
Fast Fourier Transform (FFT). Standard versions of the DFT and/or the FFT
are readily available in audio processing software and in numerical packages
(such as Matlab and Mathematica) that can manipulate sound data files.

3 For light, frequency corresponds to color, and amplitude to intensity. Like the
ear, the eye is predominantly blind to the phase.
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Fig. 2.2. Just as a prism separates light into its simple constituent elements (the
colors of the rainbow), the Fourier Transform separates sound waves into simpler sine
waves in the low (bass), middle (midrange), and high (treble) frequencies. Similarly,
the auditory system transforms a pressure wave into a spatial array that corresponds
to the various frequencies contained in the wave, as shown in Fig. 2.4.

The spectrum gives important information about the makeup of a sound.
For example, Fig. 2.3 shows a small portion of each of three sine waves:

(a) With a frequency of 100 Hz and an amplitude of 1.2 (the solid
line)

(b) With a frequency of 200 Hz and an amplitude of 1.0 (plotted
with dashes)

(c) With a frequency of 200 Hz and an amplitude of 1.0, but
shifted in phase from (b) (plotted in bold dashes)

such as might be generated by a pair of tuning forks or an electronic tuner
playing the G below middle C and the G an octave below that.4 When (a)
and (b) are sounded together (mathematically, the amplitudes are added to-
gether point by point), the result is the (slightly more) complex wave shown
in part (d). Similarly, (a) and (c) added together give (e). When (d) is Fourier
transformed, the result is the graph (f) that shows frequency on the horizon-
tal axis and the magnitude of the waves displayed on the vertical axis. Such
magnitude/frequency graphs are called the spectrum5 of the waveform, and
they show what the sound is made of. In this case, we know that the sound is
4 Actually, the G’s should have frequencies of 98 and 196, but 100 and 200 make

all of the numbers easier to follow.
5 This is more properly called the magnitude spectrum. The phase spectrum is ig-

nored in this discussion because it does not correspond well to the human per-
ceptual apparatus.
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composed of two sine waves at frequencies 100 and 200, and indeed there are
two peaks in (f) corresponding to these frequencies. Moreover, we know that
the amplitude of the 100-Hz sinusoid is 20% larger than the amplitude of the
200-Hz sine, and this is reflected in the graph by the size of the peaks. Thus,
the spectrum (f) decomposes the waveform (d) into its constituent sine wave
components.
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Fig. 2.3. Spectrum of a sound consisting of two sine waves.

This idea of breaking up a complex sound into its sinusoidal elements
is important because the ear functions as a kind of “biological” spectrum
analyzer. That is, when sound waves impinge on the ear, we hear a sound
(in the second, perceptual sense of the word) that is a direct result of the
spectrum, and it is only indirectly a result of the waveform. For example, the
waveform in part (d) looks very different from the waveform in part (e), but
they sound essentially the same. Analogously, the spectrum of waveform (d)
and the spectrum of waveform (e) are identical (because they have been built
from sine waves with the same frequencies and amplitudes). Thus, the spectral
representation captures perceptual aspects of a sound that the waveform does
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not. Said another way, the spectrum (f) is more meaningful to the ear than
are the waveforms (d) and (e).

A nontrivial but interesting exercise in mathematics shows that any peri-
odic signal can be broken apart into a sum of sine waves with frequencies that
are integer multiples of some fundamental frequency. The spectrum is thus
ideal for representing periodic waveforms. But no real sound is truly periodic,
if only because it must have a beginning and an end; at best it may closely
approximate a periodic signal for a long, but finite, time. Hence, the spectrum
can closely, but not exactly, represent a musical sound. Much of this chapter
is devoted to discovering how close such a representation can really be.

Figure 2.4 shows a drastically simplified view of the auditory system.
Sound or pressure waves, when in close proximity to the eardrum, cause it to
vibrate. These oscillations are translated to the oval window through a me-
chanical linkage consisting of three small bones. The oval window is mounted
at one end of the cochlea, which is a conical tube that is curled up like a
snail shell (although it is straightened out in the illustration). The cochlea
is filled with fluid, and it is divided into two chambers lengthwise by a thin
layer of pliable tissue called the basilar membrane. The motion of the fluid
rocks the membrane. The region nearest the oval window responds primarily
to high frequencies, and the far end responds mostly to low frequencies. Tiny
hair-shaped neurons sit on the basilar membrane, sending messages toward
the brain when they are jostled.

membrane near window is 
narrow and stiff, responds 

to high frequencies

complex
sound wave

eardrum vibrates

mechanical linkage
of bones

oval window

cochlea: a fluid 
filled conical tube

membrane in middle 
responds to midrange

membrane at end is 
wide and flexible, 
responds to low 
frequencies

basilar membrane 
wiggles, triggering tiny 
hair shaped neurons

Fig. 2.4. The auditory system as a biological spectrum analyzer that transforms a
pressure wave into a frequency selective spatial array.

Thus, the ear takes in a sound wave, like that in Fig. 2.3 (d) or (e), and
sends a coded representation to the brain that is similar to a spectral analysis,
as in (f). The conceptual similarities between the Fourier transform and the
auditory system show why the idea of the spectrum of a sound is so powerful;
the Fourier transform is a mathematical tool that is closely related to our
perceptual mechanism. This analogy between the perception of timbre and
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the Fourier spectrum was first posited by Georg Ohm in 1843 (see [B: 147]),
and it has driven much of the acoustics research of the past century and a
half.

2.2.2 Spectral Analysis: Examples

The example in the previous section was contrived because we constructed
the signal from two sine waves, only to “discover” that the Fourier transform
contained the frequencies of those same two sine waves. It is time to explore
more realistic sounds: the pluck of a guitar and the strike of a metal bar. In
both cases, it will be possible to give both a physical and an auditory meaning
to the spectrum.

Guitar Pluck: Theory

Guitar strings are flexible and lightweight, and they are held firmly in place at
both ends, under considerable tension. When plucked, the string vibrates in a
far more complex and interesting way than the simple sine wave oscillations
of a tuning fork or an electronic tuner. Figure 2.5 shows the first 3/4 second
of the open G string of my Martin acoustic guitar. Observe that the waveform
is initially very complex, bouncing up and down rapidly. As time passes, the
oscillations die away and the gyrations simplify. Although it may appear that
almost anything could be happening, the string can vibrate freely only at
certain frequencies because of its physical constraints.

For sustained oscillations, a complete half cycle of the wave must fit exactly
inside the length of the string; otherwise, the string would have to move up
and down where it is rigidly attached to the bridge (or nut) of the guitar. This
is a tug of war the string inevitably loses, because the bridge and nut are far
more massive than the string. Thus, all oscillations except those at certain
privileged frequencies are rapidly attenuated.

Figure 2.6 shows the fundamental and the first few modes of vibration for
a theoretically ideal string. If half a period corresponds to the fundamental
frequency f , then a whole period at frequency 2f also fits exactly into the
length of the string. This more rapid mode of vibration is called the second
partial. Similarly, a period and a half at frequency 3f fits exactly, and it is
called the third partial. Such a spectrum, in which all frequencies of vibration
are integer multiples of some fundamental f , is called harmonic, and the
frequencies of oscillation are called the natural modes of vibration or resonant
frequencies of the string. As every partial repeats exactly within the period of
the fundamental, harmonic spectra correspond to periodic waveforms.

Compare the spectrum of the real string in Fig. 2.5 with the idealized
spectrum in Fig. 2.6. Despite the complex appearance of the waveform, the
guitar sound is primarily harmonic. Over 20 partials are clearly visible at
roughly equal distances from each other, with frequencies at (approximately)
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Fig. 2.5. Waveform of a guitar pluck and its spectrum. The top figure shows the
first 3/4 second (32,000 samples) of the pluck of the G string of an acoustic guitar.
The spectrum shows the fundamental at 196 Hz, and near integer harmonics at 384,
589, 787, . . . .

integer multiples of the fundamental, which in this case happens to be 196
Hz.

There are also some important differences between the real and the ideal-
ized spectra. Although the idealized spectrum is empty between the various
partials, the real spectrum has some low level energy at almost every fre-
quency. There are two major sources of this: noise and artifacts. The noise
might be caused by pick noise, finger squeaks, or other aspects of the musical
performance. It might be ambient audio noise from the studio, or electronic
noise from the recording equipment. Indeed, the small peak below the first
partial is suspiciously close to 60 Hz, the frequency of line current in the
United States.

Artifacts are best described by referring back to Fig. 2.3. Even though
these were pure sine waves generated by computer, and are essentially exact,
the spectrum still has a significant nonzero magnitude at frequencies other
than those of the two sine waves. This is because the sine waves are of finite
duration, whereas an idealized spectrum (as in Fig. 2.6) assumes an infinite
duration signal. This smearing of the frequencies in the signal is a direct
result of the periodicity assumption inherent in the use of Fourier techniques.
Artifacts and implementation details are discussed at length in Appendix C.
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Fig. 2.6. Vibrations of an ideal string and its spectrum. Because the string is fixed
at both ends, it can only sustain oscillations when a half period fits exactly into its
length. Thus, if the fundamental occurs at frequency f , the second partial must be
at 2f , the third at 3f , etc., as shown in the spectrum, which plots frequency verses
magnitude.

Guitar Pluck: Experiment

Surely you didn’t think you could read a whole chapter called the “Science
of Sound” without having to experiment? You will need a guitar (preferably
acoustic) and a reasonably quiet room.

Play one of the open strings that is in the low end of your vocal range
(the A string works well for me) and let the sound die away. Hold your mouth
right up to the sound hole, and sing “ah” loudly, at the same pitch as the
string. Then listen. You will hear the string “singing” back at you quietly.
This phenomenon is called resonance or sympathetic vibration. The pushing
and pulling of the air molecules of the pressure wave set in motion by your
voice excites the string, just as repetitive pushes of a child on a playground
swing causes larger and larger oscillations. When you stop pushing, the child
continues to bob up and down. Similarly, the string continues to vibrate after
you have stopped singing.

Now sing the note an octave above (if you cannot do this by ear, play at
the twelfth fret, and use this pitch to sing into the open string). Again you will
hear the string answer, this time at the octave. Now try again, singing the fifth
(which can be found at the seventh fret). This time the string responds, not
at the fifth, but at the fifth plus an octave. The string seems to have suddenly
developed a will of its own, refusing to sing the fifth, and instead jumping up
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an octave. If you now sing at the octave plus fifth, the string resonates back
at the octave plus fifth. But no amount of cajoling can convince it to sing
that fifth in the lower octave. Try it. What about other notes? Making sure
to damp all strings but the chosen one, sing a major second (two frets up).
Now, no matter how strongly you sing, the string refuses to answer at all. Try
other intervals. Can you get any thirds to sound?

To understand this cranky behavior, refer back to Fig. 2.6. The pitch of the
string occurs at the fundamental frequency, and it is happy to vibrate at this
frequency when you sing. Similarly, the octave is at exactly the second partial,
and again the string is willing to sound. When you sing a major second, its
frequency does not line up with any of the partials. Try pushing a playground
swing at a rate at which it does not want to go—you will work very hard for
very little result. Similarly, the string will not sustain oscillations far from its
natural modes of vibration.

The explanation for the behavior of the guitar when singing the fifth is
more subtle. Resonance occurs when the driving force (your singing) occurs
at or near the frequencies of the natural modes of vibration of the string (the
partials shown in Fig. 2.6). Your voice, however, is not a pure sine wave (at
least, mine sure is not). Voices tend to be fairly rich in overtones, and the
second partial of your voice coincides with the third partial of the string. It is
this coincidence of frequencies that drives the string to resonate. By listening
to the string, we have discovered something about your voice.

This is similar to the way Helmholtz [B: 71] determined the spectral con-
tent of sounds without access to computers and Fourier transforms. He placed
tuning forks or bottle resonators (instead of strings) near the sound to be an-
alyzed. Those that resonated corresponded to partials of the sound. In this
way, he was able to build a fairly accurate picture of the nature of sound and
of the hearing process.6

Sympathetic vibrations provide a way to hear the partials of a guitar
string,7 showing that they can vibrate in any of the modes suggested by
Fig. 2.6. But do they actually vibrate in these modes when played normally?
The next simple experiment demonstrates that strings tend to vibrate in many
of the modes simultaneously.
6 Although many of the details of Helmholtz’s theories have been superseded, his

book remains inspirational and an excellent introduction to the science of acous-
tics.

7 For those without a guitar who are feeling left out, it is possible to hear sympa-
thetic vibrations on a piano, too. For instance, press the middle C key slowly so
that the hammer does not strike the string. While holding this key down (so that
the damper remains raised), strike the C an octave below, and then lift up your
finger so as to damp it out. Although the lower C string is now silent, middle
C is now vibrating softly–the second partial of the lower note has excited the
fundamental of the middle C. Observe that playing a low B will not excite such
resonances in the middle C string.
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Grab your guitar and pluck an open string, say the A string. Then, quickly
while the note is still sounding, touch your finger lightly to the string directly
above the twelfth fret.8 You should hear the low A die away, leaving the
A an octave above still sounding. With a little practice you can make this
transition reliably. To understand this octave jump, refer again to Fig. 2.6.
When vibrating at the fundamental frequency, the string makes its largest
movement in the center. This point of maximum motion is called an antinode
for the vibrational mode. Touching the midpoint of the string (at the twelfth
fret) damps out this oscillation right away, because the finger is far more
massive than the string. On the other hand, the second partial has a fixed
point (called a node) right in the middle. It does not need to move up and
down at the midpoint at all, but rather has antinodes at 1/4 and 3/4 of the
length of the string. Consequently, its vibrations are (more or less) unaffected
by the light touch of the finger, and it continues to sound even though the
fundamental has been silenced.

The fact that the second partial persists after touching the string shows
that the string must have been vibrating in (at least) the first and second
modes. In fact, strings usually vibrate in many modes simultaneously, and
this is easy to verify by selectively damping out various partials. For instance,
by touching the string immediately above the seventh fret (1/3 of the length
of the string), both the first and second partials are immediately silenced,
leaving the third partial (at a frequency of three times the fundamental, the E
an octave and a fifth above the fundamental A) as the most prominent sound.
The fifth fret is 1/4 of the length of the string. Touching here removes the
first three partials and leaves the fourth, two octaves above the fundamental,
as the apparent pitch. To bring out the fifth harmonic, touch at either the
1/5 (just below the fourth fret) or at the 2/5 (near the ninth fret) points.
This gives a note just a little flat of a major third, two octaves above the
fundamental.

Table 2.1 shows the first 16 partials of the A string of the guitar. The
frequency of each partial is listed, along with the nearest note of the standard
12-tone equal-tempered scale and its frequency. The first several coincide very
closely, but the correspondence deteriorates for higher partials. The seventh
partial is noticeably flat of the nearest scale tone, and above the ninth partial,
there is little resemblance. With a bit of practice, it is possible to bring out
the sound of many of the lower partials. Guitarists call this technique “playing
the harmonics” of the string, although the preferred method begins with the
finger resting lightly on the string and pulls it away as the string is plucked.
As suggested by the previous discussion, it is most common to play harmonics
at the twelfth, seventh, and fifth frets, which correspond to the second, third,
and fourth partials, although others are feasible.
8 Hints: Just touch the string delicately. Do not press it down onto the fretboard.

Also, position the finger immediately over the fret bar, rather than over the space
between the eleventh and twelfth frets where you would normally finger a note.
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Table 2.1. The first 16 partials of the A string of a guitar with fundamental at
110 Hz. Many of the partials lie near notes of the standard equal-tempered scale,
but the correspondence grows worse for higher partial numbers.

Partial Frequency Name of Frequency of
Number of Partial Nearest Note Nearest Note

1 110 A 110
2 220 A 220
3 330 E 330
4 440 A 440
5 550 C� 554
6 660 E 659
7 770 G 784
8 880 A 880
9 990 B 988
10 1100 C� 1109
11 1210 D� 1245
12 1320 E 1318
13 1430 F 1397
14 1540 G 1568
15 1650 G� 1661
16 1760 A 1760

As any guitarist knows, the tone of the instrument depends greatly on
where the picking is done. Exciting the string in different places emphasizes
different sets of characteristic frequencies. Plucking the string in the middle
tends to bring out the fundamental and other odd-numbered harmonics (can
you tell why?) while plucking near the ends tends to emphasize higher har-
monics. Similarly, a pickup placed in the middle of the string tends to “hear”
and amplify more of the fundamental (which has its antinode in the mid-
dle), and a pickup placed near the end of the string emphasizes the higher
harmonics and has a sharper, more trebly tone.

Thus, guitars both can and do vibrate in many modes simultaneously, and
these vibrations occur at frequencies dictated by the physical geometry of the
string. We have seen two different methods of experimentally finding these
frequencies: excitation via an external source (singing into the guitar) and
selective damping (playing the harmonics). Of course, both of these methods
are somewhat primitive, but they do show that the spectrum (a plot of the
frequencies of the partials, and their magnitudes) is a real thing, which cor-
responds well with physical reality. With the ready availability of computers,
the Fourier transform is easy to use. It is more precise, but fundamentally
it tells nothing more than could be discovered using other nonmathematical
(and more intuitive) ways.
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A Metal Bar

It is not just strings that vibrate with characteristic frequencies. Every phys-
ical object tends to resonate at particular frequencies. For objects other than
strings, however, these characteristic frequencies are often not harmonically
related.

One of the simplest examples is a uniform metal bar as used in a glocken-
spiel or a wind chime.9 When the bar is struck, it bends and vibrates, exciting
the air and making sound. Figure 2.7 shows the first 3/4 second of the wave-
form of a bar and the corresponding spectrum. As usual, the waveform depicts
the envelope of the sound, indicating how the amplitude evolves over time.
The spectrum shows clearly what the sound is made of: four prominent par-
tials and some high-frequency junk. The partials are at 526, 1413, 2689, and
4267 Hz. Considering the first partial as the fundamental at f = 526 Hz, this
is f , 2.68f , 5.11f , and 8.11f , which is certainly not a harmonic relationship;
that is, the frequencies are not integer multiples of any audible fundamen-
tal. For bars of different lengths, the value of f changes, but the relationship
between frequencies of the partials remains (roughly) the same.

The spectrum of the ideal string was explained physically as due to the
requirement that it be fixed at both ends, which implied that the period of all
sustained vibrations had to fit evenly into the length of the string. The metal
bar is free at both ends, and hence, there is no such constraint. Instead the
movement is characterized by bending modes that specify how the bar will
vibrate once it is set into motion. The first three of these modes are depicted in
Fig. 2.8, which differ significantly from the mode shapes of the string depicted
in Fig. 2.6. Theorists have been able to write down and solve the equations
that describe this kind of motion.10 For an ideal metal bar, if the fundamental
occurs at frequency f , the second partial will be at 2.76f , the third at 5.4f ,
and the fourth at 8.93f . This is close to the measured spectrum of the bar of
Fig. 2.7. The discrepancies are likely caused by small nonuniformities in the
composition of the bar or to small deviations in the height or width of the bar.
The high-frequency junk is most likely caused by impact noise, the sound of
the stick hitting the bar, which is not included in the theoretical calculations.

As with the string, it is possible to discover these partials yourself. Find
a cylindrical wind chime, a length of pipe, or a metal extension hose from
a vacuum cleaner. Hold the bar (or pipe) at roughly 2/9 of its length, tap
it, and listen closely. How many partials can you hear? If you hold it in the
middle and tap, then the fundamental is attenuated and the pitch jumps up
to the second partial—well over an octave away (to see why, refer again to
Fig. 2.8). Now, keeping the sound of the second partial clearly in mind, hold

9 Even though wind chimes are often built from cylindrical tubes, the primary
modes of vibration are like those of a metal bar. Vibrations of the air column
inside the tube are not generally loud enough to hear.

10 See Fletcher and Rossing’s Physics of Musical Instruments for an amazingly de-
tailed presentation.
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Fig. 2.7. Waveform of the strike of a metal bar and the corresponding spectrum.
The top figure shows the first 3/4 second (32,000 samples) of the waveform in time.
The spectrum shows four prominent partials.

and strike the pipe again at the 2/9 point. You will hear the fundamental,
of course, but if you listen carefully, you can still hear the second partial. By
selectively muting the various partials, you can bring the sound of many of
the lower partials to the fore. By listening carefully, you can then continue to
hear them even when they are mixed in with all the others.

As with the string, different characteristic frequencies can be emphasized
by striking the bar at different locations. Typically, this will not change the lo-
cations of the partials, but it will change their relative amplitudes and, hence,
the tone quality of the instrument. Observe the technique of a conga drummer.
By tapping in different places, the drummer changes the tone dramatically.
Also, by pressing a free hand against the drumhead, certain partials can be
selectively damped, again manipulating the timbre.

The guitar string and the metal bar are only two of a nearly infinite number
of possible sound-making devices. The (approximately) harmonic vibrations
of the string are also characteristic of many other musical instruments. For
instance, when air oscillates in a tube, its motion is constrained in much the
same way that the string is constrained by its fixed ends. At the closed end of
a tube, the flow of air must be zero, whereas at an open end, the pressure must
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Fig. 2.8. The first three bending
modes of an ideal metal bar and its
spectrum. The size of the motion is
proportional to the amplitude of the
sound, and the rate of oscillation de-
termines the frequency. As usual, the
spectrum shows the frequencies of
the partials on the horizontal axis
and their magnitude on the vertical
axis. Nodes are stationary points for
particular modes of vibration. The
figures are not to scale (the size of the
motion is exaggerated with respect to
the length and diameter of the bars).

drop to zero.11 Thus instruments such as the flute, clarinet, trumpet, and so
on, all have spectra that are primarily harmonic. In contrast, most percussion
instruments such as drums, marimbas, kalimbas, cymbals, gongs, and so on,
have spectra that are inharmonic. Musical practice generally incorporates
both kinds of instruments.

Analytic vs. Holistic Listening: Tonal Fusion

Almost all musical sounds consist of a great many partials, whether they are
harmonically related or not. Using techniques such as selective damping and
the selective excitation of modes, it is possible (with a bit of practice) to
learn to “hear out” these partials, to directly perceive the spectrum of the
sound. This kind of listening is called analytic listening, in contrast to holistic
listening in which the partials fuse together into one perceptual entity. When
listening analytically, sounds fragment into their constituent elements. When
listening holistically, each sound is perceived as a single unit characterized by
a unique tone, color, or timbre.

Analytic listening is somewhat analogous to the ability of a trained musi-
cian to reliably discern any of several different parts in a complex score where
the naive (and more holistic) listener perceives one grand sound mass.

11 For more information on the modes of air columns, refer to Benade’s Fundamen-
tals of Musical Acoustics. See Brown ([B: 20] and [W: 3]) for a discussion of the
inharmonicities that may originate in nonidealized strings and air columns.
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When presented with a mass of sound, the ear must decide how many
notes, tones, or instruments are present. Consider the closing chord of a string
quartet. At one extreme is the fully analytic ear that “hears out” a large num-
ber of partials. Each partial can be attended to individually, and each has its
own attributes such as pitch and loudness. At the other extreme is the fully
holistic listener who hears the finale as one grand tone, with all four instru-
ments fusing into a single rich and complex sonic texture. This is called the
root or fundamental bass in the works of Rameau [B: 145]. Typical listen-
ing lies somewhere between. The partials of each instrument fuse, but the
instruments remain individually perceptible, each with its own pitch, loud-
ness, vibrato, and so on. What physical clues make this remarkable feat of
perception possible?

One way to investigate this question experimentally is to generate clusters
of partials and ask listeners “how many notes” they hear.12 Various features of
the presentation reliably encourage tonal fusion. For instance, if the partials:

(i) Begin at the same time (attack synchrony)
(ii) Have similar envelopes (amplitudes change similarly over time)
(iii) Are harmonically related
(iv) Have the same vibrato rate

then they are more likely to fuse into a single perceptual entity. Almost any
common feature of a subgroup of partials helps them to be perceived together.
Perhaps the viola attacks an instant early, the vibrato on the cello is a tad
faster, or an aggressive bowing technique sharpens the tone of the first violin.
Any such quirks are clues that can help the ear bind the partials of each in-
strument together while distinguishing viola from violin. Familiarity with the
timbral quality of an instrument is also important when trying to segregate it
from the surrounding sound mass, and there may be instrumental “templates”
acquired with repeated listening.

The fusion and fissioning of sounds is easy to hear using a set of wind
chimes with long sustain. I have a very beautiful set called the “Chimes of
Partch,”13 made of hollow metal tubes. When the clapper first strikes a tube,
there is a “ding” that initiates the sound. After several strikes and a few
seconds, the individuality of the tube’s vibrations are lost. The whole set
begins to “hum” as a single complex tone. The vibrations have fused. When
a new ding occurs, it is initially heard as separate, but soon merges into the
hum.

At the risk of belaboring the obvious, it is worth mentioning that many of
the terms commonly used in musical discourse are essentially ambiguous. The
strike of a metal bar may be perceived as a single “note” by a holistic listener,
yet as a diverse collection of partials by an analytic listener. As the analytic
12 This is an oversimplification of the testing procedures actually used by Bregman

[B: 18] and his colleagues.
13 See [B: 91].
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listener assigns a separate pitch and loudness to each partial, the strike is heard
as a “chord.” Thus, the same sound stimulus can be legitimately described as
a note or as a chord.

The ability to control the tonal fusion of a sound can become crucial in
composition or performance with electronic sounds of unfamiliar timbral qual-
ities. For example, it is important for the composer to be aware of “how many”
notes are sounding. What may appear to be a single note (in an electronic
music score or on the keyboard of a synthesizer) may well fission into multiple
tones for a typical listener. By influencing the coincidence of attack, envelope,
vibrato, harmonicity, and so on, the composer can help to ensure that what is
heard is the same as what was intended. By carefully emphasizing parameters
of the sound, the composer or musician can help to encourage the listener into
one or the other perceptual modes.

The spectrum corresponds well to the physical behavior of the vibrations
of strings, air columns, and bars that make up musical instruments. It also
corresponds well to the analytic listening of humans as they perceive these
sound events. However, people generally listen holistically, and a whole vo-
cabulary has grown up to describe the tone color, sound quality, or timbre of
a tone.

2.3 What Is Timbre?

If a tree falls in the forest, is there any timbre? According to the American
National Standards Institute [B: 6], the answer must be “no,” whether or not
anyone is there to hear. They define:

Timbre is that attribute of auditory sensation in terms of which a
listener can judge two sounds similarly presented and having the same
loudness and pitch as dissimilar.

This definition is confusing, in part because it tells what timbre is not (i.e.,
loudness and pitch) rather than what it is. Moreover, if a sound has no pitch
(like the crack of a falling tree or the scrape of shoes against dry leaves), then
it cannot be “similarly presented and have the same pitch,” and hence it has
no timbre at all. Pratt and Doak [B: 143] suggest:

Timbre is that attribute of auditory sensation whereby a listener can
judge that two sounds are dissimilar using any criterion other than
pitch, loudness and duration.

And now the tree does have timbre as it falls, although the definition still
does not specify what timbre is.

Unfortunately, many descriptions of timbral perception oversimplify. For
instance, a well known music dictionary [B: 75] says in its definition of timbre
that:
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On analysis, the difference between tone-colors of instruments are
found to correspond with differences in the harmonics represented
in the sound (see HARMONIC SERIES).

This is simplifying almost to the point of misrepresentation. Any sound (such
as a metal bar) that does not have harmonics (partials lying at integer mul-
tiples of the fundamental) would have no timbre. Replacing “harmonic” with
“partial” or “overtone” suggests a definition that equates timbre with spec-
trum, as in this statement by the Columbia Encyclopedia:

[Sound] Quality is determined by the overtones, the distinctive tim-
bre of any instrument being the result of the number and relative
prominence of the overtones it produces.

Although much of the notion of the timbre of a sound can be attributed to
the number, amplitudes, and spacing of the spectral lines in the spectrum of
a sound, this cannot be the whole story because it suggests that the envelope
and attack transients do not contribute to timbre. Perhaps the most dramatic
demonstration of this is to play a sound backward. The spectrum of a sound
is the same whether it is played forward or backward,14 and yet the sound
is very different. In the CD Auditory Demonstrations [D: 21], a Bach chorale
is played forward on the piano, backward on the piano, and then the tape is
reversed. In the backward and reversed case, the music moves forward, but
each note of the piano is reversed. The piano takes on many of the timbral
characteristics of a reed organ, demonstrating the importance of the time
envelope in determining timbre.

2.3.1 Multidimensional Scaling

It is not possible to construct a single continuum in which all timbres can be
simply ordered as is done for loudness or for pitch.15 Timbre is thus a “mul-
tidimensional” attribute of sound, although exactly how many “dimensions”
are required is a point of significant debate. Some proposed subjective rating
scales for timbre include:

dull ←→ sharp
cold ←→ warm
soft ←→ hard
pure ←→ rich

compact ←→ scattered
full ←→ empty

static ←→ dynamic
colorful ←→ colorless

14 As usual, we ignore the phase spectrum.
15 The existence of auditory illusions such as Shephard’s ever rising scale shows that

the timbre can interact with pitch to destroy this simple ordering. See [B: 41].
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Of course, these attributes are perceptual descriptions. To what physically
measurable properties do they correspond? Some relate to temporal effects
(such as envelope and attack) and others relate to spectral effects (such as
clustering and spacing of partials).

The attack is a transient effect that quickly fades. The sound of a violin
bow scraping or of a guitar pick plucking helps to differentiate the two instru-
ments. The initial breathy puff of a flautist, or the gliding blat of a trumpet,
lends timbral character that makes them readily identifiable. An interesting
experiment [B: 13] asked a panel of musically trained judges to identify iso-
lated instrumental sounds from which the first half second had been removed.
Some instruments, like the oboe, were reliably identified. But many others
were confused. For instance, many of the jurists mistook the tenor saxophone
for a clarinet, and a surprising number thought the alto saxophone was a
french horn.

The envelope describes how the amplitude of the sound evolves over time.
In a piano, for instance, the sound dies away at roughly an exponential rate,
whereas the sustain of a wind instrument is under the direct control of the
performer. Even experienced musicians may have difficulty identifying the
source of a sound when its envelope is manipulated. To investigate this, Strong
and Clark [B: 186] generated sounds with the spectrum of one instrument
and the envelope of another. In many cases (oboe, tuba, bassoon, clarinet),
they found that the spectrum was a more important clue to the identity of
the instrument, whereas in other cases (flute), the envelope was of primary
importance. The two factors were of comparable importance for still other
instruments (trombone, french horn).

In a series of studies16 investigating timbre, researchers generated sounds
with various kinds of modifications, and they asked subjects to rate their
perceived similarity. A “multidimensional scaling algorithm” was then used to
transform the raw judgments into a picture in which each sound is represented
by a point so that closer points correspond to more similar sounds.17 The axes
of the space can be interpreted as defining the salient features that distinguish
the sounds. Attributes include:

(i) Degree of synchrony in the attack and decay of the partials
(ii) Amount of spectral fluctuation18

(iii) Presence (or absence) of high-frequency, inharmonic energy in the
attack

(iv) Bandwidth of the signal19
(v) Balance of energy in low versus high partials

16 See [B: 139], [B: 46], [B: 64], and [B: 63].
17 Perhaps the earliest investigation of this kind was Stevens [B: 181], who studied

the “tonal density” of sounds.
18 Change in the spectrum over time.
19 Roughly, the frequency range in which most of the partials lie.
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(vi) Existence of formants20

For example, Grey and Gordon [B: 63] exchange the spectral envelopes21

of pairs of instrumental sounds (e.g., a french horn and a bassoon) and ask
subjects to rate the similarity and dissimilarity of the resulting hybrids. They
find that listener’s judgments are well represented by a three-dimensional
space in which one dimension corresponds to the spectral energy distribution
of the sounds. Another dimension corresponds to the spectral fluctuations
of the sound, and they propose that this provides a physical correlate for
the subjective quality of a “static” versus a “dynamic” timbre. The third
dimension involves the existence of high-frequency inharmonicity during the
attack, for instance, the noise-like scrape of a violin bow. They propose that
this corresponds to a subjective scale of “soft” versus “hard” or perhaps a
“calm” versus “explosive” dichotomy.

2.3.2 Analogies with Vowels

The perceptual effect of spectral modifications are often not subtle. Grey and
Gordon [B: 63] state that “one hears the tones switch to each others vowel-like
color but maintain their original ... attack and decay.” As the spectral dis-
tribution in speech gives vowels their particular sound, this provides another
fruitful avenue for the description of timbre. Slawson [B: 175] develops a whole
language for talking about timbre based on the analogy with vowel tones. Be-
ginning with the observation that many musical sounds can be described by
formants, Slawson proposes that musical sound colors can be described as
variable sources of excitation passed through a series of fixed filters. Struc-
tured changes in the filters can lead to perceptually sensible changes in the
sound quality, and Slawson describes these modifications in terms of the fre-
quencies of the first two formants. Terms such as laxness, acuteness, openness,
and smallness describe various kinds of motion in the two-dimensional space
defined by the center frequencies of the two formants, and correspond per-
ceptually to transitions between vowel sounds. For instance, opening up the
sustained vowel sound ii leads to ee and then to ae, and this corresponds
physically to an increase in frequency of the first formant.

2.3.3 Spectrum and the Synthesizer

In principle, musical synthesizers have the potential to produce any possible
sound and, hence, any possible timbre. But synthesizers must organize their
20 Resonances, which may be thought of as fixed filters through which a variable

excitation is passed.
21 The envelope of a partial describes how the amplitude of the partial evolves

over time. The spectral envelope is a collection of all envelopes of all partials. In
Grey and Gordon’s experiments, only the envelopes of the common partials are
interchanged.
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sound generation capabilities so as to allow easy control over parameters of the
sound that are perceptually relevant to the musician. Although not a theory of
timbral perception, the organization of a typical synthesizer is a market-tested,
practical realization that embodies many of the perceptual dichotomies of the
previous sections. Detailed discussions of synthesizer design can be found in
[B: 38] or [B: 158].

Sound generation in a typical synthesizer begins with the creation of a
waveform. This waveform may be stored in memory, or it may be generated
by some algorithm such as FM [B: 32], nonlinear waveshaping [B: 152], or
any number of other methods [B: 40]. It is then passed through a series of
filters and modulators that shape the final sound. Perhaps the most common
modulator is an envelope generator, which provides amplitude modulation
of the signal. A typical implementation such as Fig. 2.9 has a four-segment
envelope with attack, decay, sustain, and release. The attack portion dictates
how quickly the amplitude of the sound rises. A rapid attack will tend to
be heard as a percussive (“sharp” or “hard”) sound, whereas a slow attack
would be more fitting for sounds such as wind instruments which speak more
hesitantly or “softly.” The sustain portion is the steady state to which the
sound decays after a time determined by the decay parameters. In a typical
sample-based electronic musical instrument, the sustain portion consists of
a (comparatively) small segment of the waveform, called a “loop,” that is
repeated over and over until the key is released, at which time the sound dies
away at a specified rate.
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Fig. 2.9. The ADSR envelope de-
fines a loudness contour for a syn-
thesized sound. The attack is trig-
gered by the key press. After a spec-
ified time, the sound decays to its
sustain level, which is maintained
until the key is raised. Then the
loudness dies away at a rate deter-
mined by the release parameters.

Although the attack portion dictates some of the perceptual aspects, the
steady-state sustained segment typically lasts far longer (except in percussive
sounds), and it has a large perceptual impact. Depending on the underlying
waveform, the sustain may be “compact” or “scattered,” “bright” or “dull,”
“colorful” or “colorless,” “dynamic” or “static,” or “pure” or “rich.” As most
of these dichotomies are correlated with spectral properties of the wave, the
design of a typical synthesizer can be viewed as supporting a spectral view of
timbre, albeit tempered with envelopes, filters,22 and modulators.
22 One could similarly argue that the presence of resonant filters to shape the syn-

thesized sound is a justification of the formant-based vowel analogy of timbre.
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2.3.4 Timbral Roundup

There are several approaches to timbral perception, including multidimen-
sional scaling, analogies with vowels, and a pragmatic synthesis approach. Of
course, there are many other possible ways to talk about sounds. For instance,
Schafer [B: 162] in Canada23 distinguishes four broad categories by which
sounds may be classified: physical properties, perceived attributes, function
or meaning, and emotional or affective properties. Similarly, Erickson [B: 50]
classifies and categorizes using terms such as “sound masses,” “grains,” “rus-
tle noise,” and so on, and exposes a wide range of musical techniques based
on such sonic phenomena.

This book takes a restricted and comparatively simplistic approach to tim-
bre. Although recognizing that temporal effects such as the attack and decay
are important, we focus on the steady-state portion of the sound where tim-
bre is more or less synonymous with stationary spectrum. Although admitting
that the timbre of a sound can carry both meaning and emotion, we restrict
ourselves to a set of measurable quantities that can be readily correlated with
the perceptions of consonance and dissonance. These are largely pragmatic
simplifications. By focusing on the spectral aspects of sound, it is possible
to generate whole families of sounds with similar spectral properties. For in-
stance, all harmonic instruments can be viewed as belonging to one “family”
of sounds. Similarly, each inharmonic collection of partials has a family of
different sounds created by varying the temporal features. As we will see and
hear, each family of sounds has a unique tuning in which it can be played
most consonantly.

Using the spectrum as a measure of timbre is like trying to make musical
sounds stand still long enough to analyze them. But music does not remain
still for long, and there is a danger of reading too much into static measure-
ments. I have tried to avoid this problem by constantly referring back to sound
examples and, where possible, to musical examples.

2.4 Frequency and Pitch

Conventional wisdom says that the perceived pitch is proportional to the log-
arithm of the frequency of a signal. For pure sine waves, this is approximately
true.24 For most instrumental sounds such as strings and wind instruments,
it is easy to identify a fundamental, and again the pitch is easy to deter-
mine. But for more complex tones, such as bells, chimes, percussive and other
inharmonic sounds, the situation is remarkably unclear.
23 Not to be confused with Schaeffer [B: 161] in France who attempts a complete

classification of sound.
24 The mel scale, which defines the psychoacoustical relationship between pitch and

frequency, deviates from an exact logarithmic function especially in the lower
registers.
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2.4.1 Pitch of Harmonic Sounds

Pythagoras of Samos25 is credited with first observing that the pitch of a
string is directly related to its length. When the length is halved (a ratio of
1:2), the pitch jumps up an octave. Similarly, musical intervals such as the
fifth and fourth correspond to string lengths with simple ratios26: 2:3 for the
musical fifth, and 3:4 for the fourth. Pythagoras and his followers proceeded
to describe the whole universe in terms of simple harmonic relationships, from
the harmony of individuals in society to the harmony of the spheres above.
Although most of the details of Pythagoras’ model of the world have been
superseded, his vision of a world that can be described via concrete logical
and mathematical relationships is alive and well.

The perceived pitch of Pythagoras’ string is proportional to the frequency
at which it vibrates. Moreover, musically useful pitch relationships such as
octaves and fifths are not defined by differences in frequency, but rather by
ratios of frequencies. Thus, an octave, defined as a frequency ratio of 2:1, is
perceived (more or less) the same, whether it is high (say, 2000 to 1000 Hz)
or low (250 to 125 Hz). Such ratios are called musical intervals.

The American National Standards Institute defines pitch as:

that attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from low to high.

Because sine waves have unambiguous pitches (everyone orders them the same
way from low to high27), such an ordering can be accomplished by comparing
a sound of unknown pitch to sine waves of various frequencies. The pitch of
the sinusoid that most closely matches the unknown sound is then said to be
the pitch of that sound.

Pitch determinations are straightforward when working with strings and
with most harmonic instruments. For example, refer back to the spectrum of
an ideal string in Fig. 2.6 on p. 17 and the measured spectrum of a real string
in Fig. 2.5 on p. 17. In both cases, the spectrum consists of a collection of
harmonic partials with frequencies f , 2f , 3f, ..., plus (in the case of a real
string) some other unrelated noises and artifacts. The perceived pitch will be
f , that is, if asked to find a pure sine wave that most closely matches the
pluck of the string, listeners invariably pick one with frequency f .

But it is easy to generate sounds electronically whose pitch is difficult to
predict. For instance, Fig. 2.10 part (a) shows a simple waveform with a buzzy
tone. This has the same period and pitch as (b), although the buzz is of a
slightly different character. The sound is now slowly changed through (c) and

25 The same guy who brought you the formula for the hypotenuse of a right triangle.
26 Whether a musical interval is written as b:a or as a:b is immaterial because one

describes the lower pitch relative to the upper, whereas the other describes the
upper pitch relative to the lower.

27 With the caveat that some languages may use different words, for instance, “big”
and “small” instead of “low” and “high.”
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Fig. 2.10. (a) and (b) have the same period P and the same pitch. (c) and (d)
change continuously into (e), which has period P

2 . Thus, (e) is perceived an octave
higher than (a). The spectra (shown on the right) also change smoothly from (a) to
(e). Where exactly does the pitch change? See video example [V: 2].

(d) (still maintaining its period) into (e). But (e) is the same as (a) except
twice as fast, and is heard an octave above (a)! Somewhere between (b) and
(e), the sound jumps up an octave. This is demonstrated in video example
[V: 2], which presents the five sounds in succession.

The spectra of the buzzy tones in Fig. 2.10 are shown on the right-hand
side. Like the string example above, (a) and (e) consist primarily of harmon-
ically related partials at multiples of a fundamental at 1/P for (a) and at 2

P
for (e). Hence, they are perceived at these two frequencies an octave apart.
But as the waveforms (b), (c), and (d) change smoothly from (a) to (e), the
spectra must move smoothly as well. The changes in the magnitudes of the
partials are not monotonic, and unfortunately, it is not obvious from the plots
exactly where the pitch jumps.

2.4.2 Virtual Pitch

When there is no discernible fundamental, the ear will often create one. Such
virtual pitch,28 when the pitch of the sound is not the same as the pitch of
any of its partials, is an aspect of holistic listening. Virtual pitch is expertly
demonstrated on the Auditory Demonstrations CD [D: 21], where the “West-

28 Terhardt and his colleagues are among the most prominent figures in this area;
see [B: 195] and [B: 197].
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minster Chimes” song is played using only upper harmonics. In one demon-
stration, the sounds have spectra like that shown in Fig. 2.11. This particular
note has partials at 780, 1040, and 1300 Hz, which is clearly not a harmonic
series. These partials are, however, closely related to a harmonic series with
fundamental at 260 Hz, because the lowest partial is 260 times 3, the middle
partial is 260 times 4, and the highest partial is 260 times 5. The ear appears
to recreate the missing fundamental, and this perception is strong enough to
support the playing of melodies, even when the particular harmonics used to
generate the sound change from note to note.
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Fig. 2.11. Spectrum of a sound with promi-
nent partials at 780, 1040, and 1300 Hz.
These are marked by the arrows as the third,
fourth, and fifth partials of a “missing” or
“virtual” fundamental at 260 Hz. The ear
perceives a note at 260 Hz, which is indi-
cated by the extended arrow. See video ex-
ample [V: 3].

The pitch of the complex tones playing the Westminster Chimes song is
determined by the nearest “harmonic template,” which is the average of the
three frequencies, each divided by their respective partial numbers. Symbol-
ically, this is 1

3 ( 780
3 + 1040

4 + 1300
5 ) = 260 Hz. This is demonstrated in video

example [V: 3], which presents the three sine waves separately and then to-
gether. Individually, they sound like high-pitched sinusoids at frequencies 780,
1040, and 1300 Hz (as indeed they are). Together, they create the percept of
a single sound at 260 Hz. When the partials are not related to any harmonic
series, current theories suggest that the ear tries to find a harmonic series
“nearby” and to somehow derive a pitch from this nearby series. For instance,
if the partials above were each raised 20 Hz, to 800, 1060, and 1320 Hz, then
a virtual pitch would be perceived at about 1

3 ( 800
3 + 1060

4 + 1320
5 ) ≈ 265 Hz.

This is illustrated in video example [V: 4], which plays the three sine waves
individually and then together. The resulting sound is then alternated with a
sine wave of frequency 265 Hz for comparison.

An interesting phenomenon arises when the partials are related to more
than one harmonic series. Consider the two sounds:

(i) With partials at 600, 800, and 1000 Hz
(ii) With partials at 800, 1000, and 1200 Hz
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Both have a clear virtual pitch at 200 Hz. The first contains the third, fourth,
and fifth partials, whereas the second contains the fourth, fifth, and sixth par-
tials. Sound example [S: 6] begins with the first note and ascends by adding
20 Hz to each partial. Each raised note alternates with a sine wave at the ap-
propriate virtual pitch. Similarly, sound example [S: 7] begins with the second
note and descends by subtracting 20 Hz from each partial. Again, the note
and a sine wave at the virtual pitch alternate. The frequencies of all the notes
are listed in Table 2.2. To understand what is happening, observe that each
note in the table can be viewed two ways: as partials 3, 4, and 5 of the as-
cending notes or as partials 4, 5, and 6 of the descending notes. For example,
the fourth note has virtual pitch at either

1
3

(
660
3

+
860
4

+
1060

5

)
≈ 215.6

or at
1
3

(
660
4

+
860
5

+
1060

6

)
≈ 171.2

depending on the context in which it is presented! Virtual pitch has been ex-
plored extensively in the literature, considering such factors as the importance
of individual partials [B: 115] and their amplitudes [B: 116].

This ambiguity of virtual pitch is loosely analogous to Rubin’s well-known
face/vase “illusion” of Fig. 2.12 where two white faces can be seen against a
black background, or a black vase can be seen against a white background. It
is difficult to perceive both images simultaneously. Similarly, the virtual pitch
of the fourth note can be heard as 215 when part of an ascending sequence,
or it can be heard as 171 when surrounded by appropriate descending tones,
but it is difficult to perceive both simultaneously.

Perhaps the clearest conclusion is that pitch determination for complex
inharmonic tones is not simple. Virtual pitch is a fragile phenomenon that
can be influenced by many factors, including the context in which the sounds
are presented. When confronted with an ambiguous set of partials, the ear
seems to “hear” whatever makes the most sense. If one potential virtual pitch
is part of a logical sequence (such as the ascending or descending series in
[S: 6] and [S: 7] or part of a melodic phrase as in the Westminster Chime
song), then it may be preferred over another possible virtual pitch that is not
obviously part of such a progression.

Fig. 2.12. Two faces or one vase? Ambiguous perceptions,
where one stimulus can give rise to more than one per-
ception are common in vision and in audition. The ascend-
ing/descending virtual pitches of sound examples [S: 6] and
[S: 7] exhibit the same kind of perceptual ambiguity as the
face/vase illusion.
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Table 2.2. Each note consists of three partials. If the sequence is played ascending,
then the first virtual pitch tends to be perceived, whereas if played descending, the
second, lower virtual pitch tends to be heard. Only one virtual pitch is audible at a
time. This can be heard in sound examples [S: 6] and [S: 7].

Note First Second Third Virtual Pitch Virtual Pitch
partial partial partial ascending descending

1 600 800 1000 200.0 158.9
2 620 820 1020 205.2 163.0
3 640 840 1040 210.4 167.1
4 660 860 1060 215.6 171.2
5 680 880 1080 220.9 175.3
6 700 900 1100 226.1 179.4
7 720 920 1120 231.3 183.6
8 740 940 1140 236.6 187.7
9 760 960 1160 241.8 191.8
10 780 980 1180 247.0 195.9
11 800 1000 1200 252.2 200.0

Pitch and virtual pitch are properties of a single sound. For instance, a
chord played by the violin, viola, and cello of a string quartet is not usually
thought of as having a pitch; rather, pitch is associated with each instrumental
tone separately. Thus, determining the pitch or pitches of a complex sound
source requires that it first be partitioned into separate perceptual entities.
Only when a cluster of partials fuse into a single sound can it be assigned a
pitch. When listening analytically, for instance, there may be more “notes”
present than in the same sound when listening holistically. The complex sound
might fission into two or more “notes” and be perceived as a chord. In the
extreme case, each partial may be separately assigned a pitch, and the sound
may be described as a chord.

Finally, the sensation of pitch requires time. Sounds that are too short are
heard as a click, irrespective of their underlying frequency content. Tests with
pure sine waves show that a kind of auditory “uncertainty principle” holds in
which it takes longer to determine the pitch of a low-frequency tone than one
of high frequency.29

2.5 Summary

When a tree falls in the forest and no one is near, it has no pitch, loud-
ness, timbre, or dissonance, because these are perceptions that occur inside a
mind. The tree does, however, emit sound waves with measurable amplitude,
frequency, and spectral content. The perception of the tone quality, or timbre,
29 This is discussed at length in [B: 99], [B: 61], and [B: 62].
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is correlated with the spectrum of the physical signal as well as with tempo-
ral properties of the signal such as envelope and attack. Pitch is primarily
determined by frequency, and loudness by amplitude. Sounds must fuse into
a single perceptual entity for holistic listening to occur. Some elements of a
sound encourage this fusion, and others tend to encourage a more analytical
perception. The next chapter focuses on phenomena that first appear when
dealing with pairs of sine waves, and successive chapters explore the impli-
cations of these perceptual ideas in the musical settings of performance and
composition and in the design of audio signal-processing devices.

2.6 For Further Investigation

Perhaps the best overall introductions to the Science of Sound are the book
by Rossing [B: 158] with the same name, Music, Speech, Audio by Strong
[B: 187], and The Science of Musical Sounds by Sundberg [B: 189]. All three
are comprehensive, readable, and filled with clear examples. The coffee-table
quality of the printing of Science of Musical Sound by Pierce [B: 135] makes
it a delight to handle as well as read, and it is well worth listening to the
accompanying recording. Perceptual aspects are emphasized in the readable
Physics and Psychophysics of Music by Roederer [B: 154], and the title should
not dissuade those without mathematical expertise. Pickles [B: 133] gives An
Introduction to the Physiology of Hearing that is hard to beat. The Psychology
of Music by Deutsch [B: 41] is an anthology containing forward-looking chap-
ters written by many of the researchers who created the field. The recording
Auditory Demonstrations [D: 21] has a wealth of great sound examples. It is
thorough and thought provoking.

For those interested in pursuing the acoustics of musical instruments, the
Fundamentals of Musical Acoustics by Benade [B: 12] is fundamental. Those
with better math skills might consider the Fundamentals of Acoustics by
Kinsler and Fry [B: 85] for a formal discussion of bending modes of rods and
strings (as well as a whole lot more). Those who want the whole story should
check out the Physics of Musical Instruments by Fletcher and Rossing [B: 56].
Finally, the book that started it all is Helmholtz’s On the Sensations of Tones
[B: 71], which remains readable over 100 years after its initial publication.
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Sound on Sound

All is clear when dealing with a single sine wave
of reasonable amplitude and duration. The measured
amplitude is correlated with the perceived loudness,
the measured frequency is correlated with the perceived
pitch, and the phase is essentially undetectable by
the ear. Little is clear when dealing with large
clusters of sine waves such as those that give rise
to ambiguous virtual pitches. This chapter explores
the in-between case where two sinusoids interact to
produce interference, beating, and roughness. This is the
simplest setting in which sensory dissonance occurs.

3.1 Pairs of Sine Waves

When listening to a single sine wave, amplitude is directly related to loud-
ness and frequency is directly related to pitch. New perceptual phenomena
arise when there are two (or more) simultaneously sounding sine waves. For
instance, although the phase of a single sine wave is undetectable, the rela-
tive phases between two sine waves is important, leading to the phenomena
of constructive and destructive interference. Beats develop when the frequen-
cies of the two waves differ, and these beats may be perceived as sensory
dissonance. Although the ear can resolve very small frequency changes in a
single sine wave, there is a much larger “critical bandwidth” that character-
izes the smallest difference between partials that the ear can “hear out” in a
more complex sound. These ideas are explored in the next sections, and some
simple models that capture the essence of the phenomena are described.

3.2 Interference

When two sine waves of exactly the same frequency are played together, they
sound just like a single sine wave, but the combination may be louder or softer
than the original waves. Figure 3.1 shows two cases. The sum of curves (a) and
(b) is given in (c). As (a) and (b) have nearly the same phase (starting point),
their peaks and valleys line up reasonably well, and the magnitude of the sum
is greater than either one alone. This is called constructive interference. In
contrast, when (d) and (e) are added together, the peaks of one are aligned
with the troughs of the other and their sum is smaller than either alone, as
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shown in curve (f). This is called destructive interference. Thus waves of the
same frequency can either reinforce or cancel each other, depending on their
phases.

+

=

(a)

(b)

(c)

+

=

(d)

(e)

(f)

Fig. 3.1. Constructive and de-
structive interference between two
sine waves of the same frequency.
(a) and (b) add constructively to
give (c), and (d) and (e) add de-
structively to give (f).

In Appendix A, trigonometriphiles will find an equation showing that the
sum of two sine waves of the same frequency is always another sine of the
same frequency, albeit with a different amplitude and phase. The equation
even tells exactly what the amplitude and phase of the resulting wave are
in terms of the phase difference of the original waves. These equations also
describe (in part) the perceptual reality of combining sine waves in sound.
Constructive interference reflects the common sense idea that two sine waves
are louder than one. Destructive interference can be used to cancel (or muffle)
noises by injecting sine waves of the same frequencies as the noises but with
different phases, thus canceling out the unwanted sound. Sound canceling
earphones from manufacturers such as Bose and Sennheiser use this principle,
and some technical aspects of this technology, called active noise cancellation,
are discussed in [B: 51].

3.3 Beats

What if the two sinusoids differ slightly in frequency? The easiest way to
picture this is to imagine that the two waves are really at the same frequency,
but that their relative phase slowly changes. When the phases are aligned,
they add constructively. When the waves are out of phase, they interfere
destructively. Thus, when the frequencies differ slightly, the amplitude of the
resulting wave slowly oscillates from large (when in phase) to small (when out
of phase).

Figure 3.2 demonstrates. At the start of the figure, the two sines are aligned
almost perfectly, and the amplitude of the sum is near its maximum. By
about 0.3 seconds, however, the two sine waves are out of sync and their
sum is accordingly small. By 0.6 seconds, they are in phase again and the
amplitude has grown, and by 0.9 seconds they are out of phase again and the
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amplitude has shrunk. Thus, even though there are “really” two sine waves
of two different frequencies present in the bottom plot of Fig. 3.2, it “looks
like” there is only one sine wave that has a slow amplitude variation. This
phenomenon is called beating.

0 0.2 0.4 0.6 0.8 1.0 1.2

-2

2

time (in seconds)

-1

1

-1

1

+

=

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

envelope

constructive
interference

destructive destructive

Fig. 3.2. The beating of two sine
waves of close but different fre-
quencies can be viewed as alter-
nating regions of constructive and
destructive interference. The bot-
tom plot is the sum of the ampli-
tudes of the two sinusoids above.
The envelope outlines the undu-
lations of the wave, and the beat-
ing occurs at a rate defined by the
frequency of the envelope.

It may “look” like there is just one sine wave, but what does it “sound”
like? Sound examples [S: 8] to [S: 10] investigate (and these are repeated in
video examples [V: 5] to [V: 7]). The three examples contain nine short seg-
ments.

Examples [S: 8] and [V: 5]:

(i) A sine wave of 220 Hz (4 seconds)
(ii) A sine wave of 221 Hz (4 seconds)
(iii) Sine waves (i) and (ii) together (8 seconds)

Examples [S: 9] and [V: 6]:

(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)
(vi) Sine waves (iv) and (v) together (8 seconds)

Examples [S: 10] and [V: 7]:

(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

The difference between the first two sine waves is fairly subtle because they are
less than 8 cents1 apart. Yet when played together, even this small difference
1 There are 100 cents in a musical semitone. The cent notation is defined and

discussed in Appendix B.
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becomes readily perceivable as beats. The sound varies in loudness about once
per second, which is the difference between the two frequencies. The fourth
and fifth sine waves are noticeably distinct, lying about 39 cents apart. When
played together, the perceived pitch is about 222.5 Hz. The beats are again
prominent, beating at the much faster rate of five times each second. Again,
the rate of the beating corresponds to the difference in frequency between sine
waves.

In fact, it is not too difficult (if you like trigonometry) to show that the
amplitude variation of the beats always occurs at a rate given by the difference
in the frequencies of the sine waves. Appendix A gives the details. The result
is2: {

number of

beats per second

}
=

{
frequency

of first wave

}
−

{
frequency

of second wave

}

Thus, the rate of beating decreases with the difference in frequency, and the
beats disappear completely when the two sine waves are perfectly in tune.
Because beats are often more evident than small pitch differences, they are
used to tune stringed instruments such as the piano and guitar.

As the difference in frequency increases, the apparent rate in beating in-
creases. A frequency difference of 1 Hz corresponds to a beat rate of 1 per
second: 5 Hz corresponds to a beat rate of 5 times per second: 50 Hz corre-
sponds to a beat rate of 50 times per second. But when the two sine waves of
frequency 220 and 270 are played simultaneously, as in the ninth segment on
the CD, there are no beats at all. Has the mathematics lied?

Don’t lose the sound of the forest for the sound of falling trees.3 Does
the word “beats” refer to a physical phenomenon, or to a perception? If the
former, then the mathematics shows that, indeed, the waveform in part (ix) of
sound example [S: 10] exhibits beats at 50 Hz. But it is an empirical question
whether this mathematical fact describes perceptual reality. There are two
ways to “hear” part (ix). Listening holistically gives the impression of a single,
slightly electronic timbre. Listening analytically reveals the presence of the two
sine waves independently. As is audibly clear,4 in neither case are there any
beats (in the perceptual sense). Thus, the mathematical model that says that
the beat rate is equal to the frequency difference is valid for perceptions of
small differences such as 5 Hz, but fails for large differences such as 50 Hz.

Can the spectrum give any insight? Figure 3.3 shows time and frequency
plots as the ratio of the frequencies of the two sine waves varies. When the
ratio is large, such as 1:1.5, two separate peaks are readily visible in the
spectral plot. As the ratio shrinks, the peaks grow closer. For 1:1.1, they
2 If this turns out to be negative, then take its absolute value. There is no such

thing as a negative beat.
3 Recall the “paradox” on p. 11.
4 Some people can also hear a faint, very low-pitched tone. This is the “difference

frequency,” which is due to nonlinear effects in the ear. See [B: 69] and [B: 140].
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are barely discernible. For even smaller ratios, they have merged together
and the spectrum appears to consist of only a single frequency.5 A similar
phenomenon occurs in the ear’s “biological spectrum analyzer.” When the
waves are far apart, as in the sound example (ix), the two separate tones are
clearly discernible. As they grow closer, it becomes impossible to resolve the
separate frequencies. This is another property that the ear shares with digital
signal-processing techniques such as the FFT.
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Fig. 3.3. Each plot shows a sum
of two sine waves with frequencies
in the specified ratios. Time plots
show sample number versus ampli-
tude, and spectral plots show fre-
quency versus magnitude. Like the
ear, the spectrum does not resolve
partials when they are too close to-
gether.

3.4 Critical Band and JND

As shown in Fig. 2.4 on p. 16, sine waves of different frequencies excite different
portions of the basilar membrane, high frequencies near the oval window and
low frequencies near the apex of the conical cochlea. Early researchers such as
Helmholtz [B: 71] believed that there is a direct relationship between the place
of maximum excitation on the basilar membrane and the perceived pitch of the
sound. This is called the “place” theory of pitch perception. When two tones
are close enough in frequency so that their responses on the basilar membrane
5 The resolving power of the FFT is a function of the sampling rate and the length

of the data analyzed. Details may be found in Appendix C.
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overlap, then the two tones are said to occupy the same critical band. The
place theory suggests that the critical band should be closely related to the
ability to discriminate different pitches. The critical band has been measured
directly in cats and indirectly in humans in a variety of ways as described in
[B: 140] and in [B: 212]. The “width” of the critical band is roughly constant
at low frequencies and increases approximately proportionally with frequency
at higher frequencies, as is shown in Fig. 3.4.
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z Fig. 3.4. Critical bandwidth is plotted as
a function of its center frequency. Just No-
ticeable Differences at each frequency are
roughly a constant percentage of the criti-
cal bandwidth, and they vary somewhat de-
pending on the amplitude of the sounds. The
frequency difference corresponding to a mu-
sical whole tone (the straight line) is shown
for comparison. Data for critical bandwidth
is from [B: 158] and for JND is from [B: 206].

The Just Noticeable Difference (JND) for frequency is the smallest change
in frequency that a listener can detect. Careful testing such as [B: 211] has
shown that the JND can be as small as two or three cents, although actual
abilities vary with frequency, duration and intensity of the tones, training of
the listener, and the way in which JND is measured. For instance, Fig. 3.4
shows the JND for tones with frequencies that are slowly modulated up and
down. If the changes are made more suddenly, the JND decreases and even
smaller differences are perceptible. As the JND is much smaller than the
critical band at all frequencies, the critical band cannot be responsible for
all pitch-detection abilities. On the other hand, the plot shows that JND
is roughly a constant percentage of the critical band over a large range of
frequencies.

An alternative hypothesis, called the “periodicity” theory of pitch percep-
tion, suggests that information is extracted directly from the time behavior
of the sound. For instance, the time interval over which a signal repeats may
be used to determine its frequency. In fact, there is now (and has been for
the past 100 years or so) considerable controversy between advocates of the
place and periodicity theories, and it is probably safe to say that there is
not enough evidence to decide between them. Indeed, Pierce [B: 136] suggests
that both mechanisms may operate in tandem, and a growing body of recent
neurophysiological research (such as Cariani and his coworkers [B: 24] and
[B: 25]) reinforces this.
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Computational models of the auditory system such as those of [B: 111]
and [B: 95] often begin with a bank of filters that simulate the action of the
basilar membrane as it divides the incoming sound into a collection of signals
in different frequency regions. Figure 3.5 schematizes a filter bank consisting of
a collection of n bandpass filters with center frequencies f1, f2, . . . , fn. Typical
models use between n = 20 and n = 40 filters, and the widths of the filters
follow the critical bandwidth as in Fig. 3.4. Thus, the lower filters have a
bandwidth of about 100 Hz and grow wider as the center frequencies increase.

input

bandpass filters

. .
 . 

f1

f2

f3

fn-1

fn

low frequencies

mid frequencies

high frequencies

Fig. 3.5. The n filters separate the input sound
into narrowband signals with bandwidths that
approximate the critical bands of the basilar
membrane.

The JND measures the ability to distinguish sequentially presented sine
waves. Also important from the point of view of musical perception is the
ability to distinguish simultaneously presented tones. Researchers have found
that the ability to resolve concurrent tones is roughly equal to the critical
band. That is, if several sine waves are presented simultaneously, then it is
only possible to hear them individually if they are separated by at least a
critical band. This places limits on how many partials of a complex tone can
be “heard out” when listening analytically.

3.5 Sensory Dissonance

When listening to a pair of sine waves, both are readily perceptible if the fre-
quencies are well separated. However, when the frequencies are close together,
only one sine wave is heard (albeit with beats), due to the finite resolving
power of the ear. What happens in between, where the ear is unsure whether
it is hearing one or two things? Might the ear “get confused,” and how would
such confusion be perceived?

Sound example [S: 11] (and video example [V: 8]) investigate the boundary
between these two regimes by playing a sine wave of frequency 220 Hz together
with a wave of variable frequency beginning at 220 Hz and slowly increasing to
470 Hz. See Fig. 3.6 for a pictorial representation showing part of the waveform
and typical listener reactions. Three perceptual regimes are evident. When the
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sine waves are very close in frequency, they are heard as a single pleasant tone
with slow variations in loudness (beats). Somewhat further apart in frequency,
the beating becomes rapid and rough, dissonant. Then the tones separate and
are perceived individually, gradually smoothing out as the tones draw further
apart. Perhaps this perceived roughness is a symptom of the ear’s confusion.

slow, pleasant beating rough, rapid beating sound separates into
two distinct tones

am
pl

itu
de

time

Fig. 3.6. Part of the waveform resulting from two simultaneous sine waves, one with
fixed frequency of 220 Hz and the other with frequency that sweeps from 220 Hz
to 470 Hz. Typical perceptions include pleasant beating (at small frequency ratios),
roughness (at middle ratios), and separation into two tones (at first with roughness,
and later without) for larger ratios. This can be heard in sound example [S: 11] and
in video example [V: 8].

In an important experiment, Plomp and Levelt [B: 141] investigated this
carefully by asking a large number of listeners to judge the consonance (eu-
phoniousness, pleasantness) of a variety of intervals when sounded by pairs of
pure sine waves.6 The experiment is succinctly represented by the curves in
Fig. 3.7, in which the horizontal axis represents the frequency interval between
the two sine tones and the vertical axis represents a normalized measure of
dissonance. The dissonance is minimum when both sine waves are of the same
frequency, increases rapidly to its maximum somewhere near one-quarter of
the critical bandwidth, and then decreases steadily back toward zero. In par-
ticular, this says that intervals such as the major seventh and minor ninth are
almost indistinguishable from the octave in terms of sensory dissonance for
pure sine waves. Such a violation of musical intuition becomes somewhat more
palatable by recognizing that pure sine waves are almost never encountered
in music.

Although this experiment was conducted with pairs of sine waves of fixed
frequency, the results are similar to our observations from sound example
[S: 11]. The same general trend of beats, followed by roughness and by a
long smoothing out of the sound is apparent. The Plomp and Levelt curves
have been duplicated and verified in different musical cultures (for instance,

6 This experiment is discussed in more detail on p. 92.
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Fig. 3.7. Two sine waves are sounded simultaneously. Typical perceptions include
pleasant beating (when the frequency difference is small), roughness (as the differ-
ence grows larger), and separation into two tones (at first with roughness, and later
without) as the frequency difference increases further. The frequency of the lower
sine wave is 400 Hz, and the horizontal axis specifies the frequency of the higher sine
wave (in Hz, in semitones, and as an interval). The vertical axis shows a normalized
measure of “sensory” dissonance.

Kameoka and Kuriyagawa [B: 79] and [B: 80] in Japan reproduced and ex-
tended the results in several directions), and such curves have become widely
accepted as describing the response of the auditory system to pairs of sine
waves. Figure 3.8 shows how the sensory dissonance changes depending on
the absolute frequency of the lower tone.

The musical implications of these curves have not been uncontroversial.
Indeed, some find it ridiculous that Plomp and Levelt used the words “con-
sonance” and “dissonance” at all to describe these curves. “Everyone knows”
that the octave and fifth are the most consonant musical intervals, and yet
they are nowhere distinguishable from nearby intervals on the Plomp–Levelt
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Fig. 3.8. Two sine waves are sounded simultaneously. As in Fig. 3.7, the horizontal
axis represents the frequency interval between the two sine waves, and the verti-
cal axis is a normalized measure of “sensory” dissonance. The plot shows how the
sensory consonance and dissonance change depending on the frequency of the lower
tone.
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curves. We will have much more to say about this controversy in later chap-
ters. Perhaps to defuse some of the resistance to their efforts, Plomp and
Levelt were careful to call their axes tonal consonance and dissonance. Ter-
hardt [B: 196] suggests the terms sensory consonance and dissonance, and we
follow this usage.

One of the major contributions of the Plomp and Levelt paper was to
relate the point of maximum sensory dissonance to the critical bandwidth of
the ear. As the critical band varies somewhat with frequency, the dissonance
curves are wider at low frequencies than at high, in accord with Fig. 3.8.
Thus, intervals (like three semitones) that are somewhat consonant at high
frequencies become highly dissonant at low frequencies. To hear this for your-
self, play a major third in a high octave of the piano, and then play the same
notes far down in the bass. The lower third sounds muddy and rough, and the
higher third is clear and smooth. This is also consistent with musical practice
in which small intervals appear far more frequently in the treble parts, and
larger intervals such as the octave and fifth tend to dominate the lower parts.

3.6 Counting Beats

Perhaps the simplest way to interpret the sensory dissonance curves is in terms
of the undulations of the amplitude envelope. Referring back to Fig. 3.7,
the “slow pleasant beats” turn to roughness when the rate of the beating
increases to around 20 or 30 beats per second.7 As the frequencies spread
further apart, they no longer lie within a single critical band8; the sine waves
become individually perceptible and the sensory dissonance decreases. Thus,
one way to create a model of sensory dissonance is to “count” the beats, to
create a system that detects the amplitude envelope of the sound and then
responds preferentially when the frequency of the envelope is near the critical
number where the greatest dissonance is perceived.

One way to build such a model is to use a memoryless nonlinearity followed
by a bandpass filter,9 as shown in Fig. 3.9. The rectification nonlinearity

g(x) =
{

x x > 0
0 x ≤ 0 (3.1)

leaves positive values unchanged and sets all negative values to zero. Combined
with a low-pass filter, this creates an envelope detector10 with an output that
7 The peak of the dissonance curve in Fig. 3.7 occurs at about a semitone above

400 Hz, which is 424 Hz. Thus, the beat rate is 24 Hz when the dissonance is
maximum.

8 Figure 3.4 shows that a critical band centered at 400 Hz is a bit larger than 100
Hz wide.

9 This is similar to an early model by Terhardt [B: 195].
10 See Appendix C of [B: 76] for a discussion of envelope detectors.
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rides along the outer edge of the signal. The bandpass filter is tuned to have
maximum response in frequencies where the beating is most critical. Hence,
its output is large when the beating is rough and small otherwise.

rectification
noninearity g(x)

LPF

f

b

BPF

signal

enveloperectified signal energy
accumulation

{
envelope detector

Fig. 3.9. The envelope detector outlines the beats in the signal and the bandpass
filter is tuned to respond to energy in the 20 Hz to 30 Hz range where beating is
perceived as roughest. Typical output of the model is shown in Fig. 3.10.

Typical output is shown in Fig. 3.10, which simulates the experiment of
sound example [S: 11], where two sine waves of equal amplitude are summed to
create the input; one is held fixed in frequency and the other slowly increases.
The accumulated energy at the output of the model qualitatively mimics
the sensory dissonance curve in Fig. 3.7. The detailed shape of the output
depends on details of the filters chosen. For the simulation in Fig. 3.10, the
LPF was a Remez filter with cutoff at 100 Hz and the BPF (which influences
the detailed shape of the output signal) was a second-order Butterworth filter
with passband between 15 and 35 Hz. This model is discussed further in
Appendix G.

3.7 Ear vs. Brain

These first chapters have been using “the ear” as a synonym for “the human
auditory system.” Of course, there is a clear conceptual division between the
physical ear (the eardrum, ossicles, cochlea, etc.) that acts as a transducer
from pressure waves into neural impulses and the neural processes that sub-
sequently occur inside the brain. It is not so clear, however, in which region
various aspects of perception arise. For instance, the perception of pitch is at
least partly accomplished on the basilar membrane, but it is also due in part
to higher level processing.11

11 Electrodes attached directly to the auditory nerves of deaf people induce the
perception of a “fuzzy, scratchy” sound like “comb and paper”; see [B: 133].
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Fig. 3.10. Two sine waves of equal amplitude are input into the model of Fig. 3.9.
The frequency of one sine is fixed at 400 Hz, and the other begins at 400 Hz and
slowly increases to 850 Hz. The output of the bandpass filter (the energy accumu-
lation) is largest when the beating is in the 20 to 30 Hz range.

To investigate whether the perception of roughness arises in the physical
ear or in the brain, sound example [S: 12] repeats the previous track but
with a binaural recording; the sine wave of fixed frequency is panned all the
way to the right, and the variable sine wave is panned completely to the
left. Listening normally through speakers, the two sides mix together in the
air. But listening through headphones, each ear receives only one of the sine
waves. If the perception of roughness originated exclusively in the physical ear,
then no roughness should be heard. Yet it is audible, although the severity of
the beating is somewhat reduced.12 This suggests that perceptions of sensory
dissonance are at least partly a mental phenomenon; that is, the signals from
the two ears are combined in the neural architecture. As the effect is stronger
when the waves physically mingle together (recall sound example [S: 11]), it is
also likely that perceptions of roughness are due at least partly to the physical
mechanism of the ear itself.

This chapter has considered the simple case of a pair of sine waves, where
sensory dissonance is readily correlated with the interference phenomenon of
beating. Later chapters return to this idea to build a more complete model
that calculates the sensory dissonance of an arbitrary collection of sounds.
Meanwhile, Chap. 4 turns to a consideration of musical scales and summarizes
some of the many ways that people divide up the pitch continuum.

12 Another way to listen to this sound example, suggested by D. Reiley, is to listen
through the air and through headphones simultaneously. Plugging and unplugging
the headphones as the example progresses emphasizes the dual nature of the
perception: part “ear” and part “brain.”
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Musical Scales

People have been organizing, codifying, and
systematizing musical scales with numerological zeal
since antiquity. Scales have proliferated like tribbles in
quadra-triticale: just intonations, equal temperaments,
scales based on overtones, scales generated from a
single interval or pair of intervals, scales without
octaves, scales originating from arcane mathematical
formulas, scales that reflect cosmological or religious
structures, and scales that “come from the heart.”
Each musical culture has its own preferred scales, and
many have used different scales at different times in
their history. This chapter reviews a few of the more
common organizing principles, and then discusses the
question “what makes a good scale?”

4.1 Why Use Scales?

Scales partition the pitch continuum into chunks. As a piece of music pro-
gresses, it defines a scale by repeatedly exploiting a subset of all the possible
pitch relationships. These repeated intervals are typically drawn from a small
set of possibilities that are usually culturally determined. Fifteenth-century
monks used very different scales than Michael Jackson, which are different
from those used in Javanese gamelan or in Sufi Qawwali singing. Yet there
are certain similarities. Foremost is that the set of all possible pitches is re-
duced to a very small number, five or six per octave for the monks, the major
scale for Michael, either a five or seven-note nonoctave-based scale for the
gamelan, and up to 22 or so notes per octave in some Arabic, Turkish, and
Indian music traditions. But these are far from using “all” the possible per-
ceptible pitches. Recall from the studies on JND that people can distinguish
hundreds of different pitches within each octave.

Why does most music use only a few of these at a time? Most animals do
not. Birdsong glides from pitch to pitch, barely pausing before it begins to
slide away again. Whales click, groan, squeal, and wail their pitch in almost
constant motion. Most natural sounds such as the howl of wind, the dripping
of water, and the ping of ice melting are fundamentally unpitched, or they
have pitches that change continuously.

One possible explanation of the human propensity to discretize pitch space
involves the idea of categorical perception, which is a well-known phenomenon
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to speech researchers. The brain tries to simplify the world around it. The
Bostonian’s “pahk,” the Georgian’s “paaark,” and the Midwesterner’s “park”
are all interchangeable in the United States. Similarly, in listening to any real
piece of music, there is a wide range of actual pitches that will be heard as
the same pitch, say middle C. Perhaps the flute plays a bit flat, and the violin
attacks a bit sharp. The mind hears both as the “same” C, and the limits of
acceptability are far cruder than the ear’s powers of resolution. Similarly, an
instrumentalist does not play with unvarying pitch. Typically, there is some
vibrato, a slow undulation in the underlying frequency. Yet the ear does not
treat these variations as separate notes, but rather incorporates the perception
of vibrato into the general quality of the tone.

Another view holds that musical scales are merely a method of classifica-
tion that makes writing and performing music simpler. Scales help define a
language that makes the communication of musical ideas more feasible than
if everyone adopted their own pitch conventions. For whatever reasons, music
does typically exploit scales. The next few sections look at some of the scales
that have been historically important, and some of the ways that they have
been generalized and extended.

4.2 Pythagoras and the Spiral of Fifths

Musical intervals are typically defined by ratios of frequencies, and not directly
by the frequencies themselves. Pythagoras noted that a string fretted at its
halfway point sounds an octave above the unfretted string, and so the octave
is given by the ratio two to one, written 2/1. Similarly, Pythagoras found that
the musical fifth sounds when the length of two strings are in the ratio 3/2,
whereas the musical fourth sounds when the ratio of the strings is 4/3.

Why do these simple integer ratios sound so special? Recall that the spec-
trum of a string (from Fig. 2.5 on p. 18 and Fig. 2.6 on p. 19) consists of
a fundamental frequency f and a set of partials located at integer multiples
of f . When the string is played at the octave (when the ratio of lengths is
2/1), the spectrum consists of a fundamental at 2f along with integer partials
at 2(2f) = 4f , 3(2f) = 6f , 4(2f) = 8f , and so on, as shown in Fig. 4.1.
Observe that all the partials of the octave align with partials of the original.
This explains why the note and its octave tend to merge or fuse together, to
be smooth and harmonious, and why they can easily be mistaken for each
other. When the octave is even slightly out of tune, however, the partials do
not line up. Chapter 3 showed how two sine waves that are close in frequency
can cause beats that are perceived as a roughness or dissonance. In a mis-
tuned octave, the nth partial of the octave is very close to (but not identical
with) the 2nth partial of the fundamental. Several such pairs of partials may
beat against each other, causing the characteristic (and often unwanted) out
of tune sensation.
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(a)

(b)

(d)

(c)

f       2f       3f      4f      5f      6f     7f      8f       9f     10f   11f

(3/2)f        3f         (9/2)f       6f      (15/2)f       9f         (21/2)f

frequency

partials of a harmonic sound

octave

fifth

out-of-tune

Fig. 4.1. A note with harmonic spectrum shown in (a) forms an octave, an out-of-
tune octave, and a fifth, when played with (b), (c), and (d), respectively. Observe
the coincidence of partials between (a) and (b) and between (a) and (d). In the
out-of-tune octave (c), closely spaced partials cause beats, or roughness.

When a note is played along with its fifth, alternating partials line up.
The partials that do not line up are far apart in frequency. As in the sensory
dissonance curve of Fig. 3.7 on p. 47, such distinct partials tend not to interact
in a significant way. Hence, the fifth also has a very smooth sound. As with the
octave, when the fifth is mistuned slightly, its partials begin beating against
the corresponding partials of the original note. Similarly, when other simple
integer ratios are mistuned, nearby partials interact to cause dissonances.
Thus, Pythagoras’ observations about the importance of simple integer ratios
can be viewed as a consequence of the harmonic structure of the string.

Using nothing more than the octave and the fifth, Pythagoras constructed
a complete musical scale by moving successively up and down by fifths. Note
that moving down by fifths is equivalent to moving up by fourths, because
(3/2)(4/3) = 2. To follow Pythagoras’ calculations, suppose that the (arbi-
trary) starting note is called C, at frequency 1. After including the fifth G at
3/2, Pythagoras added D a fifth above G, which is (3/2)(3/2) = (3/2)2 = 9/4.
As 9/4 is larger than an octave, it needs to be transposed down. This is easily
accomplished by dividing by 2, and it gives the ratio 9/8. Then add A with the
ratio (3/2)3, E at (3/2)4, and so on (always remembering to divide by 2 when
necessary to transpose back to the original octave). Alternatively, returning
to the original C, it is possible to add notes spiraling up by fourths by adding
F at 4/3, B� at (4/3)2, and so on, again transposing back into the original
octave. This process gives the Pythagorean scale shown in Fig. 4.2.
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ratio            cents

 1/1       0
   2187/2048 114
 9/8    204
 19683/16384   318
81/64   408

 4/3    498
    729/512        612
 3/2    702
   6561/4096     816
27/16   906
 59049/32768  1020
243/128   1110

  2/1   1200

Pythagorean Scale (wolf at Bb)

a=9/8

b=256/243

b

a

a

a

a

ratio            cents

1/1       0
    256/243          90
 9/8    204
     32/27           294
81/64   408

 4/3    498
    729/512        612
 3/2    702
    128/81          792
27/16   906
      16/9             996
243/128   1110

  2/1   1200

Pythagorean Scale (wolf at F#)

a=9/8

b=256/243

b

a

a

a

a

C

D

E

F

G

A

B

C

Fig. 4.2. In a Pythagorean scale, all intervals form perfect just fifths with the scale
tone seven steps above except for one called the wolf. The Pythagorean diatonic
(major) scale is shown on the white keys (labeled C, D, E, F , G, A, B, C) and
the black keys show two possible extensions to a full 12-note system. The left-hand
scale places the wolf on the F�, and the right hand scale has the wolf at B�.

The seven-note Pythagorean scale in Fig. 4.2 is an early version of a dia-
tonic scale. Diatonic scales, which contain five large steps and two small steps
(whole tones and half tones), are at the heart of Western musical notation
and practice [B: 53]. In this case, the scale contains the largest number of
perfect fourths and fifths possible, because it was constructed using only the
theoretically ideal ratios 3/2 and 4/3.

Much to Pythagoras’ chagrin, however, there is a problem. When extending
the scale to a complete tuning system (continuing to multiply successive terms
by perfect 3/2 fifths), it is impossible to ever return to the unison.1 After 12
steps, for instance, the ratio is (3/2)12, which is 531441

4096 . When transposed down
by octaves, this becomes 531441

524288 , which is about 1.0136, or one-quarter of a
semitone (23 cents) sharp of the unison. This interval is called the Pythagorean
comma, and Fig. 4.3 illustrates the Pythagorean “spiral of fifths.”

The implication of this is that an instrument tuned to an exact Pythagorean
scale, one that contained all perfect fifths and octaves, would require an in-
finite number of notes. As a practical matter, a Pythagorean tuner chooses
one of the fifths and decreases it by the appropriate amount. This is called
the Pythgorean comma, and the (imperfect) “fifth” that is a quarter semitone
out of tune is called the wolf tone, presumably because it sounds bad enough
1 To see that (3/2)n = 2m has no integer solutions, multiply both sides by 2n,

giving 3n = 2m+n. As any integer can be decomposed uniquely into primes, there
can be no integer that factors into n powers of 3 and simultaneously into m + n
factors of 2.



4.2 Pythagoras and the Spiral of Fifths 55

F
C

G

D

A

EB

F#

C#

G#

D#

A# E#

B#

F##

B

Eb
b*

*

*
*

*

*

*
*

*

*

*

*

* *
*

*

*

* Ab

Fig. 4.3. In a Pythagorean scale built from
all perfect fifths with ratios of 3

2 , the interval
formed by 12 perfect fifths is slightly larger
than an octave.

to make people howl. In the left-hand side of Fig. 4.2, the wolf fifth occurs
between F� and the C� above.

To the numerologically inclined, the Pythagorean scale is a delight. First
of all, there is nothing unique about the order in which the successive factors
of a fourth and fifth are applied. For instance, the right-hand side of Fig. 4.2
shows a second Pythagorean scale with the wolf tone at B�. There are several
ways to generate new scales based on the Pythagorean model. First, other
intervals than the fifth and fourth could be used. For instance, let r stand for
any interval ratio (any number between one and two will do), and let s be
its complement (i.e., the interval for which rs = 2). Then r and s generate a
family of scales analogous to the Pythagorean family. Of course, Pythagoras
would be horrified by this suggestion, because he believed there was a fun-
damental beauty and naturalness to the first four integers,2 and the simple
ratios formed from them.

The Pythagorean scale can also be viewed as one example of a large class
of scales based on tetrachords [B: 43], which were advocated by a number of
ancient theorists such as Archytas, Aristoxenus, Didymus, Eratosthenes, and
Ptolemy [B: 10]. A tetrachord is an interval of a pure fourth (a ratio of 4/3)
that is divided into three subintervals. Combining two tetrachords around
a central interval of 9/8 forms a seven-tone scale spanning the octave. For
instance, Fig. 4.4 shows two tetrachords divided into intervals r, s, t and r′,
s′, t′. When r = r′, s = s′, and t = t′, the scale is called an equal-tetrachordal
scale. The Pythagorean scale is the special equal-tetrachordal scale where
r = r′ = s = s′ = 9/8. A thorough modern treatment of tetrachords and
tetrachordal scales is available in Chalmers [B: 31].

A third method of generating scales is based on the observation that the
intervals between successive terms in the major Pythagorean scale are highly
structured. As shown Fig. 4.2, there are only two distinct successive intervals,
9/8 and 256/243, between notes of the Pythagorean diatonic scale. Why not
generate scales based on some other interval ratios r and s? For octave-based
2 In the Pythagorean conception, the tetraktys was the generating pattern for all

creation: politics, rhetoric, and literature, as well as music.
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2:1 octave

4:3 tetrachord 4:3 tetrachord
9:8

r           s          t                     r'         s'           t'

C            D         E        F         G        A          B           C Fig. 4.4. Tetrachordal scales di-
vide the octave into two 4:3 tetra-
chords separated by an interval of
9:8. The tetrachords are each di-
vided into three intervals to form
a seven-note scale, which is labeled
in the key of C.

scales, this would require that there be integers n and m such that rmsn = 2.
The simplest possible scale of this kind would have s = r, because then all
adjacent notes would be equidistant.

4.3 Equal Temperaments

For successive notes of a scale to sound an equal distance apart, each interval
must be the same. Letting s represent this interval, a scale with 12 equal steps
can be written3

1, s, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12.

If the scale is to repeat at the octave, the final note must equal 2. The equation
s12 = 2 has only one real solution, called the twelfth root of two. It is notated
s = 12

√
2, and it is approximately 1.05946. A quick check with a calculator

shows that multiplying 1.05946 times itself 12 times gives an answer (very
close to) 2.

Although ratios and powers are convenient for many purposes, they can
be cumbersome for others. An easy way to compare different intervals is to
measure in cents, which divide each semitone into 100 equal parts, and the
octave into 1200 parts. Figure 4.5 depicts one octave of a keyboard, and it
shows the 12-tet tuning in ratios, in cents, and in the decimal equivalents.
Given any ratio or interval, it is possible to convert to cents, and given any
interval in cents, it is possible to convert back into a ratio. The conversion
formulas are given in Appendix B.

The 12-tone equal-tempered scale (12-tet) is actually fairly recent.4 With
12-tet, composers can modulate to distant keys without fear of hitting wolf
tones. As the modern Western instrumental families grew, they were designed
to play along with the 12-tet piano, and the tunings’ dominance became a
stranglehold. It is now so ubiquitous that many modern Western musicians
and composers are even unaware that alternatives exist.
3 The superscripts represent powers of s; hence, the interval between the nth and

n + 1st step is sn+1/sn = s.
4 The preface to Jorgensen [B: 78] states that “the modern equal temperament

taken for granted today as universally used on keyboard instruments did not
exist in common practice on instruments until the early twentieth century... both
temperament and music were tonal.”
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note          cents interval

 C
 C#/Db 
 D
 D#/Eb 
 E

 F
 F#/Gb 
 G
 G#/Ab 
 A
 A#/Bb 
 B

 C

   0
 100 
 200 
 300 
 400

 500
 600
 700 
 800 
 900 
1000
1100

1200

1.0
1.0595
1.189
1.1225
1.260

1.335
1.4142
1.498
1.5874
1.682
1.7818
1.888

2.0

Fig. 4.5. The familiar 12-tone equal-tempered scale is the
basis of most modern Western music. Shown here is one
octave of the keyboard with note names, the intervals in
cents defined by each key, and the decimal equivalents.
The white keys (labeled C, D, E, F , G, A, B, C) form
the diatonic C major scale, and the full 12 keys form the
12-tet chromatic scale.

This is not surprising, because most books about musical harmony and
scales focus exclusively on 12-tet, and most music schools offer few courses on
non-12-tet music, even though a significant portion of the historical repertoire
was written before 12-tet was common. For instance, the standard music the-
ory texts Piston [B: 137] and Reynolds and Warfield [B: 148] make no mention
of any tuning other than 12-tet, and the word “temperament” does not appear
in their indices. All major and minor scales of “classical music,” the blues and
pentatonic scales of “popular music,” and all various “modes” of the jazz mu-
sician are taught as nothing more than subsets of 12-tet. When notes outside
of 12-tet are introduced (e.g., “blues” or “bent” notes, glissandos, vibrato),
they are typically considered aberrations or expressive ornaments, rather than
notes and scales in themselves.

Yet 12 notes per octave is just one possible equal temperament. It is easy
to design scales with an arbitrary number n of equal steps per octave. If r is
the nth root of 2 (r = n

√
2), then rn = 2 and the scale

1, r, r2, r3, ...rn−1, rn

contains n identical steps. The calculation is even easier using cents. As there
are 1200 cents in an octave, each step in n-tone equal temperament is 1200/n
cents. Thus, each step in 10-tone equal temperament (10-tet) is 120 cents, and
each step in 25-tet is 48 cents. Figure 4.6 shows all the equal temperaments
between 9-tet and 25-tet. Because 12-tet is the most familiar, grid lines drawn
at 100, 200, 300, ... cents provide a visual reference for the others.

The Structure of Recognizable Diatonic Tunings [B: 15] examines many
equal-tempered tunings mathematically and demonstrates their ability to ap-
proximate intervals such as the perfect fifth. More important than the mathe-
matics, however, are Blackwood’s 12 Microtonal Etudes5 in each of the tunings
between 13-tet and 24-tet, which demonstrate the basic feasibility of these
tunings.
5 See (and hear) [D: 4].
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Fig. 4.6. Tuning of one octave of notes in the 9-tet, 10-tet, through 25-tet scales.
The vertical axis proceeds from unison (1/1) to the octave (2/1). The horizontal
lines emanate from the 12-tet scale steps for easy comparison.

It is fine to talk about musical scales and to draw interesting graphics
describing the internal structure of tunings, but the crucial question must be:
What do these tunings sound like? One of the major points of this book is that
alternative tuning systems can be used to create enjoyable music. The accom-
panying CD contains several compositions in various equal temperaments, and
these are summarized in Table 4.1. The pieces range from very strange sound-
ing (Isochronism and Swish) to exotic (Ten Fingers and The Turquoise Dabo
Girl) to reasonably familiar (Sympathetic Metaphor and Truth on a Bus). Ref-
erences marked with [S:] point to entries in the index of sound examples that
starts on p. 399, where you can find instructions on how to listen to the files
using a computer as well as more information about the pieces.

I believe that one of the main reasons alternative tunings have been un-
derexplored is because there were few musical instruments capable of playing
them. Ironically, the same keyboard instruments that saddled us with 12-tet
for the past two and a half centuries can now, in their electronic versions,
easily play in almost any tuning or scale desired.

Equal temperaments need not be based on the octave. A scale with n
equal steps in every pseudo-octave6 p is based on the ratio r = n

√
p. Again,

this calculation is easier in cents. A pseudo-octave p = 2.1 defines an interval
of 1284 cents. Dividing this into (say) 12 equal parts gives a scale step of 107
cents, a tuning that is explored in October 21st [S: 39]. Recall the “simple
tune” of [S: 4]. This melody is developed further (and played in a variety

6 p = 2 gives the standard octave.
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Table 4.1. Musical compositions in various equal temperaments appearing on
the CD-ROM.

Name of Equal File For More
Piece Temperament Detail
Swish 5-tet swish.mp3 [S: 107]
Nothing Broken in Seven 7-tet broken.mp3 [S: 117]
Pagan’s Revenge 7-tet pagan.mp3 [S: 116]
Phase Seven 7-tet phase7.mp3 [S: 118]
March of the Wheel 7-tet marwheel.mp3 [S: 115]
Anima 10-tet anima.mp3 [S: 106]
Ten Fingers 10-tet tenfingers.mp3 [S: 102]
Circle of Thirds 10-tet circlethirds.mp3 [S: 104]
Isochronism 10-tet isochronism.mp3 [S: 105]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Unlucky Flutes 13-tet 13flutes.mp3 [S: 99]
Hexavamp 16-tet hexavamp.mp3 [S: 97]
Seventeen Strings 17-tet 17strings.mp3 [S: 98]
Truth on a Bus 19-tet truthbus.mp3 [S: 100]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S: 101]
Dream to the Beat 19-tet dreambeat.mp3 [S: 13]
Incidence and Coincidence 19-tet+12-tet incidence.mp3 [S: 14]

of different pseudo-octaves) in Plastic City [S: 38]. One interesting pseudo-
octave is p = 2.0273, which defines a pseudo-octave of 1224 cents, the amount
needed to make 12 perfect 3/2 fifths.7 Thus, the Pythagorean spiral of fifths
can be closed by relaxing the requirement that the scale repeat each 2/1
octave. However, harmonic sounds clash dissonantly when played in 1224-
cent intervals because of the almost coinciding partials. If the partials of the
sounds are manipulated so as to realign them, then music in the 1224-cent
pseudo-octave need not sound dissonant.

Moreno [B: 118] examines many nonoctave scales and finds that in some
“nth root of p” tunings the ratio p:1 behaves analogously to the 2:1 ratio
in 12-tet. McLaren [B: 107] discusses the character of nonoctave-based scales
and proposes methods of generating scales that range from number theory
and continued fractions to the frequencies of vibrations of common objects.
An interesting nonoctave scale was proposed independently by Bohlen [B: 16]
on the basis of combination tones and by Mathews et al. [B: 101] on the basis
of chords with ratios 3:5:7 (rather than the more familiar 3:4:5 of diatonic
harmony). The resulting scale intervals are factors of the thirteenth root of
3 rather than the twelfth root of 2, and the tritave8 plays some of the roles
normally performed by the octave. Thus, p = 3 defines the pseudo-octave,
7 Transposing ( 3

2 )12 down (by octaves) to the nearest octave gives 1224 cents.
8 An interval of 3/1 instead of the 2/1 octave.



60 4 Musical Scales

and r = 13
√

3 has 146.3 cents between each scale step. For more information,
see the discussion surrounding Fig. 6.9 on p. 112.

It is also perfectly possible to define equal-tempered scales by simply spec-
ifying the defining interval. Wendy Carlos [B: 23], for instance, has defined the
alpha scale in which each step contains 78 cents, and the beta scale with steps
of 63.8 cents. Gary Morrison [B: 113] suggests a tuning in which each step
contains 88 cents. This 88 cents per step tuning has 13.64 equal steps per
octave, or 14 equal steps in a stretched pseudo-octave of 1232 cents. Many of
these are truly xenharmonic in nature, with strange “harmonies” that sound
unlike anything possible in 12-tet. As will be shown in subsequent chapters,
a key idea in exploiting strange tunings such as these is to carefully match
the tonal qualities of the sounds to the particular scale or tuning used. Two
compositions on the CD use this 88 cent-per-tone scale: Haroun in 88 [S: 15]
and 88 Vibes [S: 16].

4.4 Just Intonations

One critique of 12-tet is that none of the intervals are pure. For instance, the
fifths are each 700 cents, whereas an exact Pythagorean 3/2 fifth is 702 cents.
The imperfection of the wolf fifth has been spread evenly among all the fifths,
and perhaps this small difference is acceptable. But other intervals are less
fortunate. Just as the octave and fifth occur when a string is divided into
simple ratios such as 2/1 and 3/2, thirds and sixths correspond to (slightly
more complex) simple ratios. These are the just thirds and sixths specified
in Table 4.2. For comparison, the 12-tet major thirds are 14 cents flat of the
just values, and the minor thirds are 16 cents sharp.9 Such discrepancies are
clearly audible. Many music libraries will have a copy of Barbour [D: 2], which
gives an extensive (and biased) comparison between just and equal-tempered
intervals.

Table 4.2. The just thirds and sixths.

interval ratio cents
just minor third 6/5 316
just major third 5/4 386
just minor sixth 8/5 814
just major sixth 5/3 884

9 The Pythagorean scale gives an even worse approximation. By emphasizing
fourths and fifths, the thirds and sixths are compromised, and the Pythagorean
major third 81/64 (408 cents) is even sharper than the equal-tempered third (400
cents). On the other hand, there are many ways to construct scales. For exam-
ple, the Pythagorean interval ( 3

2 )8, when translated to the appropriate octave, is
almost exactly a just major third.
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The Just Intonation (JI) scale appeases these ill-tempered thirds. Two
examples are given in Fig. 4.7. The seven-note JI major scale in the top left is
depicted in the key of C. The thirds starting on C, C�, D, D�, F , G, and G�
are all just 5/4. As the fifths starting on C, C�, F , G, and G� (among others)
are perfect 3/2 fifths, all five form just major chords. Similarly, the JI scale
on the bottom has five just minor chords starting on C, D, E, F , and A.

What do just intonations sound like? Sound examples [S: 17] through
[S: 20] investigate. Scarlatti’s Sonata K380 is first played in [S: 17] in 12-
tet.10 The sonata is then repeated in just intonation centered on C in [S: 18].
As it is performed in the appropriate key, there are no wolf tones. The overall
impression is similar to the 12-tet version, although subtle differences are ap-
parent upon careful listening. To clearly demonstrate the difference between
these tunings, sound example [S: 19] plays in 12-tet and in just intonation si-
multaneously. Notes where the tunings are the same sound unchanged. Notes
where the tunings differ sound chorused or phased and are readily identifiable.

The five pieces listed in Table 4.3 are performed in a variety of just into-
nation scales, which are documented in detail in [S: 23] through [S: 27]. These
represent some of my earliest compositional efforts, and I prefer to recommend
recordings by Partch [D: 31], Doty [D: 11], or Polansky [D: 34] to get a more
complete idea of how just intonations can be used.

Table 4.3. Musical compositions in various just intonations appearing on the CD-
ROM.

Name of File For More
Piece Detail
Imaginary Horses imaghorses.mp3 [S: 23]
Joyous Day joyous.mp3 [S: 24]
What is a Dream? whatdream.mp3 [S: 25]
Just Playing justplay.mp3 [S: 26]
Signs signs.mp3 [S: 27]

JI scales are sometimes criticized because they are inherently key specific.
Although the above scales work well in C and in closely related keys (those
nearby on the circle of fifths), they are notoriously bad in more distant keys.
For instance, an F� major chord has a sharp third and an even sharper fifth
(722 cents). Thus, it is unreasonable to play a piece that modulates from C to
F� in JI. To investigate, sound example [S: 20] plays Scarlatti’s K380 in just
intonation centered on C� even though the piece is still played in the key of C.
The out-of-tune percept is unmistakable in both the chords and the melody.
When JI goes wrong, it goes very wrong. Barbour [D: 2] analogously plays a
10 The musical score for K380 is shown in Fig. 11.3 on pp. 224 and 225. It is per-

formed here (transposed down a third) in C major.



62 4 Musical Scales

ratio            cents
   
  1/1      0 
     81/80            22     
33/32     53 

21/20     84 
     16/15           112
12/11   151
     11/10           165
10/9     182
       9/8              204
  8/7      231

  7/6    267

Partch's 43 tone scale

     32/27          294
  6/5    316
     11/9             347
  5/4      386

14/11   417
       9/7             435
21/16   471
       4/3             498
27/20   520
      11/8             551
  7/5      583

 10/7        617
     16/11          649
40/27   680
       3/2              702
32/21   729

14/9    765
      11/7            782
  8/5    814
     18/11             853
  5/3     884
      27/16            906
 12/7    933

  7/4    969
      16/9          996
  9/5   1018
     20/11           1035
 11/6    1049

 15/8   1088
     40/21           1116
64/33  1147
    160/81          1178
  2/1   1200

ratio            cents

 1/1       0
 16/15  112
 9/8    204
   6/5   316
 5/4    386

 4/3    498
 45/32  590
 3/2    702
   8/5   814
 5/3    884
  16/9   996
15/8   1088

  2/1   1200
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ratio            cents

 1/1       0
 25/24   71
10/9    182
   6/5   316
 5/4    386

 4/3    498
 45/32  590
 3/2    702
   8/5   814
 5/3    884
  16/9   996
15/8   1088

  2/1   1200

A Just Intonation Scale in C and
extension to a 12-note scale
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A Just Intonation Scale in C and
extension to a 12-note scale

Fig. 4.7. The intervals in just intonation scales are chosen so that many of the thirds
and fifths are ratios of small integers. Two JI diatonic scales are shown (labeled C,
D, E, F , G, A, B, C) in the key of C; the black keys represent possible extensions
to the chromatic 12-note setting. Each interval in the top JI major scale with a *
forms a just major third with the note 4 scale steps above, and each note marked
with <> forms a just fifth with the note 7 scale steps up. Similarly, in the bottom
JI scale, each interval with a * forms a just minor third with the note 3 scale steps
above, and each note marked with <> forms a just fifth with the note 7 scale steps
up. Partch’s 43-tone per octave scale contains many of the just intervals.
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series of scales, intervals, and chords in a variety of tunings that demonstrate
how bad JI can sound when played incorrectly. For instance, “Auld Lang Syne”
is played in C in a just C scale, and it is then played in F� without changing
the tuning. Barbour comments, “A horrible example—but instructive.” It is
a horrible example—of the misuse of JI. No practitioner would perform a
standard repertoire piece in C just when it was written in the key of F�.

There are several replies to the criticism of key specificity. First, most JI
advocates do not insist that all music must necessarily be performed in JI.
Simply put, if a piece does not fit well into the JI framework, then it should
not be performed that way. Indeed, JI enthusiasts typically expect to retune
their instruments from one JI scale to another for specific pieces. The second
response is that JI scales may contain more than 12 notes, and so many of
the impure intervals can be tamed. The third response involves a technological
fix. With the advent of electronic musical instruments that incorporate tuning
tables, it has become possible to retune “on the fly.” Thus, a piece could be
played in a JI scale centered around C, and then modulated (i.e. retuned) to
a JI scale centered around F�, without breaking the performance. This would
maintain the justness of the intervals throughout. The fourth possibility is
even newer. What if the tuning could be made dynamic, so as to automati-
cally retune whenever needed? This is the subject of the “Adaptive Tunings”
chapter.

The second criticism brought against JI is closely related to the first. Ross-
ing [B: 158] explains that JI is impractical because an “orchestra composed
of instruments with just intonation would approach musical chaos.” Imagine
if each instrumentalist required 12 instruments, one for each musical key! But
it is only fixed pitch instruments like keyboards that are definitively locked
into a single tuning. Winds, brass, and strings can and do change their in-
tonation with musical circumstance. Where fixed pitch instruments set an
equal-tempered standard, such microtonal inflections may be in the direction
of equal temperament. But subtle pitch manipulations by the musician are
heavily context dependent. Similarly, choirs sing very differently a cappella
than when accompanied by a fixed pitch instrument.

The amusing and caustic book Lies My Music Teacher Told Me tells the
first-hand story of a choir director who discovers justly intoned intervals, and
trains his chorus to sing without tempering. Eskelin [B: 54] exhorts his choir
to “sing into the chord, not through it,” and teaches his singers to “lock into
the chord,” with the goal of tuning the sound “until the notes disappear.” He
describes a typical session with a new singer who is at first:

reluctant and confused, and is convinced we are all a little crazy for
asking him to sing the pitch out of tune. Eventually this defensiveness
is replaced by curiosity, and finally the singer begins to explore the
space outside his old comfort zone. When he experiences the peaceful
calm that occurs when the note locks with [the] sustained root, the
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eyebrows raise, the eyes widen...another soul has been saved from the
fuzziness of tempered tuning.

Whatever its practicality, JI concepts have been fertile ground for the
creation of musical scales. For instance, scales can be based around intervals
other than thirds, fifths, and octaves. Extending the JI vocabulary in this way
leads to scales such as the 43-tone scale of Partch [B: 128] and to a host of
11 and 13-limit scales (those that use ratios with numerator and denominator
less than the specified number). David Doty [B: 43] argues eloquently for
the use of JI scales in his very readable Just Intonation Primer, and includes
examples of many of the more important techniques for constructing JI scales.
An organization called the Just Intonation Network has produced a number
of interesting compilations, including Rational Music for an Irrational World
and Numbers Racket, and numerous JI recordings are available from Frog
Peak Music.11

4.5 Partch

Harry Partch was one of the twentieth century’s most prolific, profound, opin-
ionated, and colorful composers of music in just intonation. Partch developed
a scale that uses 43 (unequal) tones in each octave. To perform in this 43-tone
per octave JI scale, Partch designed and built a family of instruments, includ-
ing a reed keyboard called the chromelodeon, the percussive cloud chamber
bowls, the multistringed kithara, the zymo-xyl made from wine bottles, and
the mazda marimba made from the glass of light bulbs. He wrote idiosyn-
cratic choral and operatic music that mimicked some facets of ancient Greek
performances and trained musicians to read and play his scores. Some of his
recordings are available; both [D: 32] and [D: 31] have been recently reissued,
and the Corporeal Meadows website [W: 6] contains photos of his instruments
and up-to-date information on performances of his music.

Partch’s scale, shown in Fig. 4.7, has the ability to maintain close approx-
imations to many just intervals in many different keys. Also, the large palette
of intervals within each octave provides the composer with far more choices
than are possible in a smaller scale. For instance, depending on the musical
circumstances and the desired effect, one might choose 7/4, 16/9, or 9/5 to
play the role of dominant seventh, whereas the major seventh might be repre-
sented by 15/8 or 40/21. The melodic “leading tone” might be any of these, or
perhaps 64/33 or 160/81 would be useful to guide the ear up into the octave.
This scale, and Partch’s theories, are discussed further in Sect. 5.3.
11 See [B: 57] and [W: 13].
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4.6 Meantone and Well Temperaments

Although many keyboards have been built over the centuries with far more
than 12 keys per octave, none have become common or popular, presumably
because of the added complexity and cost. Instead, certain tones on the 12-
note keyboard were tempered to compromise between the perfect intervals of
the JI scales and the possibilities of unlimited modulation in equal tempera-
ments. Meantone scales aim to achieve perfect thirds and acceptable triads in
a family of central keys at the expense of some very bad thirds and fifths in re-
mote keys. They are typically built from a circle of fifths like the Pythagorean
tuning, but with certain fifths larger or smaller than 3/2.

Figure 4.8 compares the Pythagorean, 12-tet, and two meantone tunings.12

Each protruding spoke represents a fifth. A zero means that the fifth has
a perfect 3/2 ratio, whereas a nonzero value means that the fifth is sharp-
ened (if positive) or flattened (if negative) from 3/2. The Pythagorean tuning
has zeroes everywhere except between the wolf, which is shown here between
G� and E�. The −1 represents the size of the Pythagorean comma, and the
sum of all the deviations of the fifths in any octave-based temperament must
equal −1. In equal temperament, each fifth is squeezed by an identical −1/12.
Quarter-comma meantone flattens each fifth by −1/4 and then compensates
by creating a +7/4 wolf. This is done because a stack of four −1/4 tempered
fifths gives a perfect 5/4 third.

Of course, there are many other possibilities. Figure 4.9 shows a number
of historical well temperaments that aim to be playable (but not identical) in
every key. Many of these scales are of interest because they are easily tuned
by ear. Before this century, keyboardists typically tuned their instruments
before each performance, and a tuning that is easy to hear was preferred
over a theoretically more precise tuning that is harder to realize. In fact, as
Jorgensen [B: 78] points out, equal temperament as we know it was not in
common use on pianos as late as 1885.13 This is at least partly because 12-tet
is difficult to tune reliably.

But the interest in well temperings is more than just the practical matter of
the ease of tuning. Each key in a well temperament has a unique tone color,
key-color, or character that makes it distinct from all others. It was these
characteristic colors that Bach demonstrated in his Well Tempered Clavier,
and not (as is sometimes reported) the possibility of unlimited modulation in
equal temperament. Many Baroque composers and theorists considered these
distinctive modes an important element of musical expression, one that was
sacrificed with the rise of 12-tet. Carlos [D: 7] performs pieces by Bach in
various well temperaments. Katahn [D: 24] performs a stunning collection of
piano sonatas in Beethoven in the Temperaments.
12 The form of this diagram is taken from [B: 114].
13 Ellis’ measurements, reported in Helmholtz [B: 71], were accurate to about one

cent.
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Fig. 4.8. Wheels of Tunings.

Two sound examples on the CD explore meantone tunings. Scarlatti’s
Sonata K380 is performed in the quarter comma meantone tuning centered
in the key of C in [S: 21].14 As in the JI performance, the effect is not over-
whelmingly different from the familiar 12-tet rendition in [S: 17]. But when
the meantone tuning is used improperly, the piece suffers (example [S: 22] uses
the quarter comma meantone tuning centered on C�).

4.7 Spectral Scales

Both the Pythagorean and the just scales incorporate intervals defined by
simple integer ratios. Such ratios are aurally significant because the har-
monic structure of many musical instruments causes their partials to overlap,
whereas nearby out-of-tune intervals experience the roughness of beating par-
tials. Another way to exploit the harmonic series in the creation of musical
scales is to base the scale directly on the overtone series. Two possibilities are
shown in Fig. 4.10. The first uses the eight pitches from the fourth octave of
14 As in the previous examples [S: 17]–[S: 20], the piece is transposed to C major.
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Fig. 4.9. Several well temperaments.

the overtone series, and the second exploits the 16 pitches of the fifth octave.
Of course, many other overtone scales are possible because the sixth octave
contains 32 different pitches (in general, the nth octave contains 2n−1 pitches)
and any subset of these can be used to define overtone scales.

Because the frequencies of the overtones are equally spaced arithmetically,
they are not equally spaced perceptually. The pitches of the tones in a har-
monic series grow closer together, and no two intervals between adjacent notes
in the scale are the same. Moreover, each starting note has a different num-
ber of steps in its octave. This contrasts strongly with equal temperaments
in which all successive intervals are identical and all octaves have the same
number of steps. Nonetheless, overtone scales may be as old as prehistory.
Tonometric measurements of pan pipes from Nasca, Peru suggest that the
Nasca culture (200 BC to 600 AD) may have used an arithmetic overtone
scale with about 43 Hz between succeeding tones, see [B: 67].

The “throat singing” technique ([B: 97], [D: 22], [D: 20]) allows a singer
to manipulate the overtones of the voice. By emphasizing certain partials and
de-emphasizing others, the sound may contain low droning hums and high
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ratio      cents

  1/1      0

  9/8    204

  5/4    386

11/8      551 

  3/2     702
 13/8   841
  7/4    969

15/8   1088

  2/1   1200

Scale from the Harmonic Series:
Octave 4

ratio      cents

Scale from the Harmonic Series:
Octave 5

  1/1      0
  17/16  105
  9/8    204
  19/16  298
  5/4    386

21/16   471
 11/8      551 
 23/16   628
  3/2     702
 25/16   773
 13/8    841
27/16   906
    7/4    969
  29/16  1030 
15/8          1088
  31/16  1145
  2/1   1200

Fig. 4.10. All partials from the fourth octave of the harmonic series are reduced to
the same octave, forming the scale on the left. Partials from the fifth octave of the
harmonic series similarly form the scale on the right. The keyboard mappings are
not unique.

whistling melodies simultaneously. Because the voice is primarily harmonic,
the resulting melodies tend to lie on a single overtone scale.

Spectral composers such as Murail [B: 120] have attempted to build “a
coherent harmonic system based on the acoustics of sound,” which uses the
“sound itself as a model for musical structure.” One aspect of this is to de-
compose a sound into its constituent (sinusoidal) components and to use these
components to define a musical scale. Thus, the scale used in the composition
comes from the same source as the sound itself. When applied to standard
harmonic sounds, this leads to overtone scales such as those in Fig. 4.10. More
generally, this idea can be extended to inharmonic sounds. For example, the
metal bar of Fig. 2.7 could be used to define a simple four-note scale. More
complex vibrating systems such as drums, bells, and gongs can also be used
to define corresponding “inharmonic” scales.

In Murail’s Gondwana [D: 28], the sounds of bells (inharmonic) and trum-
pets (harmonic) are linked together by having the orchestral instruments play
notes from scales derived from an analysis of the bells. In Time and Again,
inharmonic sounds generated by a DX7 synthesizer are the catalyst for pitches
performed by the orchestra. The orchestral instruments are thus used as ele-
ments to resynthesize (and augment) the sound of the DX7.

An interesting spectral technique is to tune a keyboard to one of the spec-
tral scales, and to set each note to play a pure sine wave. Such a “scale” is
indistinguishable from the “partials” of a note with complex spectrum, and it
becomes possible to compose with the spectrum directly. As long as the sound
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remains fused into a single perceptual entity, it can be heard as a flowing, con-
stantly mutating complex timbre. When the sound is allowed to fission, then
it breaks apart into two or more perceptual units. The composer can thus
experiment with the number of notes heard as well as the tone quality. In
Murail’s Désintégrations, for example, two spectra fuse and fission in a series
of spectral collisions. Such techniques are discussed at length in [B: 34].

As a composer, I find spectral scales to be pliant and easy to work with.
They are capable of expressing a variety of moods, and some examples appear-
ing on the CD are given in Table 4.4. These range from compositions using
direct additive synthesis15 (such as Overtune and Pulsating Silences) to those
composed using spectral techniques and the overtone scales of Fig. 4.10 (such
as Free from Gravity and Immanent Sphere). More information about the in-
dividual pieces is available in the references to the sound examples beginning
on p. 399.

Table 4.4. Musical compositions in various spectral scales appearing on the CD-
ROM.

Name of File For More
Piece Detail
Immanent Sphere imsphere.mp3 [S: 28]
Free from Gravity freegrav.mp3 [S: 29]
Intersecting Spheres intersphere.mp3 [S: 30]
Over Venus overvenus.mp3 [S: 31]
Pulsating Silences pulsilence.mp3 [S: 32]
Overtune overtune.mp3 [S: 33]
Fourier’s Song fouriersong.mp3 [S: 34]

Spectral scales, even more than JI, tend to be restricted to particular
keys or tonal centers. They contain many of the just intervals when played in
the key of the fundamental on which they are based, but the approximations
become progressively worse in more distant keys. Similarly, instruments tuned
to overtone scales are bound to a limited number of related keys. For example,
most “natural” (valveless) trumpets produce all their tones by overblowing,
and they are limited to notes that are harmonics of the fundamental. These
are inherently tuned to an overtone scale. Of course, many kinds of music do
not need to modulate between keys; none of the pieces in Table 4.4 change
key. Some do not even change chord. Pulsating Silences and Overtune do not
even change notes!
15 Where all sounds are created by summing a large collection of pure sine wave

partials.
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4.8 Real Tunings

Previous sections have described theoretically ideal tunings. When a real per-
son tunes and plays a real instrument, how close is the tuning to the ideal?
The discussion of just noticeable differences for frequency suggests that an
accuracy of 2 or 3 cents should be attainable even when listening to the notes
sequentially. When exploiting beats to tune simultaneously sounding pitches
to simple intervals such as the octave and fifth, it is possible to attain even
greater accuracy.16 But this only describes the best possible. What is typical?
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Fig. 4.11. Each note of the performance appears as a dot localized in time (the
horizontal axis) and in frequency (the vertical axis). Theoretical note names of the
Turkish tradition appear on the right. Figure used with permission [B: 4].

The actual tuning of instruments in performance is difficult to measure,
especially in polyphonic music where there are many instruments playing si-
multaneously. Can Akkoç [B: 4] has recently transcribed the pitches of a col-
lection of Turkish improvisations (taksim) played in a variety of traditional
modes (maq̃amãt) by acknowledged masters. Because these are played on a
kind of flute (the mansur ney is an aerophone with openings at both ends),
it is monophonic, and the process can be automated using a pitch-to-MIDI
converter and then translated from MIDI into frequency. The results can be
pictured as in Fig. 4.11, which plots frequency vs. time; each dot represents the
onset of a note at the specified time and with the specified pitch. Observe the
large cluster of dots near the tonic, the horizontal line labeled dugah. A large
number of notes lie near this tonic, sometimes occurring above and sometimes
below. Similarly, there are clusters of notes near other scale steps as indicated
by the dashed lines. Interestingly, many pitches occur at locations that are
far removed from scale steps, for instance, the cluster at the end halfway be-
tween segah and dik kundi. Thus, the actual performances are different from
16 For instance, when matching two tones at 2000 Hz, it is possible to slow the

beating rate below 1 beat per second, which corresponds to an accuracy of about
half a cent.
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the theoretical values. (Similar observations have also been made concerning
Western performances.)
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Fig. 4.12. Zooming into the region between dugah and busilek shows how the
notes are distributed in pitch. Each dot represents the duration of all notes at the
indicated frequency, as a percentage of the total duration of the piece. Figure used
with permission [B: 4].

To try to understand this phenomenon, Akkoç replotted the data in the
form of a histogram as in Fig. 4.12. In this performance, the longest time
(about 2.7% of the total) was spent on a note about 10 cents above the tonic!
The peaks of this plot can be interpreted as anchor tones around which nearby
pitches also regularly occur. Akkoç interprets this stochastically, suggesting
that master performers do not stick slavishly to predetermined sets of pitches,
but rather deliberately play in distributions around the theoretical values. In
one piece:

two consecutive clusters are visited back to back at different points
in time, and at each visit the musician has selected different sets of
frequencies from the two clusters, thereby creating a variable micro
scale. . .

Of course, the mansur ney is a variable intonation instrument, and it is
perhaps (on reflection) not too surprising that the actual pitches played should
deviate from the theoretical values. But surely an instrument like a modern,
well-tuned piano would be tuned extremely close to 12-tet. This is, in fact,
incorrect. Modern pianos do not even have real 2/1 octaves!

Piano tuning is a difficult craft, and a complex system of tests and checks
is used to ensure the best sounding instrument. The standard methods begin
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by tuning one note to a standard reference (say middle C) followed by all
octaves of the C. Tuning then proceeds by fifths or by thirds (depending on
the system), where each interval is mistuned (with respect to the just interval)
by a certain amount. This mistuning is quantified by the number of beats per
second that the tuner perceives. Jorgensen [B: 78], for instance, details several
different methods for tuning equal temperament, and the instructions contain
many statements such as “beating occurs at this high location between the
nearly coinciding harmonics of the tempered interval below,” “readjust middle
C until both methods produce beats that are exactly equal,” and “numbers
denote beats per second of the test interval.” At least part of the complexity of
the tuning instructions occurs because beats are related linearly to frequency
difference (and not frequency ratio, as is pitch). Thus, the expected number
of beats changes depending on which octave is being tuned.

The deviation from 12-tet occurs because piano strings produce notes that
are slightly inharmonic, which is heard as a moderate sharpening of the sound
as it decays. Recall that an ideal string vibrates with a purely harmonic spec-
trum in which the partials are all integer multiples of a single fundamental
frequency. Young [B: 208] showed that the stiffness of the string causes par-
tials of piano wire to be stretched away from perfect harmonicity by a factor
of about 1.0013, which is more than 2 cents. To tune an octave by minimizing
beats requires matching the fundamental of the higher tone to the second par-
tial of the lower tone. When the beats are removed and the match is achieved,
the tuning is stretched by the same amount that the partials are stretched.
Thus, the “octave” of a typical piano is a bit greater than 1202 cents, rather
than the idealized 1200 cents of a perfect octave, and the amount of stretching
tends to be greater in the very low and very high registers. This stretching of
both the tuning and the spectrum of the string is clearly audible, and it gives
the piano a piquancy that is part of its characteristic defining sound.

Interestingly, most people prefer their octaves somewhat stretched, even
(or especially) when listening to pure tones. A typical experiment asks sub-
jects to set an adjustable tone to an octave above a reference tone. Almost
without exception, people set the interval between the sinusoids greater than
a 2/1 octave. This craving for stretching (as Sundberg [B: 189] notes) has
been observed for both melodic intervals and simultaneously presented tones.
Although the preferred amount of stretching depends on the frequency (and
other variables), the average for vibrato-free octaves is about 15 cents. Some
have argued that this preference for stretched intervals may carry over into
musical situations. Ward [B: 203] notes that on average, singers and string
players perform the upper notes of the major third and the major sixth with
sharp intonation.

Perhaps the preference for (slightly) stretched intervals is caused by con-
stant exposure to the stretched sound of strings on pianos. On the other hand,
Terhardt [B: 194] shows how the same neural processing that defines the sensa-
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tion of virtual pitch17 may also be responsible for the preference for stretched
intervals. Although it may be surprising to those schooled in standard Western
music that their piano is not tuned to real octaves, the stretching of octaves
is a time-honored tradition among the Indonesian gamelan orchestras.

4.9 Gamelan Tunings

The gamelan, a percussive “orchestra,” is the indigenous Indonesian musical
traditions of Java and Bali. Gamelan music is varied and complex, and the
characteristic shimmering and sparkling timbres of the metallophones are en-
trancing. The gamelan consists of a large family of inharmonic instruments
that are tuned to either the five-note slendro or the seven-tone pelog scales.
Neither scale lies close to the familiar 12-tet.

In contrast to the standardized tuning of Western music, each gamelan
is tuned differently. Hence, the pelog of one gamelan may differ substantially
from the pelog of another. Tunings tend not to have exact 2:1 octaves; rather,
the octaves can be either stretched (slightly larger than 2:1) or compressed
(slightly smaller). Each “octave” of a gamelan may differ from other “octaves”
of the same gamelan.

An extensive set of measurements of actual gamelan tunings is given in
[B: 190], which studies more than 30 complete gamelans. An average slen-
dro tuning (obtained by numerically averaging the tunings of all the slendro
gamelans) is

0, 231, 474, 717, 955, 1208

(values are in cents) which has a pseudo-octave stretched by 8 cents. The
slendro tunings are often considered to be fairly close to 5-tet, although each
gamelan deviates from this somewhat.

Similarly, an average pelog scale is

0, 120, 258, 539, 675, 785, 943, 1206,

which is a very unequal tuning that is stretched by 6 cents. The instruments
and tunings of the gamelan are discussed at length in the chapter “The Game-
lan,” and detailed measurements of the tuning of two complete gamelans are
given in Appendix L.

4.10 My Tuning Is Better Than Yours

It is a natural human tendency to compare, evaluate, and judge. Perhaps there
is some objective criterion by which the various scales and tunings can be
ranked. If so, then only the best scales need be considered, because it makes
17 Recall the discussion on p. 35.
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little sense to compose in inferior systems. Unfortunately, there are many
different ways to evaluate the goodness, reasonableness, fitness, or quality of
a scale, and each criterion leads to a different set of “best” tunings. Under some
measures, 12-tet is the winner, under others 19-tet appears best, 53-tet often
appears among the victors, 612-tet was crowned in one recent study, and under
certain criteria nonoctave scales triumph. The next paragraph summarizes
some of these investigations.

Stoney [B: 183] calculates how well the scale steps of various equal tem-
peraments match members of the harmonic series. Yunik and Swift [B: 209]
compare equal temperaments in terms of their ability to approximate a cat-
alog of 50 different just intervals. Douthett et al. [B: 44] and van Prooijen
[B: 144] use continued fractions to measure deviations from harmonicity for
arbitrary equal temperaments. Hall [B: 68] observes that the importance of
an interval depends on the musical context and suggests a least-mean-square-
error criterion (between the intervals of n-tet and certain just intervals) to
judge the fitness of various tunings for particular pieces of music. Krantz and
Douthett [B: 88] propose a measure of “desirability” that is based on loga-
rithmic frequency deviations, is symmetric, and can be applied to multiple
intervals. As the criterion is based on “octave-closure,” it is not dominated by
very fine divisions of the octave. Erlich [B: 52] measures how close various just
intervals are approximated by the equal temperaments up to 34-tet and finds
that certain 10-tone scales in 22-tet approximate very closely at the 7-limit.
Carlos [B: 23] searches for scales that approximate a standard set of just in-
tervals but does not require that the temperaments have exact 2/1 octaves
and discovers three new scales with equal steps of 78, 63.8, and 35.1 cents.

All of these comparisons consider how well one kind of scale approximates
another. In an extreme case, Barbour [B: 10] essentially calculates how well
various meantone and well-tempered scales approximate 12-tet and then con-
cludes that 12-tet is the closest!

The search for sensible criteria by which to catalog and classify various
kinds of scales is just beginning. Hopefully, as more people gain experience
in composing in a variety of scales, patterns will emerge. One possibility is
suggested in McLaren and Darreg [B: 109], who rate equal temperaments on
a continuum that ranges from “biased towards melody” to “biased towards
harmony.” Perhaps someday it will be possible to reliably classify the possible
“moods” that a given tuning offers. See [B: 36] for further comments.

4.11 A Better Scale?

Pythagoras felt that the coincidence of consonant intervals and small interval
ratios were confirmation of deeply held philosophical beliefs. Such intervals are
the most natural because they involve powerful mystical numbers like 1, 2,
3, and 4. Rameau [B: 145] considered the just intervals to be natural because
they are outlined by the overtones of (many) musical sounds. Lou Harrison
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says in his Primer [B: 70] that “The interval is just or not at all.” “The best
intonation is just intonation.” For Harry Partch [B: 129], 12-tet keyboards
are a musical straightjacket, “twelve black and white bars in front of musical
freedom.” From all of these points of view, the 12-tet tuning system is seen as a
convenient but flawed approximation to just intervals, having made keyboard
design more practical, and enabling composers to modulate freely.

Helmholtz further claimed that untrained and natural singers use just
intervals, but that musicians, by constant contact with keyboards, have been
trained (or brainwashed) to accept equal-tempered approximations. Only the
greatest masters succeed in overcoming this cultural conditioning. Although
logically sound, these arguments are not always supported by experimental
evidence. Studies of the intonation of performers (such as [B: 4] and [B: 21])
show that they do not tend to play (or sing) in just intervals. Nor do they tend
to play in Pythagorean tunings, nor in equal temperaments, exactly. Rather,
they tend to play pitches that vary from any theoretically constructed scale.18

There are arguments based on numerology, physics, and psychoacoustics
in favor of certain kinds of scales. There are arguments of expediency and
ease of modulation in favor of others. While each kind of argument makes
sense within its own framework, none is supported by irrefutable evidence.
In fact, actual usage by musicians seems to indicate a considerable tolerance
for mistunings in practical musical situations. Perhaps these deviations are
part of the expressive or emotional content of music, perhaps they are part
of some larger theoretical system, or perhaps they are simply unimportant to
the appreciation of the music.

Almost every kind of music makes use of some kind of scale, some subset
of all possible intervals from which composers and/or performers can build
melodies and harmonies.19 As the musical quality of an interval is highly
dependent on the timbre or spectrum of the instruments (recall the “chal-
lenging the octave” example from the first chapter in which the octave was
highly dissonant), Tuning, Timbre, Spectrum, Scale argues that the percep-
tual effect of an interval can only be reliably anticipated when the spectrum
is specified. The musical uses of a scale depend crucially on the tone quality
of the instruments.

Thus, a crucial aspect is missing from the previous discussions of scales.
Justly intoned scales are appropriate for harmonic timbres. Overtone scales
make sense when used with sounds that have harmonic overtones. Gamelan
scales are designed for play with metallophones. Whether the scale is made
from small integer ratios, whether it is formed from irrational number ap-
proximations such as the twelfth root of two, and whether it contains octaves
18 Some recent work by Loosen [B: 98] suggests that musicians tend to judge familiar

temperaments as more in-tune. Thus, violinists tend to prefer Pythagorean scales,
and pianists tend to prefer 12-tet.

19 The existence of sound collages and other textural techniques as in [D: 23], [D: 26],
and [D: 43] demonstrates that scales are not absolutely necessary.



76 4 Musical Scales

or pseudo-octaves (or neither) is only half of the story. The other half is the
kinds of sounds that will be played in the scale.



5

Consonance and Dissonance of Harmonic
Sounds

Just as a tree may crash silently (or noisily) to
the ground depending on the definition of sound, the
terms “consonance” and “dissonance” have both a
perceptual and a physical aspect. There is also a
dichotomy between attitude and practice, between the
way theorists talk about consonance and dissonance
and the ways that performers and composers use
consonances and dissonances in musical situations.
This chapter explores five different historical notions
of consonance and dissonance in an attempt to avoid
confusion and to place sensory consonance in its
historical perspective. Several different explanations
for consonance are reviewed, and curves drawn by
Helmholtz, Partch, Erlich, and Plomp for harmonic
timbres are explored.

5.1 A Brief History

Ideas of consonance and dissonance have changed significantly over time, and
it makes little sense to use the definitions of one century to attack the conclu-
sions of another. In his 1988 History of ‘Consonance’ and ‘Dissonance,’ James
Tenney discusses five distinct ways that these words have been used. These are
the melodic, polyphonic, contrapuntal, functional, and psychoacoustic notions
of consonance and dissonance.

5.1.1 Melodic Consonance (CDC-1)

The earliest Consonance and Dissonance Concept (CDC-1 in Tenney’s termi-
nology) is strictly a melodic notion. Successive melodic intervals are consonant
or dissonant depending on the surrounding melodic context. For instance,
early church music was typically sung in unison, and CDC-1 refers exclusively
to the relatedness of pitches sounded successively.

5.1.2 Polyphonic Consonance (CDC-2)

With the advent of early polyphony, consonance and dissonance began to re-
fer to the vertical or polyphonic structure of music, rather than to its melodic
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contour. Consonance became a function of the interval between (usually two)
simultaneously sounding tones. Proponents of CDC-2 are among the clear-
est in relating “consonant” to “pleasant” and “dissonant” to “unpleasant.”
For instance, summing up the comments of a number of theorists from the
thirteenth to the fifteenth century, Crocker [B: 35] concludes:

These authors say, in sum, that the ear takes pleasure in consonance,
and the greater the consonance the greater the pleasure; and for this
reason one should use chiefly consonances...

Theorists were divided on the root cause of the consonance and dissonance.
Some argued that the consonance of two tones is directly proportional to the
degree to which the two tones sound like a single tone. Recall how the partials
of simple ratio intervals such as the octave tend to line up, encouraging the two
sounds to fuse together into a single perception. Other theorists focused on the
numerical properties of consonant intervals, presuming, like the Pythagoreans,
that the ear simply prefers simple ratios. As the simplest ratios are the unison,
third, fourth, fifth, sixth, and octave, these were considered consonant and
all others dissonant. These conflicting philosophies anticipate even further
notions.

5.1.3 Contrapuntal Consonance (CDC-3)

Contrapuntal consonance defines consonance by its role in counterpoint. These
are the “rules” that are familiar to music students today when learning voice-
leading techniques. In a dramatic reversal of earlier usage, the fourth came
to be considered a dissonance (except in certain circumstances) much as is
taught today. Similarly, a minor third is considered consonant, whereas an
augmented second is considered dissonant, even though the two intervals may
be physically identical. Thus, it is the context in which the interval occurs
that is crucial, and not the physical properties of the sound.

5.1.4 Functional Consonance (CDC-4)

Functional consonance begins with the relationship of the individual tones to
a “tonic” or “root.” Consonant tones are those that have a simple relationship
to this fundamental root and dissonant tones are those that do not. This was
crystallized by Rameau, whose idea of the fundamental bass roughly parallels
the modern notion of the root of a chord. Rameau argues that all properties
of:

sounds in general, of intervals, and of chords rest finally on the single
fundamental source, which is represented by the undivided string. . .

The “undivided” string in Fig. 5.1, which extends from 1 to A, sounds the
fundamental bass. Half of the string, which vibrates at the octave, extends
from 2 to A. One third of the string, which vibrates at the octave plus a fifth,
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extends from 3 to A. Thus, Rameau identifies all of the familiar consonances
by the distances on the string and their inversions. For example, suppose two
notes form an interval of a major third (the region between 4 and 5 in the
figure). These are both contained within the undivided string, which vibrates
at the fundamental bass.

1 2 3 4 5 6 810

Double Octave

Triple Octave

Octave

Min 6th

Maj 6th

Octave

Fifth

Fifth

Fourth

Octave

Octave

Min 3rdMaj 3rd

A

Fig. 5.1. Rameau illustrates the
consonance of intervals on a vi-
brating string. If 1-A represents
the complete string, 2-A is one
half the string, 3-A is one third,
and so on. The musical intervals
that result from these different
string lengths include all of the
consonances. This figure is re-
drawn from [B: 145].

But Rameau’s fundamental bass implies not only the static notion of the
lowest note of a chord in root position, but also the dynamic notion of a
succession of bass notes. Dissonances occur when the music has moved away
from its root, and they set up an expectation of return to the root. Thus,
functional dissonance is not a result of chordal motion, but rather its cause.
This notion that dissonances cause motion is very much alive in modern music
theory. For example, Walter Piston [B: 137], in Harmony, places himself firmly
in this camp when he writes:

A consonant interval is one which sounds stable and complete, whereas
the characteristic of a dissonant interval is its restlessness and its need
for resolution into a consonant interval... Music without dissonant
intervals is often lifeless and negative, since it is the dissonant element
which furnishes much of the sense of movement and rhythmic energy...
It cannot be too strongly emphasized that the essential quality of
dissonance is its sense of movement and not, as sometimes erroneously
assumed, its degree of unpleasantness to the ear.

5.1.5 Psychoacoustic Consonance (CDC-5)

The most recent concept of consonance and dissonance focuses on percep-
tual mechanisms of the auditory system. One CDC-5 view is called sensory
dissonance and is usually credited to Helmholtz [B: 71] although it has been
significantly refined by Plomp and Levelt [B: 141]. A major component of
sensory dissonance is roughness such as that caused by beating partials; sen-
sory consonance is then the smoothness associated with the absence of such
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beats. Another component of psychoacoustic consonance, called tonalness, is
descended from Rameau’s fundamental bass through Terhardt’s notions of
harmony [B: 196] as extended by Parncutt [B: 126] and Erlich [W: 9]. A ma-
jor component of tonalness is the closeness of the partials to a harmonic series;
distonalness is thus increased as partials deviate from harmonicity.

CDC-5 notions of consonance and dissonance have three striking impli-
cations. First, individual complex tones have an intrinsic or inherent disso-
nance. From the roughness perspective, any tone with more than one partial
inevitably has some dissonance, because dissonance is caused by interacting
partials. Similarly from a tonalness point of view, as the partials of a sound
deviate from a perfect harmonic template, the dissonance increases. These are
in stark contrast to the earlier CDCs where consonance and dissonance were
properties of relationships between tones.1

The second implication is that consonance and dissonance depend not just
on the interval between tones, but also on the spectrum of the tones. Intervals
are dissonant when the partials interact to cause roughness according to the
sensory dissonance view. Similarly, intervals are increasingly dissonant as the
partials deviate from harmonicity according to the tonalness view. In both
cases, the exact placement of the partials is important.

The third implication is that consonance and dissonance are viewed as ly-
ing on a continuum rather than as an absolute property. In the earlier CDCs, a
given interval is either consonant or dissonant. CDC-5 recognizes a continuum
of possible gradations between consonance and dissonance.

The sensory notion of dissonance has no problem explaining the “chal-
lenging the octave” sound example [S: 1] of Chap. 1 (indeed, it was created
from sensory considerations), and both sensory dissonance and tonalness have
a firm basis in psychoacoustic experimentation (as discussed in Sect. 5.3.4).
But these CDC-5 ideas are lacking in other respects. Perhaps the greatest
strength of the contrapuntal and function consonance notions is that they
provide comprehensive prescriptions (or at least descriptions) of the practice
of harmony. They give guidance in the construction and analysis of polyphonic
passages, and they explain how dissonances are crucial to the proper motion
of musical compositions. In contrast, sensory dissonance and tonalness are
static conceptions in which every collection of partials has some dissonance
and there is not necessarily any relationship between successive clusters of
sound in a musical sequence.

Mechanistic approaches to consonance are not without controversy and
have been questioned from at least two perspectives. First, as Cazden [B: 28]
points out, the ideas of psychoacoustic dissonance do not capture the func-
tional idea of musical dissonance as restlessness or desire to resolve and the
linked notion of consonance as the restful place to which resolution occurs. In
essence, it becomes the responsibility of the composer to impose motion from
1 Or of the relationship between a tone and the fundamental bass.
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psychoacoustic dissonance to psychoacoustic consonance, if such a motion is
desired.

Secondly, psychoacoustic experiments are tricky to conduct and interpret.
Depending on the exact experimental setup, different effects may be empha-
sized. For example, many experiments address the relevance of beats and
roughness to perceptions of intonation. Among these is Keisler [B: 81], who
examines musicians’ preferences to various “just” and “tempered” thirds and
fifths by manipulating the partials of the sounds in a patterned way. Keisler
concludes that beating is not a significant factor in intonation. Yet other stud-
ies such as Vos [B: 201], using different techniques, have found the opposite.
Similarly, the fact of perception of virtual pitch is uncontested, and yet it
sometimes appears as a strong and fundamental aspect (e.g., the Westmin-
ster chime song played by Houtsma [D: 21]), or it may appear fragile and
ambiguous (as in sound examples [S: 6] and [S: 7]).

5.2 Explanations of Consonance and Dissonance

What causes these sensations of consonance and dissonance? Just as there
are different paradigms for what consonance and dissonance mean, there are
different ideas as to their cause: from numerological to physiological, from
difference tones to differing cultures. Are there physical quantities that can
be measured to make reasonable predictions of the perceived consonance of a
sound, chord, or musical passage?

5.2.1 Small Is Beautiful

Perhaps the oldest explanation is the simplest: People find intervals based
on small integer ratios more pleasant because the ear naturally prefers small
ratios. Although somewhat unsatisfying due to its essentially circular nature,
this argument can be stated in surprisingly many ways. Pythagoras, who was
fascinated to find small numbers at the heart of the universe, was content
with an essentially numerological assessment. Galileo [B: 58] wrote:

agreeable consonances are pairs of tones which strike the ear with a
certain regularity; this regularity consists in the fact that the pulses
delivered by the two tones, in the same interval of time, shall be com-
mensurable in number, so as not to keep the eardrum in perpetual
torment, bending in two different directions in order to yield to the
ever discordant impulses.

A more modern exposition of this same idea (minus the perpetual torment)
is presented in Boomsliter and Creel [B: 17] and in Partch [B: 128]. Here,
consonance is viewed in terms of the period of the wave that results when two
tones of different frequency are sounded: The shorter the period, the more
consonant the interval. Thus, 3/2 is highly consonant because the combined
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wave repeats every 6 periods, whereas 301/200 is dissonant because the wave
does not repeat until 60,200 periods.2 In essence, this changes the argument
from “the ear likes small ratios” to “the ear likes short waves.” The latter forms
a testable hypothesis, because the ear might contain some kind of detector that
would respond more strongly to short repeating waveforms. In fact, periodicity
theories of pitch perception [B: 24] and [B: 136] suppose such a time-based
detector.

5.2.2 Fusion

The fusion of two simultaneously presented tones is directly proportional to
the degree to which the tones are heard as a single perceptual unit. Recall from
Fig. 4.1 on p. 52 that many of the partials of sounds in simple ratio intervals
(such as the octave) coincide. The ear has no way to tell how much of each
partial belongs to which note, and when enough partials coincide, the sounds
may lose their individuality and fuse together. Stumpf [B: 188] determined
that the degree of fusion of intervals depends on the simple frequency ratios
in much the same way as consonance and hypothesized that fusion is the basis
of consonance. The less willing a sound is to fuse, the more dissonant.

5.2.3 Virtual Pitch

Whereas Rameau’s theories focus on physical properties of resonating bodies,
Terhardt focuses on the familiarity of the auditory system with the sound of
resonating bodies. This shifts the focus from the physics of resonating bodies
to the perceptions of the listener. Terhardt’s theory of virtual pitch [B: 197] is
combined with a “learning matrix” [B: 195] (an early kind of neural network)
to give the “principle of tonal meanings.”

By repeatedly processing speech, the auditory system acquires -
among other Gestalt laws - knowledge of the specific pitch relations
which... become familiar to the “central processor” of the auditory
system ... This way, these intervals become the so-called musical in-
tervals.

Terhardt emphasizes the key role that learning, and especially the processing
of speech, plays in the perception of intervals. Different learning experiences
lead to different intervals and scales and, hence, to different notions of conso-
nance and dissonance.

One of the central features of virtual pitch is that the auditory system tries
to locate the nearest harmonic template when confronted with a collection of
2 On the other hand, the 12-tet equal fifth, whether considered as having infinite

period or some very long finite period, is more consonant than other intervals
such as 25/24, which have much shorter period. Thus, the theory cannot be so
simple.
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partials. This is unambiguous when the sound is harmonic but becomes more
ambiguous as the sound deviates from a harmonicity. The idea of harmonic
entropy (see [W: 9], Sect. 5.3.3, and Appendix J) quantifies this deviation,
measuring the tonalness of an interval based on the uncertainty involved in
interpreting the interval in terms of simple integer ratios.

5.2.4 Difference Tones

When two sine waves of different frequencies are sounded together, it is some-
times possible to hear a third tone at a frequency equal to the difference of
the two. For instance, when waves of f = 450 Hz and g = 570 Hz are played
simultaneously, a low tone at g − f = 120 Hz may also occur. These differ-
ence tones are usually attributed to nonlinear effects in the ear, and Roederer
[B: 154] observes that “they tend to become significant only when the tones
used to evoke them are performed at high intensity.” Under certain conditions,
difference tones may be audible at several multiples such as 2f − g, 3g − 2f ,
etc.3 When f and g form a simple integer ratio, there are few distinct differ-
ence tones between the harmonics of f and the harmonics of g. For instance,
if f and g form an octave, the difference tones occur at the same frequencies
as the harmonics. But as the complexity of the ratio increases, the number
of distinct difference tones increases. Thus, Krueger [B: 89] (among others)
proposes that dissonance is proportional to the number of distinct difference
tones; consonance occurs when there are only a few distinct difference tones.

Because both difference tones and beats occur at the same difference fre-
quency f − g, it is easy to imagine that they are the same phenomenon, that
difference tones are nothing more than rapid beats. This is not so. The essence
of the beat phenomenon is fluctuations in the loudness of the wave, whereas
difference tones are a result of nonlinearities, which may occur in the ear but
may also occur in the electronic amplifier or loudspeaker system. Hall provides
a series of tests that distinguish these phenomena in his paper [B: 69], “the
difference between difference tones and rapid beats.”

Difference tones are also similar to, but different from virtual pitch. Recall
the example on p. 35 where three sine waves of frequencies 600, 800, and 1000
Hz generate both a virtual pitch at 200 Hz and a difference tone at 200 Hz.
When the sine waves are raised to 620, 820, and 1020, the virtual pitch is
somewhat higher than 200 Hz, whereas the difference tone remains at 200 Hz.
For most listeners in most situations, the virtual pitch dominates emphasizing
that difference tones can be subtle, except at high intensities. On the other
hand, “false” difference tones can be generated easily in inexpensive electronic
equipment by nonlinearities in the amplifier or speaker.

Difference tones can be readily heard in laboratory settings, and Hindemith
[B: 72] presents several musical uses. In many musical settings, however, differ-
ence tones are not loud enough to be perceptually relevant and, hence, cannot
3 In general, such higher order difference tones may occur at (n + 1)g − nf for

integers n.
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form the basis of dissonance, as argued by Plomp [B: 138]. On the other hand,
when difference tones are audible, they should be taken into account.

5.2.5 Roughness and Sensory Dissonance

Helmholtz’s idea is that the beating of sine waves is perceived as roughness
that in turn causes the sensation of dissonance. This sensory dissonance is
familiar from Fig. 3.7 on p. 47, and this model can be used to explain why
intervals made from simple integer ratios are perceptually special, as suggested
by the mistuned octaves in Fig. 4.1 on p. 53.

The “challenging the octave” example (recall Fig. 1.1 on p. 2) demonstrates
this dramatically. The partials of the inharmonic tone are placed so that they
clash raucously when played in a simple 2/1 octave but sound smooth when
played in a 2.1/1 pseudo-octave. Are these 2/1 and 2.1/1 intervals consonant
or dissonant? It depends, of course, on the definition. Much of our intuition
survives from CDC-2, where consonant and dissonant are equated with pleas-
ant and unpleasant. Clearly, the 2.1/1 pseudo-octave is far more euphonious
(when played with 2.1 stretched timbres) than the real octave. Modern mu-
sicians have been trained extensively (brainwashed?) with harmonic sounds.
Because octaves are always consonant when played with harmonic sounds,
the musician is likely to experience cognitive dissonance (at least) when hear-
ing the 2.1/1 interval appear smoother than the 2/1 octave. This example
is challenging to advocates of functional consonance (CDC-4) because it is
unclear what the terms “key,” “tonal center,” and “fundamental root” mean
for inharmonic sounds in non-12-tet scales. This is also a setting where the
predictions of the tonalness model and the sensory dissonance model disagree,
and this is discussed more fully in Sects. 6.2 and 16.3.

5.2.6 Cultural Conditioning

One inescapable conclusion is that notions of consonance and dissonance have
changed significantly over the years. Presumably, they will continue to change.
Cazden [B: 28] argues that the essence of musical materials cannot be deter-
mined by unchanging natural laws such as mathematical proportion, wave
theories, perceptual phenomena, the physiology of hearing, and so on, because
“it is not possible that laws which are themselves immutable can account for
the profound transformations which have taken place in musical practice.”
Similarly, the wide variety of scales and tunings used throughout the world is
evidence that cultural context plays a key role in notions of consonance and
dissonance.

The importance of learning and cultural context in every aspect of musi-
cal perception is undeniable. But physical correlates of perceptions need not
completely determine each and every historical style and musical idiosyncrasy
as Cazden suggests; rather, they set limits beyond which musical explorations
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cannot go. Surely the search for such limits is important, and this is discussed
further in Sect. 16.3 “To Boldly Listen” in the final chapter.

Cazden also rightly observes that an individual’s judgment of consonance
can be modified by training, and so cannot be due entirely to natural causes.
This is not an argument for or against any particular physical correlate, nor
even for or against the existence of correlates in general. Rather, the extent
to which training can modify a perception places limits on the depth and
universality of the correlate.

The larger picture is that Cazden4 is attacking excessive scientific reduc-
tionism in music theory, and in much of this he is quite correct. However,
Cazden defines a consonant interval to be stable and a dissonant interval to
be restless, an attack on the CDC-5 mindset using a CDC-4 definition. He
states firmly that “consonance and dissonance do not originate on the level
of properties of tones, but on the level of social communication,” and hence,
all such beat, fusion, and difference tone explanations are fundamentally mis-
guided. Interpreting this to mean that questions of musical motion are not
readily addressable within the CDC-5 framework, Cazden is correct. But this
does not imply that such physiological explanations can offer nothing relevant
to the perception of dissonances.

5.2.7 Which Consonance Explanation?

There are at least six distinctly different explanations for the phenomena of
consonance and dissonance: small period detectors, fusion of sounds, tonal-
ness and virtual pitch, difference tones, cultural conditioning, and beats or
roughness. The difference tone hypothesis is the weakest of the theories be-
cause experimental evidence shows that it occurs primarily at high sound
intensities, while dissonances can be clearly perceived even at low volumes.

The remaining possibilities each have strengths and limitations. Conso-
nance and dissonance, as used in musical discourse, are complicated ideas
that are not readily reducible to a single formula, acoustical phenomenon, or
physiological feature. As we do not ultimately know which (if any) of the ex-
planations is correct, a pragmatic approach is sensible: Which of the possible
explanations for consonance and dissonance lead to musically sensible ideas
for sound exploration and manipulation?

There is undoubtedly a large component of cultural influence involved in
the perception of musical intervals, but it is hard to see how to exploit this view
in the construction of musical devices or in the creation of new musics. On the
other hand, as Terhardt [B: 195] points out, to whatever extent conventional
musical systems are the result of a learning process, “it may not only be
possible but even promising to invent new tonal systems.” Chapters 7, 9, 14,
and 15 do just this.
4 In [B: 29] and [B: 30].
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The importance of fusion in the general perception of sound is undeniable—
if a tone does not fuse, then it is perceived as two (or more) tones. It is easy
to see why a viable fusion mechanism might evolve: The difference between a
pack of hyenas in the distance and a single hyena nearby might have immedi-
ate survival value. But its role in consonance is less clear. In the “Science of
Sound” chapter, several factors were mentioned that influence fusion, includ-
ing synchrony of attack, simultaneous modulation, and so on. Unfortunately,
these have not yet been successfully integrated into a “fusion function” that
allows calculation of a degree of fusion from some set of physically measurable
quantities. Said another way, the fusion hypothesis does not (yet?) provide a
physical correlate for consonance that can be readily measured. From the
present utilitarian view, we therefore submerge the fusion hypothesis because
it cannot give concrete predictions. Nonetheless, as will become clear when
designing and exploring inharmonic sounds, ensuring that these sounds fuse
in a predictable way is both important and nontrivial. Finding a workable
measure of auditory fusion is an important arena for psychoacoustics work.
See Parncutt [B: 126] for a step in this direction.

The small period hypothesis can only be sensibly applied to harmonic (i.e.,
periodic) sounds; it is not obvious how to apply it to music that uses inhar-
monic instruments. For example, the small period theory cannot explain why
or how the pseudo-octaves of the “challenging the octave” experiment sound
pleasant or restful (pick your favorite CDC descriptor) when played in the
2.1 stretched timbres. On the other hand, the roughness/sensory dissonance
can be readily quantified in terms of the spectra of the sounds. Because a
large class of interesting sounds are inharmonic, further chapters exploit the
ideas of psychoacoustic consonance as a guide in the creation of inharmonic
music. It is important to remember that this is just one possible explanation
for the consonance and dissonance phenomenon. Moreover, the larger issue of
creating “enjoyable music” is much wider than any notion of dissonance.

5.3 Harmonic Dissonance Curves

Early theorists focused on the consonance and dissonance of specific intervals
within musical scales: Some are consonant and some are not. But there are
an infinite number of possible pitches and, hence, of possible intervals. Are all
of these other intervals perceived as dissonant? Helmholtz investigated this
using two violins, one playing a fixed note and the other sliding up slowly. He
found that intervals described by small number ratios are maximally conso-
nant. Partch listened very carefully to his 43-tone-per-octave chromelodeon
(a kind of reed organ) and learned to tune all the intervals by ear using the
beating of upper partials. He found he could relate the relative consonances
to small integer ratios. Erlich’s tonalness quantifies the confusion of the ear as
it tries to relate intervals to nearby small integer ratios. Plomp and Levelt use
electronic equipment to carefully explore perceptions of consonance and disso-
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nance. Again, they find that the intervals specified by small integer ratios are
the most consonant. All four, despite wildly differing methods, mindsets, and
theoretical inclinations, draw remarkably similar curves: Helmholtz’s rough-
ness curve, Partch’s “one-footed bride,” Erlich’s harmonic entropy, and Plomp
and Levelt’s plot of consonance for harmonic tones.

5.3.1 Helmholtz and Beats

The idea of sensory consonance and dissonance was introduced5 by Helmholtz
in On the Sensations of Tones as a physical explanation for the musical no-
tions of consonance and dissonance based on the phenomenon of beats. If two
pure sine tones are sounded at almost the same frequency, then a distinct
beating occurs that is due to interference between the two tones. The beat-
ing becomes slower as the two tones move closer together, and it completely
disappears when the frequencies coincide. Typically, slow beats are perceived
as a gentle, pleasant undulation, whereas fast beats tend to be rough and an-
noying, with maximum roughness occurring when beats occur about 32 times
per second. Observing that any sound can be decomposed into sine wave par-
tials, Helmholtz theorized that dissonance between two tones is caused by the
rapid beating between the partials. Consonance, according to Helmholtz, is
the absence of such dissonant beats.

To see Helmholtz’s reasoning, suppose that a sound has a harmonic spec-
trum like the guitar string of Fig. 2.5 on p. 17, or its idealized version in
Fig. 2.6 on p. 17. When such a sound is played at a fundamental frequency
f = 200 (near the G below middle C), its spectrum is depicted in the top
graph of Fig. 5.2. The same spectrum transposed to a fundamental frequency
g = 258 is shown just below. Observe that many of the upper partials of f
are close to (but not coincident with) upper partials of g. For instance, the
fourth and fifth partials of f are very near the third and fourth partials of g.
As partials are just sine waves, they beat against each other at a rate propor-
tional to the frequency difference, in this case 26 Hz and at 32 Hz. Because
both these beat rates are near 32 Hz, the partials interact roughly.

Assuming that the roughnesses of all interacting partials add up, the dis-
sonance of any interval can be readily calculated. Figure 5.3 is redrawn from
Helmholtz. The horizontal axis represents the interval between two harmonic
(violin) tones. One is kept at a constant frequency labeled c′, and the other is
slid up an octave to c′′. The height (vertical axis) of the curves is proportional
to the roughness produced by the partials designated by the frequency ratios.
For instance, the peaks straddling the valley at g′ are formed by interactions
between:

(i) The second partial of the note at g′ and the third partial of c′

(labeled 2:3 in the figure)

5 Similar ideas can be found earlier in Sorge [B: 178].
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Fig. 5.2. A harmonic note at funda-
mental frequency f = 200 Hz is trans-
posed to g = 258 Hz. When played si-
multaneously, some of the upper par-
tials interact by beating roughly, caus-
ing sensory dissonance.

(ii) The fourth partial of the note at g′ and the sixth partial of c′

(labeled 4:6)
(iii) The sixth partial of the note at g′ and the ninth partial of c′

(labeled 6:9)

Other peaks are formed similarly by the beating of other pairs of interacting
partials.

To draw these curves, Helmholtz makes three assumptions: that the spec-
tra of the notes are harmonic, that roughnesses can be added, and that the
32 Hz beat rate gives maximal roughness. His graph has minima (intervals
at which minimum beating occurs) near many of the just intervals, thus sug-
gesting a connection between the beating and roughness of sine waves and
the musical notions of consonance or dissonance. Helmholtz’s work can be
evaluated by comparing his conclusions with those of other notions of con-
sonance and dissonance and by investigating his assumptions in more detail.

c'                               e'b     e'         f'                  g'         a'b    a'        b'b                   c''
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Fig. 5.3. Two pitches are sounded simultaneously. The regions of roughness due
to pairs of interacting partials are plotted over one another, leaving only a few
narrow valleys of relative consonance. The figure is redrawn from Helmholtz’s On
the Sensation of Tone.
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For instance, does the 32 Hz beat rate for maximal roughness hold up under
rigorous investigation? Do roughnesses really add up?

5.3.2 Partch’s One-Footed Bride

Harry Partch was an eclectic composer and theorist who not only created a
just 43-tone-per-octave musical scale, but also a family of instruments to play
in this scale. In Genesis of a Music, Partch [B: 128] details how he tuned his
chromelodeon reed organ by ear:

To illustrate the actual mechanics of tuning, assume that the interval
intended as 3/2 is slightly out of tune, so that beats are heard, perhaps
two or three per second between the second partial of the “3” and the
third partial of the “2” .... Hence we scratch the reed at the tip, testing
continually, until the beats disappear entirely - that is, until the two
pulsations are “commensurable in number” ... Experience in tuning
the chromelodeon has proved conclusively that not only the ratios of 3
and 5, but also the intervals of 7, 9, and 11 are tunable by eliminating
beats.

Although Partch is willing to use beats to tune his instruments, he maintains
that consonance is purely a result of simple integer ratios. He states this
in terms of the period of the resulting wave: The shorter the period, the
more consonant the interval. This is reminiscent of Galileo, who viewed simple
intervals like 3/2 as a pleasant bending exercise for the ear, but intervals like
301/200 as perpetual torment. Partch ridicules simple sine wave experiments
(such as the kind used to explain sensory dissonance in the “Sound on Sound”
chapter) in a section called “Obfuscation by the Moderns,” although it is
unclear from his writing whether he disbelieves the experimental results, or
simply dislikes the conclusions reached.

However anachronistic his theoretical views, Partch was a careful listener.
Using the chromelodeon, he classified and categorized all 43 intervals in terms
of their comparative consonance, resulting in the “One-Footed Bride: A Graph
Of Comparative Consonance,” which is redrawn here as Fig. 5.4. Observe
how close this is to Helmholtz’s figure, although it is inverted, folded in half,
and stood on end. Where Helmholtz draws a dissonant valley, Partch finds a
consonant peak: All familiar JI intervals are present, and the octave, fourth,
and fifth appear prominently.

In discussing the one-footed bride, Partch observes that “each consonance
is a little sun in its universe, around which dissonant satellites cluster.”6 As a
composer, Partch is interested in exploiting these suns and their planets. He
finds four kinds of intervals: intervals of power, of suspense, of emotion, and
of approach. Power intervals are the familiar perfect consonances recognized
6 Helmholtz would claim that these dissonant clusters are caused by the beating of

the same upper partials that allowed Partch to tune the instrument so accurately.
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Fig. 5.4. Partch’s graph of
comparative consonance, the
“One-Footed Bride,” shows the
relative consonance of each of
the intervals in his 43-tone-
per-octave just scale based on
G. Four kinds of intervals are
depicted: intervals of power,
suspense, emotion, and ap-
proach. Figure is redrawn and
used with permission [B: 128].

since antiquity. Suspenseful intervals are those between the fourth and the
fifth that generalize the function of the tritone. A variety of thirds and sixths
rationalize (in a literal sense) and expand on the kind of emotions normally
associated with major and minor thirds and sixths. Finally, the intervals of
approach are usually reserved for passing tones and melodic inflections.

Like Helmholtz, Partch observed little correlation between the notes of the
12-tet scale and the comparative consonance of the intervals. Of course, 12-tet
scale steps can approximate many of the just ratios. But Partch was not a
man to compromise or approximate, and he devoted his life to creating music
and instruments on which to realize his vision of a just music that would
not perpetually torment the ear. Fortunately, today things are much easier.
Electronic keyboards can be retuned to Partch’s (or any other scale) with the
push of a button or the click of a mouse.

5.3.3 Harmonic Entropy

The discussion of virtual pitch (in Sect. 2.4.2) describes how the auditory
system determines the pitch of a complex tone by finding a harmonic template
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that lies close to the partials of the tone. If the fundamental (or root) of the
template is low, then the pitch is perceived as low; if the root of the template
is high, then the pitch is perceived as high. Often, however, the meaning of
“closest harmonic template” is ambiguous, for instance, when there is more
than one note sounding or when a single note has an inharmonic spectrum.
Harmonic entropy, as introduced by Erlich [W: 9], provides a way to measure
the uncertainty of the fit of a harmonic template to a complex sound spectrum.
Erlich writes:

There is a very strong propensity for the ear to try to fit what it hears
into one or a small number of harmonic series, and the fundamentals
of these series, even if not physically present, are either heard outright,
or provide a more subtle sense of overall pitch known to musicians as
the “root.” As a component of consonance, the ease with which the
ear/brain system can resolve the fundamental is known as “tonalness.”

Entropy is a mathematical measure of disorder or uncertainty; harmonic
entropy is a model of the degree of uncertainty in the perception of pitch.
Tonalness is the inverse: A cluster of partials with high tonalness fits closely
to a harmonic series and has low uncertainty of pitch and low entropy, and
an ambiguous cluster with low tonalness has high uncertainty and hence high
entropy. Recall that a single sound is more likely to fuse into one perceptual
entity when the partials are harmonic. Similarly, holistic hearing of a dyad
or chord as a unified single sound is strengthened when all of the partials lie
close to some harmonic series.

In the simplest case, consider two harmonic tones. If the tones are to be
understood as approximate harmonic overtones of some common root, they
must form a simple-integer ratio with one another. One way to model this uses
the Farey series Fn, which contains all ratios of integers up to n. This series
has the property that the distance between successive terms is larger when
the ratios are simpler. Thus, 1/2 and 2/3 occupy a larger range than complex
ratios such as 24/49. For any given interval i, a probability distribution (a
bell curve) can be used to associate a probability pj(i) with the ratios fj in
Fn. The probability that the interval i is perceived as the jth member of the
Farey series is high when i is close to fj and low when i is far from fj . The
harmonic entropy (HE) of i is then defined in terms of these probabilities as

HE(i) = −
∑

j

pj(i) log(pj(i)).

When the interval i lies near a simple-integer ratio fj , there will be one large
probability and many small ones. Harmonic entropy is low. When the interval i
is distant from any simple-integer ratio, many complex ratios contribute many
nonzero probabilities. Harmonic entropy is high. A plot of harmonic entropy
over a one-octave range is shown in Fig. 5.5 where the intervals are labeled
in cents. Clearly, intervals that are close to simple ratios are distinguished
by having low entropy values, whereas the more complex intervals have high
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harmonic entropy. Details on the calculation of harmonic entropy can be found
in Appendix J.
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Fig. 5.5. Erlich’s model
of harmonic entropy pre-
dicts the tonalness (de-
gree of certainty in the
perception of the root) for
various intervals. Some
of the most tonal simple
ratios are labeled.

5.3.4 Sensory Consonance and Critical Bandwidth

In the mid 1960s, Plomp and Levelt conducted a series of experiments on
the sensations of consonance and dissonance. About 90 volunteers were asked
to judge pairs of pure tones on a seven-point scale where 1 indicated the
most dissonant and 7 the most consonant. The pairs were chosen so as to
vary both the octave and the frequency ratios presented within the octave.
The experiment was carefully devised: Each subject was tested individually,
each subject only judged a few intervals so as to avoid interval recognition
and fatigue, responses were tested for consistency (those who gave erratic
results were discounted), and the subjects were allowed a preliminary series
of intervals to familiarize them with the range of stimulus so they could make
adequate use of the seven-point scale.

One of the most unique (and controversial) features of Plomp and Levelt’s
methodology was the use of musically untrained subjects. Previous studies
had shown that musically trained listeners often recognize intervals and re-
port their learned musical responses rather than their actual perceptions. An
example is in Taylor’s Sounds of Music, which presents Helmholtz’s rough-
ness curve along with a series of superimposed crosses that closely match the
curve. These crosses are the result of a series of experiments in which sine
waves were graded by subjects in terms of their harshness or roughness. As
Taylor says, the close match “cannot be explained in terms of the beating of
upper partials, because there are none!” However, the close match may be
explainable by considering the musical background of his subjects.

To avoid such problems with learned responses, Plomp and Levelt chose
to use musically naive listeners. Subjects who asked for the meaning of con-
sonant were told beautiful and euphonious, and it can be argued that the
experiment therefore tested the pleasantness of the intervals rather than the
consonance. However, as most musically untrained people (and even many
with training) continue to think in this CDC-2 manner, this was deemed an
acceptable compromise.
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Despite considerable variability among the subject’s responses, there was
a clear and simple trend. At unison, the consonance was maximum. As the
interval increased, it was judged less and less consonant until at some point
a minimum was reached. After this, the consonance increased up toward, but
never quite reached, the consonance of the unison. This is exactly what we
heard in sound example [S: 11] when listening to two simultaneous sine waves.

Their results can be succinctly represented in Fig. 3.7 on p. 46, which shows
an averaged version of the dissonance curve (which is simply the consonance
curve flipped upside-down) in which dissonance begins at zero (at the unison)
increases rapidly to a maximum, and then falls back toward zero. The most
surprising feature of this curve is that the musically consonant intervals are
undistinguished—there is no dip in the curve at the fourth, fifth, or even the
octave (in contrast to the learned response curves found by investigators like
Taylor, which do show the presence of normally consonant intervals, even for
intervals formed from pure sine waves).

Plomp and Levelt observed that in almost all frequency ranges, the point
of maximal roughness occurred at about 1/4 of the critical bandwidth. Recall
that when a sine wave excites the inner ear, it causes ripples on the basilar
membrane. Two sine waves are in the same critical band if there is significant
overlap of these ripples along the membrane. Plomp and Levelt’s experiment
suggests that this overlap is perceived as roughness or beats. Dependence of
the roughness on the critical band requires a modification of Helmholtz’s 32
Hz criterion for maximal roughness, because the critical bandwidth is not
equally wide at all frequencies, as was shown in Fig. 3.4 on p. 44. For tones
near 500 Hz, however, 1/4 of the critical band agrees well with the 32 Hz
criterion.

Of course, these experiments gathered data only on perceptions of pure
sine waves. To explain sensory consonance of more musical sounds, Plomp and
Levelt recall that most traditional musical tones have a spectrum consisting
of a root or fundamental frequency, along with a series of sine wave partials
at integer multiples of the fundamental. If such a tone is sounded at various
intervals, the dissonance can be calculated by adding up all of the dissonances
between all pairs of partials. Carrying out these calculations for a note that
contains six harmonically spaced partials leads to the curve shown in Fig. 5.6,
which is taken from Plomp and Levelt [B: 141].

Observe that Fig. 5.6 contains peaks at many of the just intervals. The
most consonant interval is the unison, followed closely by the octave. Next is
the fifth (3:2), followed by the fourth (4:3), and then the thirds and sixths. As
might be expected, the peaks do not occur at exactly the scale steps of the
12-tone equal-tempered scale. Rather, they occur at the nearby simple ratios.
The rankings agree reasonably well with common practice, and they are almost
indistinguishable from Helmholtz’s and Partch’s curves. Thus, an argument
based on sensory consonance is consistent with the use of just intonation
(scales based on intervals with simple integer ratios), at least for harmonic
sounds.
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5.4 A Simple Experiment

It is easy to experience sensory dissonance for yourself. Play a note on an
organ (or some other sustained, harmonically rich sound) that is near the low
end of your vocal range. While sounding the note loudly and solidly (turn off
the vibrato, chorusing, and other effects), sing slightly above, slightly below,
and then swoop right onto the pitch of the note. As you approach the correct
pitch, you will hear your voice beating against the organ, until eventually your
voice “locks into” the fundamental. It works best if you use little or no vibrato
in your voice. Now repeat the experiment, but this time sing around (slightly
above and slightly below) the fifth. Again, you will hear your voice beat (the
second partial of your voice against the third partial of the organ) and finally
lock onto the perfect fifth.

Now sing a major third above the sustained organ note, again singing
slightly above and slightly below. Listen carefully to where your voice goes...
does it lock onto a 12-tet third? Or does it go somewhere slightly flat? Listen
carefully to the pitch of your locked-in voice. If you are truly minimizing
the dissonance, then the fourth partial of your voice will lock onto the fifth
partial of the organ. Assuming the organ has harmonic partials, you will be
singing a just major third (a ratio of 5/4, or about 386 cents, instead of the
400 cent third in 12-tet). Can you feel how it might be tempting for a singer
to synchronize in this way? By similarly exploring other intervals, you can
build up your own personal dissonance curves. How do they compare with the
curves of Helmholtz, Partch, and Plomp and Levelt?

In his amusing book Lies My Music Teacher Told Me, Eskelin [B: 54]
describes this to his choir:

If you do it slowly and steadily, you will hear the relationship between
the two sounds changing as your voice slides up. It’s a bit like tuning
in stations on a radio dial (the old fashioned ones that had knobs
to turn, not buttons to push). As you arrive at each “local station”
it gradually comes into sharp focus and then fades out of focus as
you go past it. What you are experiencing is called consonance and
dissonance.
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5.5 Summary

The words “consonance” and “dissonance” have been used in many ways
throughout history, and many of these conflicting notions are still prevalent
today. Psychoacoustic consonance provides a pragmatic working definition in
the sense that it leads to physical correlates that can be readily measured. It
is sensory dissonance that underlies the “dissonance meter” and the resulting
applications of the first chapter. Although arguably the most important notion
of dissonance today, sensory dissonance does not supplant previous notions. In
particular, it says nothing about the important aspects of musical movement
that functional consonance provides.

Helmholtz understood clearly that his roughness curve would be “very
different for different qualities of tone.” Partch realized that his one-footed
bride would need to be modified to account for different octaves and different
timbres, but he saw no hope other than “a lifetime of laboratory work.” Plomp
and Levelt explicitly based their consonance curve on tones with harmonic
overtones. But many musical sounds do not have harmonic partials. The next
chapter explores how sensory consonance can be used in inharmonic settings,
gives techniques for the calculation of sensory dissonance, suggests musical
uses in the relationship between spectrum and scale, and demonstrates some
of the ideas and their limitations in a series of musical examples.

5.6 For Further Investigation

On the Sensations of Tone [B: 71] set an agenda for psychoacoustic research
that is still in progress. Papers such as Plomp and Levelt’s [B: 141] “Tonal
Consonance and Critical Bandwidth” and the two-part “Consonance of Com-
plex Tones and its Calculation Method” in Kameoka and Kuriyagawa [B: 79]
and [B: 80] have expanded on and refined Helmholtz’s ideas. A History of
‘Consonance’ and ‘Dissonance’ by Tenney [B: 192] provided much of the his-
torical framework for the first section of this chapter, and it contains hundreds
of quotes, arguments, definitions, and anecdotes. Although Partch’s Genesis
of a Music [B: 128] may not be worth reading for its contributions to psychoa-
coustics or to historical musicology, it is inspiring as a prophetic statement
about the future of music by a musical visionary and composer.
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Related Spectra and Scales

Sensory dissonance is a function of the interval and the
spectrum of a sound. A scale and a spectrum are related
if the dissonance curve for the spectrum has minima
(points of maximum sensory consonance) at the scale
steps. This chapter shows how to calculate dissonance
curves and gives examples that verify the perceptual
validity of the calculations. Other examples demonstrate
their limits. The idea of related spectra and scales unifies
and gives insight into a number of previous musical
and psychoacoustic investigations, and some general
properties of dissonance curves are derived. Finally, the
idea of the dissonance curve is extended to multiple
sounds, each with its own spectrum.

“Clearly the timbre of an instrument strongly affects what tuning and scale
sound best on that instrument.” W. Carlos [B: 23].

6.1 Dissonance Curves and Spectrum

Figures like Helmholtz’s roughness curve and Plomp and Levelt’s consonance
curve (Figs. 5.3 and 5.6) on pp. 88 and 94 are called dissonance curves be-
cause they graphically portray the perceived consonance or dissonance versus
musical intervals. Partch’s one-footed bride (Fig. 5.4 on p. 90) is another, al-
though its axis is folded about the tritone. Perhaps the most striking aspect
of these harmonic dissonance curves is that many of the familiar 12-tet scale
steps are close to points of minimum dissonance. The ear, history, and music
practice have settled on musical scales with intervals that occur near minima
of the dissonance curve.

A spectrum and a scale are said to be related if the dissonance
curve for that spectrum has minima at scale positions.

Looking closely, it is clear that the minima of the harmonic dissonance curves
of the previous chapter do not occur at scale steps of the equal-tempered scale.
Rather, they occur at the just intervals, and so harmonic spectra are related
to just intonation scales.
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The relatedness of scales and spectra suggests several interesting questions.
Given a spectrum, what is the related scale? Given a scale, what are the
related spectra? How can spectrum/scale combinations be realized in existing
electronic musical instruments? What is it like to play inharmonic sounds in
unfamiliar tunings?

6.1.1 From Spectrum to Tuning

Because dissonance curves are drawn for a particular spectrum (a particu-
lar set of partials), they change shape if the spectrum is changed: Minima
appear and disappear, and peaks rise and fall. Thus, given an arbitrary spec-
trum, perhaps one whose partials do not form a standard harmonic series, this
chapter explores how to draw its dissonance curve. The minima of this curve
occur at intervals that are good candidates for notes of a scale, because they
are intervals of minimum dissonance (or, equivalently, intervals of maximum
consonance).

The crucial observation is that these techniques allow precise control
over the perceived (sensory) dissonance. Although most statements are made
in terms of maximizing consonance (or of minimizing dissonance), the real
strength of the approach is that it allows freedom to sculpt sounds and tun-
ings so as to achieve a desired effect. Sensory consonance and dissonance can
be used to provide a perceptual pathway helpful in navigating unknown in-
harmonic musical spaces.

The idea of relating spectra and scales is useful to the electronic musician
who wants precise control over the amount of perceived dissonance in a musical
passage. For instance, inharmonic sounds are often extremely dissonant when
played in the standard 12-tet tuning. By adjusting the intervals of the scale, it
is often possible to reduce (more properly, to have control over) the amount of
perceived dissonance. It can also be useful to the experimental musician or the
instrument builder. Imagine being in the process of creating a new instrument
with an unusual (i.e., inharmonic) tonal quality. How should the instrument
be tuned? To what scale should the finger holes (or frets, or whatever) be
tuned? The correlation between spectrum and scale answers these question in
a concrete way.

6.1.2 From Tuning to Spectrum

Alternatively, given a desired scale (perhaps a favorite historical scale, one
that divides the octave into n equal pieces, or one that is not even based
on the octave), there are spectra that will generate a dissonance curve with
minima at precisely the scale steps. Such spectra are useful to musicians and
composers wishing to play in nonstandard scales such as 10-tet, or in specially
fabricated scales. How to specify such spectra, given a desired scale, is the
subject of the chapter “From Tuning to Spectrum.”



6.2 Drawing Dissonance Curves 99

6.1.3 Realization and Performance

All of this would be no more than fanciful musings if there was no way to con-
cretely realize inharmonic spectra in their related tunings. The next chapter
“A Bell, A Rock, A Crystal” gives three examples of how to find the spec-
trum of an inharmonic sound, draw the dissonance curve, map the sound to
a keyboard, and play. The process is described in excruciating detail to help
interested readers pursue their own inharmonic musical universes.

6.2 Drawing Dissonance Curves

The first step is to encapsulate Plomp and Levelt’s curve for pure sine waves
into a mathematical formula. The curve is a function of two pure sine waves
each with a specified loudness. Representing the height of the curve at each
point by the letter d, the relationship can be expressed as:

f1 is the frequency of the lower sine
d(f1, f2, �1, �2), where f2 is the frequency of the higher sine

�1 and �2 are the corresponding loudnesses

A functional equation using exponentials is detailed in Appendix E, and the
mathematically literate reader may wish to digress to this appendix for a
formal definition of the function d and of dissonance curves. But it is not
really necessary. Simply keep in mind that the function d(·, ·, ·, ·) contains the
same information as Fig. 3.8 on p. 47.

When there are more than two sine waves occurring simultaneously, it
is possible to add all dissonances that occur. Suppose the note F has three
partials at f1, f2, and f3, with loudnesses �1, �2, and �3. Then the intrinsic
or inherent dissonance DF is the sum of all dissonances between all partials.
Thus DF is the sum of d(fi, fj , �i, �j) as i and j take on all possible values from
1 to 3. Although it is not the major point of the demonstration, you can hear
sounds with varying degrees of intrinsic consonance by listening holistically
to sound example [S: 54]. The initial sound is dissonant, and it is smoothly
changed into a more consonant sound.

The same idea can be used to find the dissonance when the spectrum F
is played at some interval c. For instance, suppose F has two partials f1 and
f2. The complete sound contains four sine waves: at f1, f2, cf1, and cf2. The
dissonance of the interval is the sum of all possible dissonances among these
four waves. First is the intrinsic dissonances of the notes DF = d(f1, f2, �1, �2)
and DcF = d(cf1, cf2, �1, �2). Next are the dissonances between cf1 and the
two partials of F , d(f1, cf1, �1, �1) and d(f2, cf1, �2, �1), and finally the disso-
nances between cf2 and the partials of F , d(f1, cf2, �1, �2) and d(f2, cf2, �2, �2).
Adding all of these terms together gives the dissonance of F at the interval
c, which we write DF (c). The dissonance curve of the spectrum F is then a
plot of this function DF (c) over all intervals c of interest.
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If you are thinking that there are a lot of calculations necessary to draw
dissonance curves, you are right. It is an ideal job for a computer. In fact,
the most useful part of this whole mathematical parameterization is that it is
now possible to calculate the dissonance of a collection of partials automati-
cally. Those familiar with the computer languages BASIC or Matlab will find
programs for the calculation of dissonance on the CD and discussions of the
programs in Appendix E.1

For example, running either of the programs from Appendix E without
changing the frequency and loudness data generates the dissonance curve for
a sound with fundamental at 500 Hz containing six harmonic partials. This is
shown in Fig. 6.1 and can be readily compared with Helmholtz’s, Plomp and
Levelt’s, and Partch’s curves (Figs. 5.3, 5.4, and 5.6 on pp. 88, 90, and 94).
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Fig. 6.1. Dissonance curve for a spectrum with fundamental at 500 Hz and six
harmonic partials has minima that coincide with many steps of the Just Intonation
scale and that coincide approximately with 12-tet scale steps, which are shown above
for comparison.

Table 6.1 provides a detailed comparison among the 12-tet scale steps, the
just intonation major scale, and the minima of the dissonance curve drawn
for a harmonic timbre with nine partials. The JI intervals are similar to the
locations of the minima of the dissonance curve. In particular, the minima
agree with the septimal scales of Partch [B: 128] for seconds, tritones, and the
minor seventh, but with the JI major scale for the major seventh. Minima
occur at both the septimal and the just thirds.

One assumption underlying dissonance curves such as Fig. 6.1 is additiv-
ity, the assumption that the sensory dissonance of a collection of sine partials
is the sum of the dissonances between all pairwise partials. Although this
assumption generally holds as a first approximation, it is easy to construct
examples where it fails. Following Erlich [W: 9], consider a sound with ratios

1 A FORTRAN version, along with an alternative parameterization of the Plomp–
Levelt curves can also be found in [B: 92].
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Table 6.1. Notes of the equal-tempered musical scale compared with minima of
the dissonance curve for a nine-partial harmonic timbre, and compared with the just
intonation major scale from [B: 207]. Septimal (sept.) scale values from [B: 128].

Note 12-tet Minima of Just
Name r = 12

√
2 dissonance curve Intonation

C r0 = 1 1 1:1 unison
C� r1 = 1.059 16:15 just semitone
D r2 = 1.122 1.14 (8:7 = sept. maj. 2) 9:8 just whole tone
E� r3 = 1.189 1.17 (7:6 = sept. min 3)

1.2 (6:5) 6:5 just min. 3
E r4 = 1.260 1.25 (5:4) 5:4 just maj. 3
F r5 = 1.335 1.33 (4:3) 4:3 just perfect 4
F� r6 = 1.414 1.4 (7:5 = sept. tritone) 45:32 just tritone
G r7 = 1.498 1.5 (3:2) 3:2 perfect 5
A� r8 = 1.587 1.6 (8:5) 8:5 just min. 6
A r9 = 1.682 1.67 (5:3) 5:3 just maj. 6
B� r10 = 1.782 1.75 (7:4 = sept. min. 7) 16:9 just min. 7
B r11 = 1.888 1.8 (9:5 = just min. 7) 15:8 just maj. 7
C r12 = 2 2.0 2:1 octave

4:5:6:7 (this can be heard in sound example [S: 40]) and an inharmonic sound
with ratios 1/7:1/6:1/5:1/4 (as in sound example [S: 41]). Both sounds have
the same intervals,2 and hence, the sensory dissonance is the same. Yet they
do not sound equally consonant. Sound example [S: 42] alternates between the
harmonic and inharmonic sounds, and most listeners find the harmonic sound
more consonant. Thus, dissonance cannot be fully characterized as a function
of the intervals alone without (at least) considering their arrangement. Accord-
ingly, sensory dissonance alone is insufficient to fully characterize dissonance.
In this case, the sound with greater tonalness (smaller harmonic entropy) is
judged more consonant than the sound with lesser tonalness (greater harmonic
entropy).

6.3 A Consonant Tritone

Imagine a spectrum consisting of two inharmonic partials at frequencies f
and

√
2f . Because the

√
2 interval defines a tritone (also called a diminished

fifth or augmented fourth in 12-tet), this is called the tritone spectrum. The
dissonance curve for the tritone spectrum, shown in Fig. 6.2, begins with a
minimum at unison, rapidly climbs to its maximum, then slowly decreases
2 To be specific, the 4:5:6:7 sound example consists of sine waves at 400, 500, 600,

and 700 Hz and contains the intervals 5/4, 3/2, 7/4, 6/5, 7/5, and 7/6. The
inharmonic sound is made from sine waves at 400, 467, 560, and 700 Hz, and has
the same intervals. Similar results appear to hold for harmonic sounds.
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until, just before the tritone, it rises and then falls. There is a sharp mini-
mum right at the tritone, followed by another steep rise. For larger intervals,
dissonance gradually dies away. You can verify for yourself by listening to
sound example [S: 35] that the perceived dissonance corresponds more or less
with this calculated curve. Video example [V: 9] reinforces the same conclu-
sion. Thus, the dissonance curve does portray perceptions of simple sweeping
sounds fairly accurately. But it is not necessarily obvious what (if anything)
such tests mean for more musical sounds, in more musical situations.
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Fig. 6.2. Dissonance curve for an inharmonic spectrum with partials at f and
√

2f
has minima at 1.21 (between 3 and 4 semitones) and at 1.414, which is a tritone.

Sounds used in music are not just static sets of partials: they have attack,
decay, vibrato, and a host of other subtle features. A more “musical” version
of the tritone spectrum should mimic at least some of these characteristics.
The “tritone chime” has the same tritone spectrum but with an envelope
that mimics a softly struck bell or chime, and a bit of vibrato and reverber-
ation. This chime will be used in the next two sound examples to verify the
predictions of the dissonance curve.

Both the fifth (an interval of seven semitones) and the fourth (five semi-
tones) lie near peaks of the tritone dissonance curve. Thus, the dissonance
curve predicts that a chord containing both a fourth and a fifth should be
more dissonant than a chord containing two tritones, at least when played
with this timbre. To see if this prediction corresponds to reality, sound ex-
ample [S: 36] begins with a single note of the tritone chime. It is “electronic”
sounding, somewhat percussive and thin, but not devoid of all musical charac-
ter. The example then plays the three chords of Fig. 6.3. The chords are then
repeated using a more “organ-like” sound, also composed from the tritone
spectrum. In both cases, the chords containing tritones are far more conso-
nant than chords containing the dissonant fifths and fourths. The predictions
of the dissonance curve are upheld. This demonstration is repeated somewhat
more graphically in video example [V: 10].

But still, sound example [S: 36] deals with isolated chords, devoid of mean-
ingful context. Observe that there is a broad, shallow minimum around 1.21,
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fifths

fourths

tritones

& # ˙̇̇ ˙̇̇ ˙̇̇ Fig. 6.3. Familiar intervals such as
the fifth and fourth are dissonant when
played using the “tritone chime.” But
chords containing tritones are conso-
nant.

approximately a minor third. This suggests that the minor third is more con-
sonant than the major third. Combined with the consonance of the tritone,
this implies that a diminished chord (root, minor third, and tritone) should
be more consonant than a major chord (root, major third, and fifth) when
played with the tritone sound. Is this inversion of normal musical usage pos-
sible? Listen to sound example [S: 37], which places the tritone chime into a
simple musical setting. The following two chord patterns are each repeated
once:

(a) F major, C major, G major, C major
(b) C dim, D dim, D� dim, D dim

This is shown in musical notation in parts (a) and (b) of Fig. 6.4, where
“dim” is an abbreviation for “diminished.” Both patterns are played with the
same simple chordal rhythm, but there is a dramatic difference in the sound.
The major progression, which, when played with “normal” harmonic tones
would sound completely familiar, is dissonant and bizarre. The diminished
progression, which in harmonic sounds would be restless, is smooth and easy.
The inharmonic tritone chime is capable of supporting chord progressions,
although familiar musical usage is upended.

The final two tritone chime chord patterns, shown in (c) and (d) of Fig. 6.4,
investigate feelings of resolution or finality. To my ears, (d) feels more settled,
more conclusive than (c). Perhaps it is the dissonance of the major chord that

F

Cdim

Cdim

    C

    Ddim

   C

   Cdim

G

D#dim

Cdim

C

    C

    Ddim

C

Cdim   C

(a)

(b)

(c)

(d)

Fig. 6.4. Chord patterns using the tritone chime sound.
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causes it to want to move, and the relative restfulness of the diminished chord
that makes it feel more resolved. Essentially, the roles of the fifth and the
tritone have been reversed. With harmonic sounds, the tritone leads into a
restful fifth. With tritonic spectra, the fifth leads into a tranquil tritone.

Observe: We began by pursuing sensory notions of dissonance because it
provided a readily measured perceptual correlate. Despite this, it is now clear
(in some cases, at least) that sensory dissonance is linked with functional dis-
sonance, the more musical notion, in which the restlessness, motion, and desire
of a chord to resolve play a key role. Even in this simple two-partial inhar-
monic sound, chords with increased (sensory) dissonance demand resolution,
whereas chords with lower (sensory) dissonance are more stable.

This two-partial tritone sound is not intended to be genuinely musical,
because the tone quality is simplistic. The purpose of the examples is to
demonstrate in the simplest possible inharmonic setting that ideas of musical
motion, resolution, and chord progressions can make sense. Of course, the
“rules” of musical grammar may be completely different in inharmonic musical
universes (where major chords can be more dissonant than diminished, and
where tritones can be more consonant than fifths), but there are analogies
of chord patterns and strange inharmonic “harmonies.” These are xentonal:
Unusual tonalities that are not possible with harmonic sounds.

6.4 Past Explorations

As the opening quote of this chapter indicates, this is not the first time that
the relationship between timbre and scale has been investigated, although it
is the first time it has been explored in such a general setting. Pierce and his
colleagues are major explorers of the connection between sound quality and
tonality.

6.4.1 Pierce’s Octotonic Spectrum

Shortly after the publication of Plomp and Levelt’s article, Pierce [B: 134] used
a computer to synthesize a sound designed specifically to be played in an eight-
tone equal-tempered (8-tet) scale, to demonstrate that it was possible to attain
consonance in “arbitrary” scales. Letting r = 8

√
2, an octotonic spectrum can

be defined3 by partials at

1, r10, r16, r20, r22, r24.

In the same way that 12-tet divides evenly into two interwoven whole-tone
(6-tet) scales, the 8-tet scale can be thought of as two interwoven 4-tet scales,
one containing the even-numbered scale steps and the other consisting of the
3 Beware of a typo in Table 1 of [B: 134]: the frequency ratio of the second partial

should be r10 = 2.378.
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odd scale steps. As the partials of Pierce’s octotonic spectrum fall on even
multiples of the eighth root of two, the even notes of the scale form consonant
pairs and the odd notes form consonant pairs, but they are dissonant when
even and odd steps are sounded together.
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Fig. 6.5. Dissonance curve for Pierce’s octotonic spectrum designed for play in the
8-tet scale. Minima occur at even steps of the 8-tet scale. The 12-tet scale steps are
placed above for comparison. Every third step in 12-tet is the same as every second
step in 8-tet.

This can be seen directly from the dissonance curve, which is shown in
Fig. 6.5. The curve has minima at all even scale steps, implying that these
intervals are consonant when sounded together. Although he does not give
details, Pierce says “listeners report” that notes separated by an even number
of scale steps are more concordant than notes separated by an odd number of
scale steps.

The scale related to the octotonic spectrum consists of those scale steps
at which minima occur. These are at ratios 1, r2, r4, r6, and r8. Although
this scale may appear completely foreign at first glance, observe how it lines
up exactly with scale steps 1, 3, 6, 9, and 12 of the 12-tet scale,4 which is
plotted above for handy reference. Thus, the primary consonant intervals in
this octotonic scale are identical to the familiar minor third, tritone, and major
sixth, and the octotonic spectrum is a close cousin of the tritone spectrum
of the previous section. Again, conventional music theory has been upended,
with consonant tritones and dissonant fifths, consonant diminished chords,
and dissonant major chords.

To perform using Pierce’s octatonic spectrum, I created a sound with the
specified partials in which the loudnesses died away at an exponential rate of
0.9. A percussive envelope and a bit of vibrato help make it feel more like a
natural instrument. First, I played in 12-tet. As expected, the tritones were far

4 Using t to represent the 12-tet interval ratio 12
√

2, this lining up occurs because
r2 = t3, r4 = t6, r6 = t9, and of course r8 = t12 = 2.
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more consonant than the fifths, and the diminished chords were very smooth.
Retuning the keyboard to 8-tet, the same diminished chords are present. In
fact, that’s all there is! In 8-tet with the octotonic spectrum, all even scale
steps form one big diminished seventh chord (but a very consonant diminished
seventh) and all odd scale steps form another diminished seventh. In a certain
sense, music theory is very simple in this 8-tet setting: There are “even”
chords and there are “odd” chords.5 There are no major or minor chords, no
leading tones, and no blues progressions–just back and forth between two big
consonant diminished sevenths. Of course, related spectra and scales will not
always lead to such readily comprehensible musical universes.

Pierce concludes on an upbeat note that, “by providing music with tones
having accurately specified but inharmonic partials, the digital computer can
release music from the tyranny of 12 tones without throwing consonance over-
board.”

6.4.2 Stretching Out

“Inharmonic” is as precise a description of a sound spectrum as “nonpink”
is of light. As there are so many kinds of inharmonicity, it makes sense to
start with sounds that are somehow “close to” familiar sounds. Recalling that
the partials of a piano are typically stretched away from exact harmonicity
(see Young [B: 208]), Slaymaker [B: 176] investigated spectra with varying
amounts of stretch. The formula for the partials of harmonic sounds can be
written fj = jf = f2log2(j) for integers j. By replacing the 2 with some other
number S, Slaymaker created families of sounds with partials at

fj = fSlog2(j).

When S < 2, the frequencies of the partials are squished closer together than
in harmonic sounds, and the tone is said to be compressed. When S > 2,
the partials are spread out like the bellows of an accordion, and the tone
is stretched by the factor S. The most striking aspect of compressed and
stretched spectra is that none of the partials occur at the octave. Rather,
they line up at the stretched octave, as shown in Fig. 6.6. In the same way
that the octave of a harmonic tone is smooth because the partials coincide, so
the pseudo-octave of the stretched sound is smooth due to coinciding partials.

This is also readily apparent from the dissonance curves, which are plotted
in Fig. 6.7 for stretch factors S = 1.87 (the pseudo-octave compressed to
a seventh), S = 2.0 (normal harmonic tones and octaves), S = 2.1 (the
pseudo-octave stretched by about a semitone), and S = 2.2 (the pseudo-octave
stretched to a major 9th). In each case, the frequency ratio S is a pseudo-
octave that plays a role analogous to the octave. Real 2:1 ratio octaves sound
dissonant and unresolved when S is significantly different from 2, whereas
5 Although even the even chords are decidedly odd.
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Fig. 6.6. Locations of partials are shown for four spectra. The partials of the 2.1
stretched spectrum at fundamental f have the same relationship to its 2.1 pseudo-
octave (at fundamental 2.1f) as the partials of the harmonic spectrum at funda-
mental f have to the octave at fundamental 2f .

the pseudo-octaves are nicely consonant. This is where the “challenging the
octave” sound example from the first chapter came from. A stretched sound
with S = 2.1 was played in a 2.0 octave, which is dreadfully dissonant, as
suggested by the lower left of Fig. 6.7. When played in its pseudo-octave,
however, it is consonant.
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Fig. 6.7. Dissonance curves generated by stretched (and compressed) spectra have
the same contour as the harmonic dissonance curve, but minima are stretched (or
compressed) so that pseudo-octaves, pseudo-fifths, and so on, are clearly visible. The
bottom axis shows 12 equal divisions of the pseudo-octave, and the top axis shows
the standard 12-tet scale steps. Tick marks for the octave (frequency ratio of 2)
and the fifth (frequency ratio 3/2) are extended for easy comparison. As usual, the
dissonance axis is normalized.
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Each of the curves in Fig. 6.7 has a similar contour, and minima of the
dissonance curve occur at (or near) the 12 equal steps of the pseudo-octaves. A
complete pseudo-just intonation of pseudo-fifths, pseudo-fourths, and pseudo-
thirds is readily discernible, suggesting the possibility that music theory and
practice can be transferred to compressed and stretched spectra, when played
in compressed and stretched scales.

Is Stretched Music Viable?

There is a fascinating demonstration on the Auditory Demonstrations CD
[D: 21] in which a four-part Bach chorale is played four ways:

(i) A harmonic spectrum in the unstretched 12-tet scale
(ii) A 2.1 stretched spectrum in the 2.1 stretched scale
(iii) A harmonic spectrum in the 2.1 stretched scale
(iv) A 2.1 stretched spectrum in the unstretched 12-tet scale

The first is normal sounding, if somewhat bland due to the simplicity of the
nine partial “electric piano” timbre. The second version has no less sensory
consonance, a result expected because all notes occur near minima of the
dissonance curve. But the tone quality is decidedly strange. It is not easy to
tell how many tones are sounding, especially in the inner voices. The notes
have begun to lose tonal fusion. Although the sensory dissonance has not
increased from (i), the tonalness aspect of dissonance has increased. The third
and fourth versions are clangorous and dissonant in a spectacular way–like the
extended versions of the “challenging the octave” demonstrations in sound
examples [S: 2] to [S: 5].

Several experiments have investigated the uses and limitations of stretched
tones in semimusical contexts. Mathews and Pierce [B: 100] tested subjects’
ability to determine the musical key and the “finality” of cadences when played
with stretched timbres. Three simple musical passages X, M , and T , were
played in sequence XMXT , and subjects were asked to judge whether X was
in the same key as M and T . Both musicians and nonmusicians were able to
answer correctly most of the time. But when subjects were asked to rate the
“finality” of a cadence and an anti-cadence, the stretched versions were heard
as equally (not very) final. Mathews and Pierce observe that melody is more
robust to stretching than harmony, and they suggest that the subjects in the
key determination experiment may have used the melody to determine key
rather than the chordal motion. The stretch factor used in these experiments
was S = 2.4, which is well beyond where notes typically lose fusion. Thus, one
aspect of musical perception (the finality of cadences) requires the fusion of
tones, even though fusion may not be critical for others such as a sense of the
“melody” of a passage. An alternative explanation is that notes of a melodic
passage may fuse more readily when they are the focus of attention.

Perhaps the most careful examination of stretched intervals is the work of
Cohen [B: 33], who asked subjects to tune octaves and fifths for a variety of
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sounds with stretched spectra ranging from S = 1.4 to S = 3.0. Cohen ob-
served two different tuning strategies: interval memory and partial matching.
Some subjects consistently tuned the adjustable tone to an internal model
or template of the interval, and they were able to tune to real octaves and
fifths, despite the contradictory spectral clues. Others pursued a strategy of
matching the partials of the adjustable tone to those of the fixed tone, leading
to a consistent identification of the pseudo-octave rather than the true octave.

Plastic City: A Stretched Journey

In talking about Pierce’s work on stretched tunings, Moore [B: 117] observes
that Pierce uses traditional music, rather than music specifically composed
around properties of the new sounds. Taking this as a challenge, I decided
to hear for myself. First, I created about a dozen sets of sounds via additive
synthesis6 with partials stretched from S = 1.5 to S = 3.0. As expected,
those with extreme stretching lost fusion easily, so I chose four sets of mod-
erately stretched and compressed tones (with S = 2.2, 2.1, 2.0, and 1.87)
that sounded more or less musical. When generating these sounds,7 and when
using the keyboard to add performance parameters such as attack and decay
envelopes, vibrato, and so on, I was careful to keep the sounds strictly com-
parable: If I added vibrato or reverb to one sound, I added the same amount
of vibrato or reverb to each of the other sounds. In this way, fair comparisons
should be possible.

The resulting experiment, called Plastic City, can be heard in sound ex-
ample [S: 38]. The structure of the piece is simple: The theme is played with
harmonic tones (in standard 12-tet), then with the 2.2 stretched tones, then
with the compressed 1.87 tones, and finally with the 2.1 stretched tones (each
in their respective stretched scales, of course). The theme is based on a simple
I V IV V pattern followed by I V I. It is unabashedly diatonic and has a clear
sense of harmonic motion and resolution. The theme is repeated with each
sound, and the second time a lead voice solos. At the end of the repeat, the
theme disintegrates and scatters, making way for the next tuning.

Now stop reading. Listen to Plastic City (sound example [S: 38]
in the file plasticity.mp3), and make up your own mind about
what parts work and what parts do not.

Most people find the entrance of the 2.2 tone extremely bizarre. Then,
just as the ear is about to recover, the compressed tone begins a new kind of
uneasiness. Finally, the entrance of the 2.1 tone is like a breath of fresh air
after a torturous journey. The most common comment I have heard (besides

6 Appendix D contains a discussion of additive synthesis.
7 The sounds used in Plastic City contained between five and ten partials, with a

variety of amplitudes with primarily percussive envelopes.
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a sigh of relief) is that “now we’re back to normal.” But 2.1 stretched is
really very far from normal—it contains no octaves, no fifths, no recognizable
intervals at all. The octaves are out-of-tune by almost a semitone. This is the
same amount of stretch used on the Auditory Demonstrations CD [D: 21] to
show the loss of fusion with stretched tones. Yet in this context, 2.1 stretched
can be heard as “back to normal.”

Thus, 2.2 is stretched a bit too far, and 1.87 is squished a bit too much.
The kinds of things you hear in Plastic City are typical of what happens
when tones fission. It becomes unclear exactly how many parts are playing. It
is hard to focus attention on the melody and to place the remaining sounds
into the background. Chordal motion becomes harder to fathom. Of course,
this piece is structured so as to “help out” the ear by foreshadowing using
normal harmonic sounds. Thus, it is more obvious what to listen for, and
by focusing attention, the “same” piece can be heard in the stretched and
compressed versions, but it takes an act of will (and/or repeated listenings)
before this occurs.

Perhaps the 2.1 version only sounds good in this context because the ear
has been tortured by the overstretching and undercompressing. Sound exam-
ple [S: 39], called October 21st, is a short piece exclusively in 2.1 stretched.
The timbres are the same as used in Plastic City and in [S: 4], and here they
sound bright, brilliant, and cheerful. The motion of the chord patterns is sim-
ple, and it is not difficult to perceive. Torture is not a necessary precondition
to make stretched tones sound musical. Perhaps the most interesting aspect of
this piece is its familiarity. I have played this for numerous people, and many
hear nothing unusual at all.

What does it mean when a sound has been stretched or compressed “too
far?” Perhaps the most obvious explanation is loss of fusion; that is, it is no
longer heard as a single complex sound but as two or more simpler sounds.
A closely related possibility is loss of tonal integrity; that is, the uncertainty
in the (virtual) pitch mechanism has become too great. In the first case, the
sound appears to bifurcate from one sound into two, whereas in the latter case,
it appears to have a pitch that is noticeably higher (for stretched sounds) than
the dominant lowest partial. Cohen’s experiments [B: 33] are relevant, but it
is not obvious how to design an experiment that clearly distinguishes these
two hypotheses.

Moving beyond stretched versions of the 12-tet scale, it is not always pos-
sible to correlate inharmonic spectra and their related scales with standard
music theory. The next example shows how a simple class of sounds (those
with odd-numbered partials) can lead to a nonintuitive tuning based on 13
equal divisions of the “tritave” rather than 12 equal divisions of the octave.

6.4.3 The Bohlen–Pierce Scale

Pan flutes and clarinets (and other instruments that act like tubes open at
a single end) have a spectrum in which odd harmonics predominate. For in-
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stance, Fig. 6.8 shows the spectrum of a pan flute with fundamental frequency
f = 440 Hz and prominent partials at about 3f , 5f , 7f , and 9f . Recall that
the just intonation approach exploited ratios of the first few partials of har-
monic tones to form the “pure” intervals such as the fifth, fourth, and thirds.
A generalized just intonation approach to sounds with only odd partials would
similarly exploit ratios of small odd numbers, such as 9/7, 7/5, 5/3, 9/5, 7/3,
and 3/1.
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Fig. 6.8. Some instruments have spectra that consist primarily of odd-numbered
partials. This pan flute has a fundamental at f = 441 Hz and prominent partials at
(approximately) 3f , 5f , 7f , 9f , and 11f .

Mathews and Pierce8 observed that these ratios can be closely approxi-
mated by steps of a scale built from 13 equal divisions of the ratio 3/1 (the tri-
tave). The most promising of these scales,9 which they call the Bohlen–Pierce
scale, contains nine notes within a tritave. Recall that when a harmonic sound
is combined with its octave, no new frequency components are added, as was
shown in Fig. 4.1. For spectra with only odd partials, however, the addition of
an octave does add new components (the even partials), but the addition of
a tritave does not. Thus, the tritave plays some of the same roles for spectra
with odd partials that the octave plays for harmonic tones.

Mathews and Pierce analyze many of the possible chords in the tritave-
based Bohlen–Pierce scale in the hope of determining if viable music is pos-
sible. Chords built from scale steps 0, 6, and 10 are somewhat analogous to
major chords, and those built from 0, 4, and 10 have a somewhat minor flavor.
When musicians and nonmusicians are asked to judge the consonance of the
various chords, some interesting discrepancies originate. Naive listeners tend
to judge the consonance of the chords more or less as indicated by the Plomp–
Levelt models (i.e., to agree with the predictions of the dissonance curve). But
musically sophisticated listeners judge some of the chords more dissonant than
expected. On closer inspection, Mathews and Pierce found that these chords
8 [B: 102], and see also Bohlen [B: 16].
9 Built on steps 0, 1, 3, 4, 6, 7, 9, 10, and 12.
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contained close (but not exact) approximations to standard 12-tet intervals.
Thus, the musically trained subjects heard a familiar interval out of kilter,
rather than an unfamiliar interval in tune. Recall that Plomp and Levelt had
similar problems with highly trained musical subjects whose judgments of in-
tonation were often based on their training rather than on what they heard.
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Fig. 6.9. Dissonance curve for the panflute spectrum with odd integer partials at
f , 3f , 5f , 7f , and 9f . The bottom axis shows steps of the Bohlen–Pierce scale in
parentheses, which are a subset of 13 equal divisions of 3. Observe how steps 3, 4, 6,
7, 10, and 13 occur at or near sharp minima of the dissonance curve. The top axes
shows the familiar 12-tet scale steps as well as the S = 3 stretched scale.

Figure 6.9 shows the dissonance curve for spectra with odd partials such
as the pan flute. Observe that the curve has many minima aligned with the
Bohlen–Pierce scale: at steps 3, 4, 6, 7, 10, and 13. The tritave is very con-
sonant, and all the intervals of the “major” and “minor” chords proposed by
Mathews and Pierce (and their inversions) appear convincingly among the
deepest of the minima. To facilitate comparison with previous scales, two ad-
ditional axes appear at the top of the diagram. Note that the tritave is equal
to a standard octave plus a fifth, but that virtually none of the other 12-tet
scale steps occur near minima of the dissonance curve. Also, compare the
Bohlen–Pierce tritave scale and the stretched scale with stretch factor S = 3.
Although the pseudo-octave of the stretched scale is identical to the tritave,
none of the other stretched scale steps coincide closely with minima.10 Thus,
the Bohlen–Pierce scale really is fundamentally different, and it requires a fun-
damentally new music theory. Unlike the tritone spectrum in 8-tet, this theory
is not trivial or obvious. Three exploratory compositions in the Bohlen–Pierce
scale can be heard on the CD accompanying Current Directions in Computer
Music Research [B: 103].

10 Stretched scales and spectra are fundamentally different from the Bohlen–Pierce
scale and spectra with odd integer partials. A S = 3 stretched spectrum, for
instance, has partials at f , 3f , 5.7f , 9f , 12.8f, etc.
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6.5 Found Sounds

Each of the previous examples began with a mathematically constructed spec-
trum (the tritone spectrum, the octatonic spectrum, stretched spectra, spectra
with odd partials) and explored a set of intervals that could be expected to
sound consonant when played with that spectrum. The dissonance curve pro-
vides a useful simplifying tool by graphically displaying the most important
intervals, which together form the scale steps. Each of the previous examples
had a clear conceptual underpinning. But mathematical constructions are not
necessary—the only concept needed is the sound itself.

McLaren [B: 107] is well aware of the need to match the spectrum with
the scale, “Just scales are ideal for instruments that generate lots of harmonic
partials” but when the instruments have inharmonic partials, the solution
is to use “non-just non-equal-tempered scales whose members are irrational
ratios of one another... [to] better fit with the irrational partials of most...
instruments.” Found sounds:

remain one of the richest sources of musical scales in the real world.
Anyone who has tapped resistor heat sinks or struck the edges of
empty flower pots realizes the musical value of these scales. . . 11

This section suggests approaches to tunings for “found” objects or other
sounds with essentially arbitrary spectra. In this respect, dissonance curves
can be viewed as a formalization of a graphical technique for combining sounds
first presented by Carlos. Two concrete examples are worked out in complete
detail.

6.5.1 Carlos’ Graphical Method

The quote at the start of this chapter is taken from the article “Tuning: At
the Crossroads” by Carlos [B: 23], which contains an example showing how
the consonance of an interval is dependent on the spectrum of the instrument.
Carlos contrasts a harmonic horn with an electronically produced inharmonic
“instrument” called the gam with both played in octaves and in stretched
octaves. The gam sounds more consonant in the pseudo-octave, and the horn
sounds most consonant in the real octave. This is presented on the sound sheet
(recording) that accompanies the article, and it is explained in graphical form.

Carlos’ graphical method can be applied to almost any sound. Consider
a struck metal bar, and recall that the bending modes (partials) are inhar-
monically related. This was demonstrated in Fig. 2.8 on p. 25, which shows
the partials diagrammatically. When several metal bars are struck in concert,
as might happen in a glockenspiel or a wind chime, longer bars resonate at
lower frequencies than smaller bars, but the relationships (or ratios) between
the various resonances remains the same. Figure 6.10 shows three bars with
11 From McLaren [B: 107].
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fundamentals at f1, g1, and h1. The invariance of the ratios between partials
implies that f2

f1
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and that f3
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es Fig. 6.10. Three metal bars of different
lengths (that are otherwise identical) have
the same pattern of bending modes (par-
tials), but beginning at different base fre-
quencies. When these partials coincide, as
for bars 1 and 3, they achieve maximum sen-
sory consonance. When they fail to coincide,
like bars 1 and 2, dissonances originate.

When the partials of one bar fall close to (but not identical with) the
partials of another, then the sound beats in a harsh and dissonant fashion.
When the overtones coincide, however, the sound becomes smoother, more
consonant. The trick to designing a consonant set of metal bars (wind chimes,
for instance) is to choose the lengths so that the overtones overlap, as much
as is possible. In the figure, bars 1 and 3 will sound smooth together, and bars
1 and 2 will be rougher and more dissonant.

Although this graphical technique of overlaying the spectra of inharmonic
sounds and searching for intervals in which partials coincide is clear concep-
tually, it becomes cumbersome when the spectra are complex. Dissonance
curves provide a systematic technique that can find consonant intervals for a
given spectrum that is essentially independent of the complexity of the spectra
involved.

6.5.2 A Tuning for Ideal Bars

There are many percussion instruments such as xylophones, glockenspiels,
wind chimes, balophones, sarons, and a host of other instruments throughout
the world that contain wood or metal beams with free (unattached) ends.
Assuming that the thickness and density of the bar are constant throughout
its length, the frequencies of the bending modes or partials can be calculated
using a fourth-order differential equation given in Fundamentals of Acoustics
by Kinsler and Fry [B: 85]. Assuming that the lowest mode of vibration is at
a frequency f , and that the beam is free to vibrate at both ends, the first six
partials are

f, 2.76f, 5.41f, 8.94f, 13.35f, and 18.65f

which are clearly not harmonically related.
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Two octaves of the dissonance curve for this spectrum are shown in
Fig. 6.11. Numerous minima, which define intervals of a scale in which the uni-
form bar instrument will sound most consonant, are spaced unevenly through-
out the two octaves. Observe that there are only a few close approximations
to familiar intervals: the fifth, the major third, and the second octave. The
octave itself is fairly dissonant.
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Fig. 6.11. Dissonance curve for a uniform bar has minima shown by tick marks on
the lower axis. The upper axis shows 12-tet, with several intervals extended for easy
comparison.

With so few intervals coincident with those of the 12-tet scale, how can
such bar instruments be played in ensembles with strings, winds, and other
harmonic instruments? First, most have a short, percussive envelope. This
tends to hide the roughness, because beats take time to develop. Second, by
mounting the bar in clever ways, many of the offensive partials can be atten-
uated. For instance, the bar is typically suspended from two points roughly
two-ninths of the way from the ends. These points coincide with the nodes
of the first partial. (In Fig. 2.8 on p. 25, these are the stationary points in
the vibration pattern of the first partial.) As other partials require nonzero
excursions at the 2/9 point, they rapidly die away. This is somewhat analo-
gous to the way that guitarists play “harmonics” by selectively damping the
fundamental, only here all partials but the fundamental are damped. To hear
this for yourself, take a bar such as a long wind chime, and hold it in the
middle (rather than at the 2/9 position). The fundamental will be damped,
and the odd-numbered partials (at 2.76f , 8.94f and 18.65f) will be greatly
exaggerated. Suspending at yet other points brings other partials into promi-
nence.

Despite the short envelope and the selective damping of partials, the in-
harmonicity of bar instruments is considered a problem, and attempts to ma-
nipulate the contour and/or density of the bar to force it to vibrate more
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harmonically12 are common. The idea of related scales and spectra suggests
an alternative. Rather than trying to manipulate the spectrum of the bar to
fit a preexisting pattern, let the bar sound as it will. Play in the musical scale
defined by the spectrum of the bar, the scale in which it will sound most
consonant.

6.5.3 Tunings for Bells

Bell founders and carillon makers have long understood that there is an in-
timate relationship between the modes of vibration of a bell and how much
in-tune certain intervals sound. Because bells are shaped irregularly, they vi-
brate in modes far more complex than strings or bars. The Physics of Musical
Instruments by Fletcher and Rossing [B: 56] contains a fascinating series of
pictures showing how bells flex and twist in each mode. The frequencies of
these modes vary depending on numerous factors: the thickness of the mate-
rial, its uniformity and density, the exact curvature and shape, and so on.

There is no theoretically ideal bell like there is an ideal rectangular bar,
but bell makers typically strive to tune the lowest five modes of vibration
(called the hum, prime, tierce, quint,13 and nominal) so that the partials are
in the ratios 0.5 : 1 : 1.2 : 1.5 : 2. The tuning process involves carefully
shaving particular portions of the inside of the bell so as to tame wanton
modes without adversely effecting already tuned partials. Traditional church
bells tuned this way are called “minor third” bells because of the interval 1.2,
which is exactly the just minor third 6/5. Bell makers have recently figured
out how to shape a bell in which the tierce becomes 1.25, which is the just
major third 5/4. These are called “major third” bells.

Using dissonance curves, it is easy to investigate what intervals such bells
sound most consonantly. The frequencies of the modes of vibrations of three
bells are shown in Table 6.2. The partials of the ideal minor and major third
bells are taken from [B: 94],14 and the measured bell is from a D5 church
bell as investigated by [B: 132] and [B: 157]. The most noticeable difference
between the minor and major bells is the tierce mode, which has moved from
a minor to a major third. Inevitably, the higher modes also change. The
measured bell gives an idea of how accurately partials can be tuned. The
quint and undeciem are considerably different from their ideal values. There
is debate about whether the stretched double octave is intentional (recall that
stretching is preferred on pianos) or accidental.

The dissonance curves for these three bells are shown in Fig. 6.12, and the
exact values of the minima are given in Table 6.3. Although bells cannot be
made harmonic because of their physical structure, the close match between
12 For instance, see [B: 124].
13 Those who remember their Latin will recognize tierce and quint as roots for third

and fifth.
14 As reported in [B: 56].
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Table 6.2. Partials of bells used in Fig. 6.12.

Name of Ideal Minor Measured Ideal Major
Partial Third Bell Bell Third Bell
hum 0.5 0.5 0.5
prime 1.0 1.0 1.0
tierce 1.2 1.19 1.25
quint 1.5 1.56 1.5
nominal 2.0 2.0 2.0
deciem 2.5 2.51 2.5
undeciem 2.61 2.66 2.95
duodeciem 3.0 3.01 3.25
upper octave 4.0 4.1 4.0

the just ratios and the minima of the dissonance curves suggests that bell
makers tune their instruments so that they will be consonant with harmonic
sounds. Such tuning is far more complex than simply tuning the fundamen-
tal frequency because it requires independent shaping of a large number of
partials.

The dissonance curve for the measured bell is close to the ideal. Some
extra minima have been introduced, and some of the deeper minima have
been smeared by the slight misalignment of partials. The major third bell
has accomplished its goal. In both octaves, the major third is very consonant,
second only to the octave. Unfortunately, the consonance of the fifth has been
reduced, and the minimum corresponding to the fifth has become noticeably
flat. It is unclear whether or how much this effects the playability of the bell.

The literature on bells is vast, and either [B: 56] or [B: 157] can be con-
sulted for an overview. The present discussion highlights the use of dissonance
curves as a way of investigating what intervals sound consonant when played
by a bell with a specified set of partials. An alternative is to try writing a piece
of music emphasizing the inharmonic nature of the bell, an avenue pursued in
the next chapter.

6.5.4 Tuning for FM Spectra

Frequency Modulation (FM) was originally invented for radio transmission.
Chowning [B: 32] pioneered its use as a method of sound generation in digital
synthesizers, and it gained popularity in the Yamaha DX and TX synthesiz-
ers. Sound is typically created in a FM machine using sine wave oscillators.
By allowing the output of one sine wave (the modulator) determine the fre-
quency of a second (the carrier), it is possible to generate complex waveforms
with rich spectra using only a few oscillators. When the ratio of the carrier
frequency to the modulator frequency is an integer, the resulting sound is
harmonic, whereas noninteger ratios generate inharmonic sounds. In practice,
these complex inharmonic sounds are often relegated to percussive or noise
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Fig. 6.12. Dissonance curve for an “ideal” minor third bell is compared with the
dissonance curve of a real bell, and to the dissonance curve of the “major third”
bell described by [B: 94]. The ideal has deep minima at many of the just ratios, and
the minima for the real bell are skewed. The increase in consonance of the major
third is apparent in both octaves of the lower plot, although the fifths have become
slightly flat.

patches because they sound dissonant when played in 12-tet. Using the related
scale allows such sounds to be played more consonantly.

For example, consider an FM tone with carrier-to-modulation ratio c : m
of 1 : 1.4 and modulating index15 I = 2. The frequencies and magnitudes
of the resulting spectra are shown schematically in Fig. 6.13. The spectrum
is clearly inharmonic, and the magnitude of the fundamental (at 500 Hz) is
small compared with many of the partials. When programmed on a TX81Z (a
Yamaha FM synthesizer), the sound is complex and somewhat noisy. Placing a
slowly decaying “plucked string” envelope over the sound and a small amount
of vibrato gives it a strange inharmonic flavor: more like a koto or shamisen
than a guitar. There are few intervals in 12-tet at which this sound can be
played without significant dissonance. The most consonant interval (when
restricted to the 12-tet scale) is probably the minor seventh, although the
fourth is also smooth. The fifth and octave are definitely dissonant.
15 The way that the parameters c, m, and I relate to the frequencies and amplitudes

of the partials of the resulting sound is complex, but formulas are available in
[B: 32] and [B: 158].
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Table 6.3. Minima of dissonance curves in Fig. 6.12.

Nearest Ideal Minor Measured Ideal Major
Just Ratio Third Bell Bell Third Bell

1/1 1.0 1.0 1.0
1.15 1.13 1.14

6/5 1.2 1.2 1.18
5/4 1.25 1.26 1.25
4/3 1.33 1.33 1.35

1.38 1.4
3/2 1.5 1.51 1.48

1.6
1.62

5/3 1.67 1.66 1.69
1.75 1.8 1.75

2/1 2.0 2.0 2.0
2.08 2.08
2.2 2.26 2.28

12/5 2.4 2.36 2.33
10/4 2.5 2.51 2.5

2.62 2.72 2.72
2.75 2.76

3/1 3.0 3.01 2.95

Two octaves of the dissonance curve for this spectrum are plotted in
Fig. 6.14, and it is readily apparent why there are so few consonant inter-
vals in the 12-tet scale. Although there are numerous minima, almost none
coincide with steps of the 12-tet scale, except for the fourth and minor sev-
enth. But when retuned to the related “FM scale” with steps given by the
minima of the figure, the sound can be played without excessive dissonance.

The reason for including this example is because it is likely that some
readers will have access to an FM-based synthesizer. This is an easy source
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Fig. 6.13. Line spectrum showing the partials of the FM spectrum with c : m ratio
1 : 1.4 and modulating index I = 2. The “fundamental” was arbitrarily chosen at
c = 500 Hz.
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Fig. 6.14. Dissonance curve for the FM spectrum with c : m ratio 1 : 1.4 and
modulating index I = 2 has minima shown by the tick marks on the bottom axis.
The 12-tet scale steps are shown above for comparison.

of inharmonic sounds, and many units incorporate tuning tables so that the
tuning of the keyboard can be readily specified. This particular timbre is,
frankly, not all that interesting musically, but the procedure can be applied
generally. Why not find the spectrum of your favorite (inharmonic) FM sound,
and retune the synthesizer to play in the related scale? Working through an
example like this is the best way to ensure you understand the procedure, and
you may find yourself enthralled by a new musical experience.

6.6 Properties of Dissonance Curves

The shape of the dissonance curve is dependent on the frequencies (and mag-
nitudes) of the components of the spectrum. Changing these frequencies (and
magnitudes) changes the location and depth of the minima, which changes the
scale in which the spectrum can be played most consonantly. The examples of
the previous sections showed specific spectra and their related scales. In con-
trast, this section looks at general properties of dissonance curves by probing
the mathematical model for internal structure and by exploring patterns in its
behavior. Four generic properties are presented, although formal statements of
these properties (and their proofs) are relegated to Appendix F. These prop-
erties place bounds on the number of minima of a dissonance curve, identify
symmetries, and describe two generic classes of minima. These properties help
give an intuitive feel for where minima will occur and how they change in re-
sponse to changes in the frequencies and amplitudes of the partials.

Throughout this section, we suppose that the spectrum F has n partials
located at frequencies f1, f2, ..., fn.

Property 1: The unison is a minimum of the dissonance curve.
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Recall that any nontrivial sound16 has an inherent dissonance due to the
interaction of its partials. The dissonance of the sound at unison consists of
just this intrinsic dissonance, whereas other intervals also contain interactions
between nonaligned partials. Details and caveats are given in Appendix F.

Property 2: As the interval grows larger, the dissonance approaches
a value that is no more than the intrinsic dissonance of the sound.

The second property looks at extremely large intervals where all partials of the
lower tone fall below the partials of the upper tone. For large enough intervals,
the interaction between the partials becomes negligible, and the dissonance
decreases monotonically as the interval increases. In practical terms, a tuba
and a piccolo may play together without fear of excess dissonance.

The next result gives a bound on the number of minima of a dissonance
curve in terms of the complexity of the spectrum.

Property 3: The dissonance curve generated by F has at most 2n2

minima that are located symmetrically (on a logarithmic scale) so
that half occur for intervals between 0 and 1, and half occur for
intervals between 1 and infinity.

There are really two parts to this property: a bound on the number of minima,
and an assertion of symmetry. The easiest way to see (and hear) these is
by example. Consider a simple spectrum with just two partials. As shown in
Fig. 6.15, the dissonance curve can have three different contours depending on
the spacing between the two partials:17 The unison may be the only minimum,
there may be an additional two steep minima, or there may be an additional
two “broad” minima.

The middle graph of Fig. 6.15 shows the dissonance curve for a simple
sound with two partials at f and 1.15f . The dissonance begins at the unison,
rises rapidly to its peak, and then plummets to a sharp minimum at 1.15.
Dissonance then climbs again before sinking slowly toward zero as the two
sounds drift apart. It is easy to understand this behavior in terms of the
coincidence of the partials. Let r denote the ratio between the two notes. Near
unity (for r ≈ 1), the partials of f beat furiously against the corresponding
partials of rf . When r reaches 1.15, the second partial of f aligns exactly with
the first partial of rf , and the dissonance between this pair vanishes, causing
the minimum in the curve. As r continues to increase, the previously aligned
partials begin to beat, producing the second peak. For large r, both partials
of f are separated from both partials of rf so that there is little interaction,
and hence little dissonance.
16 That is, any sound that contains more than a single partial. Only silence and a

pure sine wave have zero dissonance.
17 To make this figure clearer, the intrinsic dissonances have been subtracted out.
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Fig. 6.15. Dissonance curves for
spectra with two partials have three
possible shapes: The partials may
be too close together to allow
any minima other than the unison
(top), the minima may occur at the
intervals defined by the ratios of
the partials (middle), or there may
also be “broad” minima due to the
sparsity of partials (bottom). Ob-
serve the symmetry about the uni-
son. Steps of the 12-tet scale are
shown above for comparison.

Perhaps the most striking feature of this figure is its symmetry.18 Suppose
that instead of sliding the second tone up in frequency, it is shifted down; a
similar scenario ensues. For r ≈ 1, there is large dissonance. As r descends
to 0.87 (which is the inverse of 1.15, that is, 1

1.15 = 0.87), the first partial of
f aligns with the second partial of rf to cause a minimum. As r continues
to descend, the rise and fall of dissonance occur just as before. In general,
whenever there is a minimum at a particular value r∗, there is also a minimum
at 1/r∗. Thus, the range from 0 to 1 is a mirror image of the range from 1 to
infinity, and they are typically folded together, as has been done for most of
the dissonance curves throughout the book.

If the partials are too close together, there may be no minima other than
the unison. The top graph in Fig. 6.15 shows the dissonance curve for a sound
with partials at f and 1.01f . At first thought, one might expect that r = 1.01
(and its inverse) should be minima. But the other partials are clustered nearby,
and their combined dissonances are enough to overwhelm the expected min-
ima. In essence, if the partials are clumped too tightly, minima can disappear.

Thus, minima may (or may not) occur when partials coincide. Minima can
also occur when partials are widely separated. The bottom graph in Fig. 6.15
shows the dissonance curve for a sound with partials at f and 1.86f . As
18 The astute reader will note that the symmetry is not exact, because dissonance

curves vary with absolute frequency. However, over much of the audio range, the
curves are nearly symmetric.
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expected, there are minima at 1.86 and its inverse 0.54, but there is also a new
kind of “broad” minimum at 1.41 (and its inverse). This occurs because the
partials are widely separated, so that for a large range of the ratio r, there is
little significant interaction. Such minima are typically wide, and they tend to
disappear for sounds with more than a few partials. The harmonic dissonance
curve of Fig. 6.1 on p. 100, for instance, consists exclusively of minima caused
by coinciding partials; the broad, in-between minima have been vanquished.
This discussion foreshadows a property describing the two classes of minima:
those caused by coinciding partials and those caused by widely separated
partials.

Property 4: The principle of coinciding partials. Up to n2 of the
minima occur at interval ratios r for which r = fi/fj where fi

and fj are partials of F . Up to n2 of the minima are the broad
type of the bottom curve in Fig. 6.15.

For example, spectra with three partials may have up to three minima at
points where r1f1 = f2, r2f1 = f3, and r3f2 = f3, which are represented
schematically in Fig. 6.16. Essentially, a minimum can occur whenever two
of the partials coincide, and this property is called the principle of coinciding
partials. Of course, other minima may exist as well. The top graph in Fig. 6.17
shows the dissonance curve for the spectrum f, sf, s4f , where s = 10

√
2. Note

that the three minima predicted by property 4 are at exactly the first and
fourth scale degrees of the ten-tone equal-tempered scale, and at the difference
frequency s3f . The bottom graph of Fig. 6.17 places the partials at f, sf, s6f ,
generating the expected scale steps at 1 and 6, and the difference frequency
s5f at 10-tet scale step 5. There is also a broad minimum between the third
and fourth steps, which is a result of the distance between the partials sf and
s6f .

f1 f2 f3

r1f1 r1f2 r1f3

r2f1 r2f2 r2f3

r3f1 r3f2 r3f3

Fig. 6.16. Schematic representa-
tion of three possible local minima
(at ratios r1, r2, and r3) of a spec-
trum with partials at f1, f2, and f3.

Properties 3 and 4 combine to give a fairly complete picture of the num-
ber and types of minima to expect. They are located symmetrically (on a
logarithmic scale) so that half occur for intervals between 0 and 1, and half
occur for intervals between 1 and infinity. No more than half of the minima
are the broad type due to a paucity of partials. No more than half are the
steep kind, which occur when partials coincide at intervals defined by ratios
of the partials. Because the musically useful information is located in intervals
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Fig. 6.17. Dissonance curves demonstrating local minima for spectra with three
partials, with s defined as the tenth root of two. Observe that minima are coincident
with scale steps of 10-tet and not with scale steps of 12-tet.

within a couple of octaves of unity, because the broad minima tend to vanish
(except for sparse spectra), and because many minima are annihilated when
partials are densely packed, typical dissonance curves exhibit far fewer than
the maximum. In Fig. 6.1 on p. 100, for instance, there are only nine minima
within the octave of interest, considerably fewer than the bound of 2 × 72.

Symmetry of the dissonance curves about one is not the same as rep-
etition at the octave. For instance, the harmonic dissonance curve19 has a
minimum at 5/4, and the corresponding symmetric minimum occurs at 4/5.
When translated back into the original octave between 1 and 2, this is 8/5,
which is not a minimum. Thus, using the related scale under the assumption
of octave equivalence is different, in general, from using the intervals of the
dissonance curve plus their inverses. Depending on the musical context, either
one or the other may be preferred.20 Typically, the minima of a dissonance
curve become sparser (further apart) for very high and for very low frequen-
cies, implying that both low and high notes will be far apart when using the
scale with inverses. This accords well with our perceptual mechanism because
the majority of notes tend to cluster in the midrange where hearing is most
sensitive.

Another consequence of the symmetry of dissonance curves is that the “in-
verse” of a spectrum will have the same dissonance curve as the spectrum. For
example, subharmonic sounds are those defined by a frequency f , and the sub-
19 Fig. 6.1 on p. 100.
20 Octave equivalence is often assumed because it is generally easier to “map” to

the keyboard, but this is a pragmatic and not a musical or perceptual preference.
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harmonics f/2, f/3, .... Such subharmonic sounds have the same dissonance
curve and the same related scale as harmonic sounds.

6.7 Dissonance Curves for Multiple Spectra

The dissonance curves of the previous sections assumed that both notes in
the interval had the “same” spectrum; that is, they differed only by a simple
transposition.21 As it is common to combine sounds of different tonal quality,
it is important to be able to draw analogous dissonance curves for notes with
different spectra.

Suppose the note F has partials at fi with loudness ai, and the note G
has partials at gj with loudness bj . Then the dissonance between F and G is
the sum of all dissonances d(fi, gj , ai, bj), where the function22 d represents
the sensory dissonance between the pure sine wave partials at fi and gj as
in Fig. 3.8 on p. 47, weighted by the loudnesses. Similarly, if G is raised (or
lowered) by an interval s, then the dissonances d(fi, sgj , ai, bj) are summed,
whereas if F is raised (or lowered) by an interval r, then the dissonance is
calculated23 by summing all d(rfi, gj , ai, bj).

For example, suppose that a sound F with four harmonic partials is played
simultaneously with a sound G with three inharmonic partials at g, 1.515g,
and 3.46g. The corresponding dissonance curve is shown in Fig. 6.18 over a
region of slightly larger than an octave in both r and s. The curve is drawn
with r and s on the same axis because they are essentially inverses; that is,
the effect of playing F and transposing G by s is nearly the same24 as playing
G and transposing F by r = 1/s.

In this example, minima occur near many of the steps of 5-tet, which
is shown on the top horizontal axis. There are minima when s is the first,
second, and fifth steps of 5-tet, and when r is the first, third, and fourth
steps. Together, this suggests that this pair of sounds may be sensibly played
in 5-tet.
21 The note with partials at fi and loudness ai, when transposed by an interval r,

has partials at rfi with the same loudness.
22 Details of the function d can be found in Appendix E.
23 An alternative approach is to combine the spectra of the two sounds, and then

draw the (normal) dissonance curve. For instance, combining the F and G of
Fig. 6.18 gives a “new” sound H with partials at h, 1.515h, 2h, 3h, 3.46h, and 4h.
The dissonance curve for this spectrum has many of the same features as Fig. 6.18,
but it is not identical. For instance, when the sixth partial of the lower tone
corresponds to the fourth partial of the higher tone (at the interval 4/3), the
dissonance curve of H may have a minimum, depending on the loudness of the
partials. There is no minimum at 4/3 in Fig. 6.18 however, because there are no
pairs of partials in F and G with this 4/3 ratio.

24 They differ only due to the absolute frequency dependence of dissonance, which
is relatively small over moderate intervals.
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Fig. 6.18. Dissonance curve for sounds F (at interval r) and G (at interval s). F
has four harmonic partials while G has three inharmonic partials at g, 1.515g, and
3.46g. The curve has many minima close to the steps of 5-tet, which is shown above
for comparison.

Dissonance curves for multiple spectra have somewhat different properties
than similar curves for sounds with a single spectrum. For instance, the unison
is not always a minimum. Figure 6.19 shows the dissonance curve for two
inharmonic sounds with partials at f , 1.7f , and 2.84f , and at g, 1.67g, and
3.14g. The deepest minimum occurs at the interval s = 1.7, where the first
and second partials of F align with the second and third partials of G. The
unison is not a minimum.

The second property, which says that dissonance must decrease as the
intervals grow asymptotically large, is still valid. But the third property must
be amended.
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Fig. 6.19. Dissonance curve generated by two sounds F (with partials at f , 1.7f ,
and 2.84f) and G (with partials at g, 1.67g, and 3.14g). Loudness values for both
sounds are 1, 5, and 5. Minima occur at r = 1.1, 1.37, and 1.85, and at s = 1.02,
1.33, and 1.7. The unison is not a minimum.
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Property 3′: The dissonance curve generated by F and G has at
most 2nm minima, where n is the number of partials in F and m
is the number of partials in G.

The symmetry of the curves about unity is lost, as shown in both Figs. 6.18
and 6.19. The principle of coinciding partials must also be modified.

Property 4′: In the dissonance curve generated by F and G, up to
nm of the minima occur at intervals r for which either r = gj/fi

or r = fi/gj , where fi and gj are the partials of F and G. Up
to nm of the minima are the broad type of the bottom curve in
Fig. 6.18.

Dissonance curves can give insight into how different kinds of sounds can be
combined so as to control sensory consonance. This might find application, for
instance, in a piece that combines several kinds of inharmonic sounds. Small
manipulations of the pitches may lead to dramatic changes in the perceived
dissonance of the combined sound, and dissonance curves can be used to
reliably predict these changes.

6.8 Dissonance “Surfaces”

Dissonance curves can also be drawn for three note “chords.” These can be
readily pictured as dissonance surfaces where mountainous peaks are points
of maximum dissonance, and valleys are locations of maximum consonance.

As usual, the total dissonance is calculated by adding the dissonances
between all simultaneously sounding partials. The sensory dissonance of a
sound F played in a chord containing the intervals 1, r, and s is25:⎧⎨
⎩

Total
Dissonance
of Chord

⎫⎬
⎭ =

⎧⎨
⎩

Dissonance
Between
F and rF

⎫⎬
⎭ +

⎧⎨
⎩

Dissonance
Between
F and sF

⎫⎬
⎭ +

⎧⎨
⎩

Dissonance
Between

rF and sF

⎫⎬
⎭

Generalizations to m sounds, each with its own spectrum, follow the same
philosophy, although in higher dimensions there is no simple way to draw
pictures.

Figure 6.20 shows the dissonance “surface”26 for a sound F consisting of
six harmonic partials, as r and s are varied over a region slightly larger than
an octave. The central rift, which is sandwiched by a range of high mountains
near the diagonal, is the degenerate case where r ≈ s. The two far edges of
the surface (which are not clearly visible due to the angle of view) are where
r = 1 (on the left) and s = 1 (around the back). As all three notes have the

25 rF is the transposition of F by the interval r.
26 Appendix E details how the surfaces are drawn.
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same spectra, r and s are interchangeable and the surface is symmetric about
the diagonal. Hence, the most interesting and musically useful information is
contained in the foothills on the near side of the diagonal range.
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Fig. 6.20. Dissonance curve for a sound with six harmonic partials has minima at
many intervals defined by small integer ratios. These form chords with maximum
sensory consonance. Figure 6.21 shows the same data as a contour plot.

Although surface plots such as Fig. 6.20 give a broad overview of the land-
scape, it is not always easy to spot detailed features. The same information is
displayed as a “contour plot,” a topographic map of the dissonance landscape,
in Fig. 6.21. The symmetry about the diagonal is readily apparent. The far
and left-hand edges again represent the degenerate cases where s ≈ 1 and
r ≈ 1, and the beaded strand on the diagonal is where r ≈ s. In these regions,
two of the three notes have merged.

Many of the just chords appear in the lower left half of the figure as
prominent sinkholes in the dissonance wilderness. For instance, the arrows K
and M in Fig. 6.21 indicate long narrow ravines at the perfect fifth in both
the horizontal and vertical dimensions, that is, in both r and s. This ravine
contains both the just major and just minor chords B and D. An angled string
of minima for which the second and third notes are locked into a perfect fifth
is indicated by the arrow L. This string intersects the ravine at the J chord,
which is composed of two perfect fifths piled on top of each other.

The chord labeled A contains both a perfect fourth and a perfect fifth.
Such “suspended” chords do not form a normal diatonic triad, and yet they
are not unfamiliar. The chord G can be viewed as an inversion. Raising the
fundamental of 1, r5, r10 one octave gives r5, r10, r12, which is a transposition
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Fig. 6.21. Contour plot of the dissonance curve for three note chords with harmonic
spectra. Several of the most important features are indicated. Tick marks on the axes
indicate intervals of the 12-tet scale step. The chords labeled A-J are examined in
more detail in Table 6.4.

Table 6.4. Minima of the dissonance surface for a sound with six harmonic partials
occur at many of the just chords and at many of the simple integer ratios. Labels
refer to regions on the contour plot for harmonic sounds in Fig. 6.21.

Actual Closest 12-tet
Label Minimum scale steps Comment

a = 12
√

2
A 1, 4/3, 3/2 1, a5, a7 suspended
B 1, 5/4, 3/2 1, a4, a7 just major
C 1, 9/8, 3/2 1, a2, a7 suspended
D 1, 6/5, 4/3 1, a3, a7 just minor
E 1, 5/4, 5/3 1, a4, a9 inversion of minor
F 1, 4/3, 5/3 1, a5, a9 inversion of major
G 1, 4/3, 16/9 1, a5, a10 string of fourths
H 1, 4/3, 2 1, a5, 2 open fourth
I 1, 3/2, 2 1, a7, 2 open fifth
J 1, 3/2, 9/4 1, a7, a14 string of fifths



130 6 Related Spectra and Scales

of A. The chord C is also an inversion of A, as can be seen by lowering the
highest note an octave. Similarly, E and F are inversions of the just major
and minor chords.

It may at first appear strange that the intervals 9/8 and 16/9 appear in
C and G, because the dissonance surface was generated by a harmonic sound
containing only the first six partials. But the interval from 3/2 to 9/8 is exactly
4/3, and so the 9/8 interval is a byproduct of the consonance of the perfect
fourth and the perfect fifth. Similarly, the 16/9 in G forms a perfect fourth
with 4/3, and this suspended chord can be thought of as a “string of fourths.”
In fact, the string of fifths chord J is also an inversion of this same suspension,
because lowering the highest note an octave gives the C chord.

The real purpose of this discussion is not to learn more about just in-
tonation or about the traditional diatonic setting, because these have been
explored extensively through the years. Rather, it is to demonstrate that in
the familiar harmonic setting, features of dissonance curves and surfaces cor-
respond closely with familiar musical objects. Hence, there is good reason
to expect that in unfamiliar inharmonic contexts, analogous features can be
used to predict and explore unfamiliar musical intervals, scales, and chords.
An extended example is given in the chapter “Towards a ‘Music Theory’ for
10-tet.”

6.9 Summary

Dissonance curves generalize the kinds of curves drawn by Helmholtz, Partch,
and Plomp to sounds with inharmonic spectra. They give a graphic display of
the intervals with the greatest sensory consonance (least sensory dissonance)
for a given spectrum, and these intervals can be gathered into the related
scale. Several previous investigations were highlighted, including the work of
Mathews and Pierce and their colleagues, and the musical explorations of Car-
los. Examples were drawn from ideal bars, bells, and FM synthesis. General
properties of dissonance curves bound the number of minima, demonstrate
the symmetry of the intervals about the unison, and classify them into those
caused by coinciding partials and those that are a result of gaps in the partial
structure. Extensions to multiple sounds with different spectra are straight-
forward. The next chapter explores three examples thoroughly.
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A Bell, A Rock, A Crystal

To bring the relationship between tuning and spectrum
into sharper focus, this chapter looks at three examples
in detail: an ornamental hand bell, a resonant rock from
Chaco Canyon, and an “abstract” sound created from
a morphine crystal. All three are discussed at length,
and each step is detailed so as to highlight the practical
issues, techniques, and tradeoffs that originate when
applying the ideas to real sounds making real music. The
bell, rock, and crystal were used as the basis for three
compositions: Tingshaw, The Chaco Canyon Rock, and
Duet for Morphine and Cymbal, which appear on the
accompanying CD as sound examples [S: 43], [S: 44],
and [S: 45].

7.1 Tingshaw: A Simple Bell

By the tenth century BC, bells were used to accompany rituals, and they are
among the oldest extant musical instruments. Bells can be made from metal,
wood, clay, glass, and almost any other material that can be shaped to sustain
oscillation. They range in size from tiny ornaments to monstrosities weighing
several tons. Because of the great variety of materials, shapes, and sizes, bells
are capable of a wide variety of tones and timbres. The typical bell sound
is inharmonic, and its sound envelope (a rapid rise followed by a long slow
decay) is probably its most distinctive feature.

This section uses one particular hand bell, and it derives the related scale
using the dissonance curve. This scale is then “mapped” onto a standard
keyboard, and some aspects of performance are considered. A musical compo-
sition called Tingshaw featuring this inharmonic bell played in its nonequal,
nonoctave based scale, is presented in sound example [S: 43].

Despite the “scientific” flavor of much of the discussion in previous chap-
ters, the translation from sound to scale is not a completely mechanical pro-
cess. Decisions must be made that will ultimately shape the performance and
playability of the sound and, hence, will help to mold the resulting music. To
outline the complete procedure:

(i) Choose a sound
(ii) Find the spectrum of the sound
(iii) “Simplify” the spectrum
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(iv) Draw the dissonance curve, and choose a set of intervals (a scale)
from the minima

(v) “Create an instrument” that can play the sound at the appropriate
scale steps

(vi) Play music

Each of these will now be discussed in detail, and the decisions and choices
made for the tingshaw will be explained. Although someone versed in spectral
analysis will find many aspects of this discussion familiar, there are a number
of issues that are specific to the auditory setting.1 I do not present this detail in
the expectation that it would be useful to exactly duplicate my steps. Rather,
over several years of working with this kind of material, I have run across
certain problems and traps again and again. My hope is to post warnings
near some of these traps.

7.1.1 Choose a Sound

Although obvious, this is the most crucial step of the procedure, because the
character of everything in the music (from the character of the sound to the
scale in which it will be played) are derived from the sound itself. Sounds
may come from a musical synthesizer. They may be from “real” instruments
such as bells, gongs, cymbals, and so on. They may originate from collisions
between natural objects such as bricks, metal pans, scrap wood, rocks, or
recyclables. They may be digitally generated by a computer program.

Although any sound can be used, not all sounds are equally useful. If the
spectrum of the sound is too simple, then the related scale may be trivial.
For instance, the tritone spectrum has a dissonance curve with only three
minima, and hence, the related scale has only three notes; it will be hard
to write a convincing melody with only three notes. On the other hand, if
the spectrum of the sound is too complex, then the related scale may have
hundreds or even thousands of notes. This extreme may also be impractical.
Finally, an unexciting sound cannot be miraculously rejuvenated by playing
it in the related scale. If the timbre is dull and uninteresting, then it will most
likely lead to dull and uninteresting music.

For this example, I have chosen a small bell called tingshaw. It has a
cheery little clang with a sharp attack and a long slow decay. The tingshaw was
1 The musician may find all of these decisions and the incredible detail frightening.

Recognize that I am trying to write it all down. Imagine if you were to try and
document every step of the decision-making process when writing even a simple
piece of music. You would need to explain why it is in 4/4 time, why one particular
note is syncopated and another is not, why the viola line crosses the violin line
(in violation of standard rules), and why you have allowed a parallel octave in
one section but not another. There are many decisions for each note, and there
are many, many notes! Rest assured that all of these decisions and detail would
be enough to frighten even the hardiest of engineers.
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sampled at the standard CD rate of 44100 Hz, and the sample was downloaded
to a computer and stored in a file called ting.wav.

7.1.2 Find the Spectrum

There are many programs that can readily calculate the spectrum, but the
accuracy and usefulness of the results are determined primarily by the sample
rate, the number of samples analyzed, and the windowing procedure used. If
you have never taken a spectrum before, you will want to read Appendix C,
Speaking of Spectra, for an overview of the kinds of tradeoffs that are inherent
in this process. The more competently these decisions are made, the more
meaningful the results.

The tingshaw bell has a sharp attack followed by a long slow decay into
inaudibility. The complete sound file contains about 120K samples, a little less
than 3 seconds of sound.2 Taking the FFT of the complete sound is a bad idea
for two reasons. First, it is too long. Because the computation time for an FFT
increases rapidly as the length of the signal increases, 120K points could take
a long time. Second, the attack is very important to the sound, but it lasts
only a few thousand samples. Even if the computation time was acceptable,
the long decay would obscure the short attack because of the averaging effect
of the FFT.

On the other hand, the FFT must not be too short. At least part of the
decay portion of the sound must be present or the spectrum cannot represent
the complete sound. Also, the accuracy will suffer. Recall (or read about it
in Appendix C) that the width of the FFT frequency bins determines the
precision with which the sinusoidal components can be pinpointed. As the
width of the bins is proportional to the sampling rate divided by the length
of the waveform, taking too small a portion of the wave leads to wide bins
and poor estimates for the frequencies of the partials. Such inaccuracies can
have serious consequences when defining the related scale.

As the just noticeable difference Fig. 3.4 on p. 44 showed, the ear is sen-
sitive to changes in pitch as small as 2 or 3 Hz in the most sensitive regions
below 1000 Hz. Thus, it is sensible to choose an FFT length that gives at
least this accuracy. Using an FFT with length that is a power of two gives
two choices: a 16K FFT with resolution of 2.69 Hz,3 or a 32K FFT with a res-
olution of 1.35 Hz. To decide, I listened to the first 16K of the waveform and
to the first 32K. The 16K segment seemed to capture enough of the sustained
part of the sound.

To examine the effects caused by truncating the wave, I tried several differ-
ent windowing strategies. The rectangular window and the hamming windows
gave estimates for the most important frequencies that were several Hertz
2 The duration is the length divided by the number of samples per second; thus,

120000
44100 ≈ 2.72 seconds.

3 sampling rate
length of FFT = 44100

16384 = 2.69 = resolution in Hz.
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apart. There are two sources of error: The hamming window attenuates the
attack portion significantly, and the rectangular window simply truncates the
signal after 16K samples. I reasoned that it was a good idea to leave the attack
portion undisturbed, because this is where much of the important information
resides. Because a signal has the same spectrum whether it is played forward
or backward in time, I carefully selected a “middle point,” and reversed the
16K waveform about this midpoint.4 When plotted, the transition point was
visually smooth (i.e., no large jump occurred in either the value of the signal
or its slope), and so it seemed unlikely to greatly effect the results. Indeed,
this gave a spectrum that differed by no more than 1.5 Hz from the original
rectangular window, and so I decided to accept this as the “real” spectrum.
Figure 7.1 shows an FFT of the first 16K samples of the sound file ting.wav,
accomplished using a 32K FFT and a wave reversal “windowing” strategy.
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Fig. 7.1. Spectrum of the tingshaw bell with the most prominent spectral peaks
labeled.

7.1.3 Simplify the Spectrum

The output of this FFT says that the first 3/8 second of the tingshaw sound
consists of the first 16, 386 harmonics of a fundamental at 1.35 Hz, each with
a specified amplitude and phase. Despite the fact that this is literally true, it
is useless.

A far better interpretation of Fig. 7.1 is that there are two dominant
regions of spectral activity near 2370 and 5555, and three smaller peaks at
4784, 7921, and 10103. There is also a small cluster near 11300, and a couple
of isolated peaks, at about 700 and 3200. It is important to try and select only
the most significant peaks, without missing any, because spurious peaks may
cause extra minima in the dissonance curve, whereas missing peaks may cause
missing scale steps. Neither is good. Perhaps the best strategy is to analyze
several different recordings and to choose only what is common among them.
4 Various windowing strategies are discussed in Appendix C.
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This approach is detailed in the next section in the discussion of the Chaco
Rock. Unfortunately, the tingshaw bell went missing shortly after I recorded
it, leaving only the one sample (and some great memories).

One way to get more information from limited data is to analyze it in dif-
ferent ways. I pursued two different strategies: multiple analysis and analysis
by synthesis. One interesting and puzzling feature of the tingshaw spectrum
Fig. 7.1 is that there are two separate peaks close to 5555. To investigate, I
did a series of 4K spectral snapshots.5 The snapshots suggested that there is
really only one partial in any 4K segment, but that it is slowly changing in
frequency from about 5570 down to about 5550 over the course of the sample.
As 5550 is its steady-state value (as shown by FFTs taken with the attack
portion of the sound stripped away), I settled on the single value 5553 to
represent all of this activity. Using the same 4K snapshots shows that the
peaks near 7921 are simpler: They merge into a single sinusoid as the sound
progresses and remain centered at 7921 throughout.

The second way to try and understand more from a limited number of
samples is a variation on a technique pioneered by Risset and Wessel [B: 151]
in which the accuracy of an analysis is verified by resynthesizing the sound.
If the analysis captures most of the important features of the sound, then the
resynthesized sound will be much like the original. In the present context, I
first resynthesized6 the sound using the five major peaks, and then added in
the smaller peaks near 700, 3200, and 11,300. Of course, the resynthesized
sounds were not much like the tingshaw, but there was almost no perceptible
difference between the two resynthesized sounds. This suggested that the extra
smaller peaks were likely to have little effect on the overall sound.

Hence, I decided that the five inharmonically related peaks represent the
primary constituents of the sound, and this simplified tingshaw spectrum is
used to draw the dissonance curve. It is shown in Fig. 7.2.
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Fig. 7.2. Spectrum of the ting-
shaw bell simplified to show only
the most prominent features.

A third method to help decide which are the most important spectral
peaks might be called “analysis by subtractive synthesis.” In this method,
the FFT of the original sound is manipulated by removing a few suspicious
5 To be specific, I used a 4K hamming window and evaluated the spectrum centered

at samples 1K, 2K, 3K, ... , 15K.
6 See the Appendix Additive Synthesis for details on the resynthesis procedure.
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partials and then reconstructed using the inverse FFT. If there is little or
no difference between the original and the reconstruction, then the removed
partials must be of little importance to the overall sound. I did not actually
need to use this technique on the tingshaw because I was already satisfied that
I had located the most important spectral information, but it is a technique
that has worked well in other situations.

7.1.4 Draw the Dissonance Curve

The simplified spectrum for the tingshaw shown in Fig. 7.1 can be entered
into the dissonance calculating programs given in Appendix E, How to Draw
Dissonance Curves, in a straightforward way. Setting the frequency vector
and amplitude vectors

freq=[2368, 4784, 5553, 7921, 10103]
amp=[1.0, 0.5, 1.0, 0.6, 0.5]

gives the dissonance curve for the tingshaw shown in Fig. 7.3. This figure
shows the dissonance curve from unison to just a bit more than two octaves.
In the code, the algorithm increments by inc=0.01 and the upper value is
specified by the range variable, in this case 4.1. It is often a good idea, when
first looking at the dissonance curve of a sound, to calculate the curve over a
larger range to make sure nothing “interesting” happens at large values. For
the tingshaw, there was one more bump and dip near 4.27, but it was small
and seemed unimportant. As shown in the figure, the dissonance curve has
minima unevenly spaced at

1, 1.16, 1.29, 1.43, 1.56, 1.66, 1.81, 2.02, 2.15, 2.35, 2.83, 3.34, and 4.08.

One way to choose the scale is to simply use these ratios (plus maybe the one
at 4.27) to play the tingshaw. Another possibility is to also use the inverse
ratios

1, 0.862, 0.775, 0.699, 0.641, 0.602, 0.552, 0.495, 0.465, 0.425,
0.353, 0.299, and 0.245,

which would result in a complete scale with almost twice as many notes. This
is sensible because the dissonance curve is really symmetric about the unison
(recall property number 3) and hence contains all of these inverse intervals as
well.

But looking more carefully at the minima of the dissonance curve reveals
an interesting pattern. If the minimum at 2.02 is thought of as a kind of
pseudo-octave, then the intervals 2.15/2.02 = 1.16, 3.34/2.02 = 1.65, and
4.08/2.02 = 2.02 are present in both pseudo-octaves. As these are the most
prominent features in the second half of the curve, the tingshaw sound is
closely related to the eight-note unequal stretched-octave scale

1, 1.16, 1.29, 1.43, 1.56, 1.66, 1.81, and 2.02.

This is the scale used in the piece Tingshaw on the accompanying recording.
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Fig. 7.3. Dissonance curve for the tingshaw bell. The minimum at 2.02 serves as a
pseudo-octave, because some of the minima in the second pseudo-octave are aligned
with those in the first. For example, 2.35/2.02 = 1.16 and 3.34/2.02 = 1.65 are found
in both pseudo-octaves. Steps of the 12-tet scale are shown above for comparison.

7.1.5 Create an Instrument

Assuming adequate metal working skills and sufficient time, it would probably
be possible to build a whole carillon of ting-bells: large ones to peal the deep
notes and tiny ones to ring the highs. Exactly how to scale the proportions of
the bell and how to choose appropriate materials so as to leave the timbral
quality more or less unchanged are nontrivial issues, but with enough experi-
mentation and dedication, these could likely be solved. This was exactly Harry
Partch’s situation when he found that his dream of playing in the 43-tone un-
equal scale could not be realized without instruments that could play in 43
tones per octave. Accordingly, he set out to build such instruments, and much
of his career was devoted to instrument design, crafting, and construction.
Until just a few years ago, embarking on a long and complex construction
project would have been the only way to turn the ting-chime into reality.

Fortunately, today there is an easier way. Digital sampling technology
is based on the idea of creating “virtual” instruments. Sound begins in a
digital sampling keyboard7 (a sampler) as a waveform stored in computer-
like memory. This is processed, filtered, and modulated in a variety of ways,
and then spread across the keyboard so that each key plays back the “same”
sound, but at a different fundamental frequency. The (in)famous “dog-bark
symphony” is a classic example where the vocalizations of man’s best friend
are tuned to a 12-tet scale and played as if it were a musical instrument. As
general-purpose computers have become faster, software has become available
for both synthesis and sample playback that can replace much of the external
hardware.
7 A detailed discussion of the design of samplers and other electronic musical in-

struments is well beyond the scope of this book. Sources such as De Furia [B: 38]
provide an excellent introduction from a musicians perspective, and the engineer
might wish to consult Rossing [B: 158] or DePoli [B: 40] for a more technological
presentation.
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The most exciting feature of many samplers (whether hardware or soft-
ware) is that the user can specify both the waveform and the tuning; the
sampler will then play back the chosen sound in the specified scale. In con-
crete terms, it is possible to transfer the sound file ting.wav from the computer
into the sampler, and to then program the sampler so that it will play in the
desired scale.8 The musician can play the keyboard as a realistic simulation
of a ting-carillon.

As the specifics of moving sound files from one machine to another are
unique to the individual machines, they will not be discussed further: See
your owners manual, software guide, or ask a friend. But one detail remains.
Although we decided to use the eight-note unequal stretched-octave scale of
the previous section, we did not decide how the scale steps were to be assigned
to the keys of the keyboard. One possibility is to simply map successive scale
tones to successive keys. Although this is often the most sensible strategy,
in this particular case, there is a better way. As there are eight notes in the
scale per pseudo-octave, and there are eight white notes per (normal, familiar)
octave on the keyboard, the easiest mapping is the one shown in Fig. 7.4 in
which each octave of the keyboard is used to play each pseudo-octave of the
tingshaw scale.

ratio            cents

 1.0      0
   
 1.16    257

 1.29    441

 1.43    619
    
 1.56    770

 1.66    877

 1.81   1027

 2.02   1200

Tingshaw Scale

Fig. 7.4. Each pseudo-octave of the tingshaw scale
can be readily mapped to the white keys on a stan-
dard keyboard.

8 Transferring the wave file from the computer to the sampler can often be accom-
plished using software utilities available from the manufacturer or from third-
party software companies. Each sampler has somewhat different internal specifi-
cations and limitations. For instance, some samplers only allow the pitch to be
changed ±1 semitone away from its 12-tet default value, whereas others allow
arbitrary assignment of frequencies to keys of the keyboard. Caveat emptor.
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7.1.6 Play Music

Most samplers have numerous options that let the musician manipulate cer-
tain features of the sound. Filters can be set to vary along with the note
played, attack and decay parameters can be modulated by the key velocity
(how rapidly the key is pressed), subtle pitch and timbral transformations
can be programmed to respond to aftertouch (how hard the key is pressed),
and reverberation and other effects can be added to simulate various audi-
tory environments. All features of the sampler should be exploited, as seems
appropriate to the sound.

For the tingshaw, I added a bit of reverberation to give the sound a more
open feel, incorporated a subtle low-pass filter to subdue some harshness at the
high end of the keyboard, and programmed the aftertouch to induce a delicate
vibrato. Because the sound grew a bit mushy at the low end, I increased the
speed of the attack for the lower notes. These are the kinds of modifications
that any sound designer9 would apply to make a more playable sound.

Now (finally!) comes the fun part. The tingshaw sound is spread across
the keyboard in a virtual ting-carillon. Fingers are poised. This ting tolls for
us.

7.2 Chaco Canyon Rock

The reddish rocks of Chaco Canyon (in New Mexico) produce colorful sounds
as they scrape and clatter underfoot. They are musical, but inharmonic. They
are resonant, but ambiguously pitched. While hiking the shale cliffs surround-
ing Chaco Canyon a few years ago, I was captivated by the music of these
rocks. I hit them with sticks, struck them with mallets, and beat the rock
against itself.

Figure 7.5 shows a typical sampled waveform. The large initial impact
is rapidly damped, and the vibration is inaudible by 1/4 of a second. The
shape of the waveform is irregular, although its envelope follows a smooth
exponential decay. Using a digital sampler to pitch shift this sound across a
keyboard creates a complete “lithophone” that sounds deep and resonant in
the lower registers, natural in the middle range, and degenerates into a sharp
plink when transposed into the far upper registers. The default operation of
most samplers is to pitch shift the sound into the familiar 12-tet scale. Is this
really the best way to tune a Chaco lithophone?

A little experimentation reveals that 12-tet works well for pieces that are
primarily percussive, in which the sound envelope of one note dies away before
9 I know of no single source containing a comprehensive discussion of sound design,

although there are numerous articles spread throughout popular magazines such
as Electronic Musician and Keyboard in which individual sound designers discuss
their methods and philosophies.
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Fig. 7.5. Typical waveform of the Chaco rock when struck by a hard mallet. A
small portion is expanded to make the irregularity of the waveform more apparent.

the next note begins. But denser pieces, and those with sustained tones10

become increasingly dissonant, especially in the lower registers. This section
details a systematic way to retune the pitches of the keyboard based on the
spectrum of the rock sound so as to minimize the dissonance. The Chaco
Canyon Rock (sound example [S: 44]) demonstrates many of the ideas.11

7.2.1 Find the Spectrum

Eventually, I settled on a favorite piece of rock. Roughly circular with a diam-
eter of about 15 cm, it is less than a centimeter thick. It weighs 3 kilograms:
lighter than it looks, but heavier than a cymbal of the same size. By striking
it with different mallets in different places, it speaks in a remarkable variety
of ways.

I sampled the rock 12 times12 to try and capture the full range of its tonal
qualities. Each sample was transferred to the computer, stored as a sound file,
and analyzed by a 16K FFT. Most of the wavefiles (such as the one shown
in Fig. 7.5 above) contained about 16K samples, and thus no windowing was
needed. In a few cases, the wavefile was smaller than 16K samples. These were
10 For instance, extreme time expansion can transform the sharp percussive envelope

into a lengthy reverberation.
11 This work on the Chaco rock was originally presented (in different form) at the

Synaesthetica conference [B: 168].
12 As before, at the standard rate of 44.1 KHz.
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lengthened by zero padding, which augments the data with a string of zeroes.
Three typical spectra are shown in the Fig. 7.6.

2047 4070
7666

0 2000 4000 6000 8000 10000
frequency in Hz

1351
2040

2170
4064

5066

2163

2736 4069
4986

m
ag

ni
tu

de
m

ag
ni

tu
de

m
ag

ni
tu

de

Fig. 7.6. Spectra of three
different strikes of the
Chaco Canyon rock.

7.2.2 Simplify the Spectrum

Each strike of the rock has a unique sound, and yet they are all clearly from
the same source. The most constant mode (although rarely the loudest) is a
high resonance near 4070 Hz. No matter how the rock is struck, no matter
what mallet is used, this mode is audible. Other resonances occur in just one
or two of the samples. For instance, the peak at 2736 in the top spectrum of
Fig. 7.6 appears in only this one sample. Perhaps it was caused by the mallet,
or perhaps this mode is very hard to excite, and I was lucky to find it. In
either case, it is not a part of the generic sound of the rock.

Often, the loudest component of the sound is somewhere between 2040
and 2200. For instance, the most prominent partial in the top spectrum is at
2163. In the bottom spectrum, the dominant partial is at 2047, which may be
reinforced by the (slightly flat) octave at 4070. At first, I thought these both
represented a single dominant mode whose exact frequency varied somewhat
with the situation. But by striking and listening carefully, it became clear that
both really exist, as shown in the middle spectrum, where 2040 and 2170 are
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present simultaneously. After playing around a bit, I realized that there are
places on the rock face where it is possible to reliably predict which of these
two modes will dominate. Moving the strike point back and forth causes the
pitch of the rock to move up and down about a semitone. This makes sense
because the ratio 2167/2040 is 105 cents. At least one of these two modes is
present at all times, and this mode tends to determine the pitch. When both
sound clearly, the pitch becomes more ambiguous.

As the partials near 5066 and 7666 are present in a number of samples other
than the ones shown, they also form a part of the generic sound of the Chaco
rock. The mode at 1351 is due to one particular edge of the rock. Whenever
this edge is hit, the resonance at 1351 is excited. By striking elsewhere, the
partial at 1351 is subdued.

Combining the above observations about the various modes of the rock, the
“full” behavior can be approximated by forming the composite line spectrum
in Fig. 7.7, which has spectral lines at 1351, 2040, 2167, 4068, 5066, and 7666.
The exact values used for the amplitudes of the partials in the composite
spectrum are somewhat arbitrary, but they are intended to reflect both the
number of samples in which the mode appears and the amplitude of the partial
within those samples.
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Fig. 7.7. The three spectra of the
Chaco rock are combined to form a
composite line spectrum that cap-
tures much of the acoustic behavior
of the samples.

This is clearly not a harmonic sound, because the frequencies are not an
integer multiple of any audible fundamental. The inharmonicity is evident to
both the ear (the semitone between 2040 and 2167 is strikingly inharmonic)
and to the eye (from the spectra).

7.2.3 Draw the Dissonance Curve

The composite spectrum for the Chaco rock shown in Fig. 7.7 can be entered
into the dissonance calculating programs of the appendix in a straightforward
way. Setting the frequency vector and amplitude vectors

freq=[1351, 2040, 2167, 4068, 5066, 7666]
amp=[0.2, 0.9, 0.9, 1.0, 0.5, 0.5]

gives the dissonance curve for the Chaco rock in Fig. 7.8, which shows the
dissonance curve from unison to just a bit more than two octaves.
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Fig. 7.8. Dissonance curve for the composite Chaco rock spectrum has 17 minima
within a two-octave span. These are indicated by the tick marks on the horizontal
axis. Upper axis shows 12-tet scale steps, with several extended for easy comparison.

Perhaps the most surprising features of this dissonance curve are the min-
ima at the fifth, octave, and the octave plus fifth. A little thought (and some
simple calculations) show that these are due to overlapping partials. When
played at a ratio of 1.99, the 4068 partial of the lower tone coincides with the
2040 partial of the (almost) octave. When played at a ratio of 1.51, the 7666
partial of the lower tone coincides with the 5066 partial of the (almost) fifth.
The minimum at 3.01 originates similarly from the coincidence of the 4068
and the 1351 partials.

Except for these familiar intervals, the inharmonic spectrum of the Chaco
rock has a dissonance curve with minima that do not coincide with the notes
of the 12-tet scale, and the most consonant intervals using the Chaco sound
are different from the familiar consonant intervals defined by harmonic tones.
Hence, the most consonant scale using the Chaco rock differs significantly
from the familiar 12-tet scale.

7.2.4 Create an Instrument

Because it is illegal to remove material from a National Historical Site, quar-
rying rocks from Chaco Canyon and sculpting them into a giant lithophone is
not feasible. Consequently, we will pursue a simulation strategy by building a
virtual lithophone, which will be tuned by judicious use of the intervals from
the dissonance curve.

Places where dips in the dissonance curve occur are intervals that sound
most consonant. These points can be read directly from the figure and trans-
lated into their cent equivalents, which gives

0, 272, 386, 545, 713, 824, 908, 1093, 1200, 1472, 1572,
1764, 1908, 2030, 2188, and 2293.
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Subtracting 1200 cents from each of the intervals in the second octave and
rearranging shows that many of the intervals occur in both octaves, although
some are markedly different:

0 272 386 545 713 824 908 1093
0 272 372 564 708 830 988 1093

Clearly, the final scale should contain the common intervals 0, 272, and 1093.
Scale steps at 710 (a compromise between 708 and 713) and 827 (a compromise
between 824 and 830) are sensible. As 908 and 988 are close to a semitone
apart, it is reasonable to use both. Similarly, 545 and 564 differ significantly.
As thirds are so important, we might also choose to use both 372 and 386
(which is exactly the just major third), giving three kinds of thirds: a flat
minor third, a neutral third, and a just major third. This gives an 11-note
scale. As it is much easier to play a tuning that repeats every 12 notes rather
than 11, due to the physical layout of Western keyboards, perhaps we should
add another note?

The largest step in the scale (by far) is the first interval of 272 cents.
This seems like a reasonable place for an extra note because it might help to
smooth a melody as it approaches or leaves the tonic. Recall from the previous
discussion that it is possible to make the rock change pitch by about a semitone
(105 cents) by striking it in different places. As this 105-cent interval naturally
occurs within the stone, it is a reasonable “extra” interval. The full 12-note
scale is defined in the Fig. 7.9, where the notes are shown mapped to a single
octave of the keyboard from C to C.

interval         cents

  1.0       0
    1.063  105
  1.17   272
    1.24  372
  1.25   386

  1.37   545
    1.385   564
  1.507   710
    1.612  827
  1.69   908
    1.77  988
  1.88  1093

  2/1   1200

Keyboard Layout for Chaco Tuning

Fig. 7.9. One possible keyboard layout for the Chaco
lithophone repeats one full octave every 12 keys.
Numbers give the tuning (in cents) of each key with
respect to an arbitrarily chosen fundamental fre-
quency f .

As the above discussion shows, there is nothing inevitable about this par-
ticular tuning. It is a compromise between faithfulness to the dissonance curve
and finding a practical keyboard that is easy to play. Perhaps the most ar-
bitrary decision in the whole process was to base the tuning on the octave.
Although this is perfectly justified when focusing on the first octave, observe
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that the second octave (marked “octave 2” in Fig. 7.8) does not occur at (or
near) a local minimum.

7.2.5 Play Music

The performance molding capabilities of the sampler allow considerable free-
dom in sculpting the ultimate sound of the rock. Adding reverberation helps
to counteract the rapid decay by creating a feeling of space. Imagine playing
the lithophone in a hard-walled cavern where each stroke echoes subtly with
its own reflection.

When playing the rock live, there are inevitable scraping and grating
sounds as the mallet and rocks chafe and abrade. These “extraneous” sounds
were mostly removed from the samples by careful sampling techniques, so
that they would not influence the dissonance curve and the resulting scale.
But now, to make the piece richer, I mixed them back in. Consequently, most
of the rhythm track, and all of the rubbing and grating sounds were derived
from the rock, albeit in a completely nontonal way.

To try and lighten the sound of the piece, I generated some noncorporeal
(electronic) Chaco rocks. A number of interesting timbral variations are pos-
sible by using additive synthesis13 in which the partial structure is specified
from the composite spectrum of Fig. 7.7. These tend to be high and “elec-
tronic” sounding because they are much simpler than natural sounds, but
they do help balance the heaviness of the raw rock samples. Because they are
artificial, there is no constraint on their duration. In the first section of the
piece, they are used as a soprano extension of the rock, whereas in the middle
section they function more like an inharmonic rock organ.

Is music possible in such an idiosyncratic tuning, with such idiosyncratic
timbres? Absolutely. Listen for yourself to the Chaco Canyon Rock in sound
example [S: 44].

7.3 Sounds of Crystals

Sound is a kind of vibration, and there are many kinds of vibrations. For
example, light and radio waves vibrate as they move through space. A stereo
receiver works by translating electromagnetic vibrations into sound vibrations
that you can hear. With such translations any type of vibration is a potential
“sound.” One kind of “noiseless” sound lurks in the molecular structure of
everyday substances, and these sounds can be extracted using techniques of
x-ray crystallography and additive synthesis.14 Thus, the final example of
this chapter begins with the “noiseless sound” of a crystal and realizes this in
13 A program listing of a simple additive synthesis program is given in Appendix D.
14 This idea was first reported in [B: 174].
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a noisy, consonance-based way. The resulting piece, Duet for Morphine and
Cymbal, appears in sound example [S: 45].

The simplest example of a noiseless sound is one that is pitched too low or
too high for human ears to hear, like a dog whistle. Clearly, it is possible to
record or sample a dog whistle, and to then play the sample back at a slower
speed, thus lowering the pitch so that it can be heard. Another translation
technique is employed by Fiorella Terenzi in Music from the Galaxies [D: 44].
Rather than beginning with a dog whistle, she uses digital recordings of the
microwave radio emissions of various interstellar objects. These are slowed
down until they are transposed into the audible range, and music (or at least
sound) is created. Dr. Terenzi calls her work “acoustic astronomy.” Amazingly
enough, in Terenzi’s work, outer space sounds just like you always thought it
would.

7.3.1 Choose the Sound

There are other, less obvious noiseless sounds in nature. A technique called
x-ray diffraction is a way of discovering and understanding the molecular
structure of materials. The idea is to shine an x-ray beam (think of it as the
beam of a flashlight) onto a crystalline structure. The x-rays, which vibrate
as they move, pass through the crystal and are bent when they hit the atoms
inside. Because of the pattern in which the atoms are arranged, the x-rays
bend in a few characteristic directions.

This process, called diffraction, is at work in prisms and rainbows. When
sunlight passes through a prism, it is broken apart into its constituent
elements—the colors of the rainbow. Each color has a characteristic frequency,
and each color is bent (or diffracted) through an angle that is proportional
to that frequency. The same idea works with the diffraction of x-rays through
crystals, but because the structure is more complicated, there is a correspond-
ingly more complicated pattern, composed of beams of x-rays moving in dif-
ferent directions with different intensities.

These diffraction patterns are typically recorded and displayed graphically
as a Fourier transform, a spectral chart that concisely displays the angle and
intensity information. For example, the transform of the chemical bismuth
molybdenum oxide (Bi2Mo3O12) is shown in Fig. 7.10. The main scientific
use of this technique is that each crystal has a unique transform, a unique
signature. Unknown materials can be tested, and their transforms compared
with known signatures. Often, the unknown material can be identified based
on its transform, much as fingerprints are used to identify people.

In materials, any periodic physical structure (usually called a crystal) re-
flects electromagnetic energy (such as x-rays) in a characteristic way that can
be decomposed into a collection of angles. The angle at which diffraction oc-
curs quantifies the resonance point for vibrations in the crystal, although the
vibrations here are of x-rays and not of air. Thus, the angle of the diffracted
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Fig. 7.10. This x-ray diffraction
pattern is the (spatial) Fourier
transform of the chemical bismuth
molybdenum oxide. Using a sim-
ple mapping, it can be transformed
into sound.

beam in crystallography plays a role similar to sine waves in sound, provid-
ing an analogy between the Fourier transform of the crystalline material and
the Fourier transform of a sound. The intensity of the energy at each angle
can be similarly translated into sound wave amplitudes. This then provides a
basis for the mapping of x-ray diffraction data into sound data, and it defines
a method of auditory crystallography, in which the spectrum of the crystal
maps into the spectrum of a sound.

7.3.2 Find the Spectrum

A base frequency, or fundamental, must be chosen to realize the sound. This
choice is probably best left to the performer by assigning various fundamentals
to the various keys of a keyboard, allowing the “crystal tones” to be played
in typical synthesizer fashion. In generating the sound data, the fundamental
frequency is based on the angle, which has maximum intensity. Referring to
Fig. 7.10, the largest spike occurs at an angle of about 25 degrees, which is
labeled θmax.

Each angle θi of the x-ray diffraction pattern can be mapped to a particular
frequency fi via the relation

fi =
sin(θmax)
sin(θi)

which transforms the x-ray diffraction angles into frequencies of sine waves.
In general, angles that are less than θmax are mapped to frequencies higher
than the fundamental, whereas angles that are greater than θmax are mapped
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to lower frequencies. This feature of the mapping is responsible for much of
the uniqueness of crystal sounds, because typical instrumental sounds have
few significant partials below the fundamental. As both sin(θi) and sin(θmax)
can take on any value between 0 and 1, fi can be arbitrarily large (or small).

To see how the formula works, grab a calculator that has the sine function.
For a θmax of 25 degrees, calculate sin(θmax) = sin(25) = 0.4226 (if you get
-0.1323, change from radians to degrees). To find the frequency corresponding
to the spectral line at 41 degrees, calculate sin(41) = 0.6560, and then divide
0.4226/0.6560 = 0.6442. Thus, the frequency of this partial is 0.6442 times
the frequency of the fundamental. For an A note at 440 Hz, this would be
440 × 0.6442 = 283 Hz.

The amplitude of each partial corresponds to the intensity of the θi, and it
may be read directly from the graph. Referring to Fig. 7.10 again, the ampli-
tude of the sine wave with frequency corresponding to an angle of 41 degrees
is about 2/3 the amplitude of the fundamental. Designate the amplitude of
the ith sine wave by ai. Then the complete sound can be generated from
the frequenciesf1, f2, f3, ... with amplitudes a1, a2, a3, ... via the standard
techniques of additive synthesis.

7.3.3 Simplify the Spectrum

As a practical matter, the number of different frequencies must be limited. The
easiest method is to remove all angles with amplitudes below a given threshold.
The threshold used for Bi2Mo3O12, for example, is shown in Fig. 7.10. Using
the formula of the previous section, the truncated x-ray diffraction pattern
can be readily transformed into the set of partials shown in Fig. 7.11. The
angle with the largest intensity in the diffraction pattern (about 25 degrees)
corresponds to the partial with maximum amplitude, which appears at 950
Hz. Because the majority of larger angles in the diffraction pattern occur at
angles larger than 25 degrees, the majority of partials in the resulting sound
lie below 950 Hz. The clustering of partials near 500 Hz is perhaps the most
distinctive feature of this sound.
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Fig. 7.11. The partials of the sound corresponding to the x-ray diffraction pattern
for bismuth molybdenum oxide are tightly clustered.
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It is feasible to create sounds from almost any material. Tom Staley and
I [B: 174] experimented with a number of sound-materials, including glucose,
tartaric acid, topaz, roscherite, reserpine, a family of Bismuth Oxides, cocaine,
and THC.15 One of my favorite sounding crystals was from morphine, and this
sound is featured in the composition Duet for Morphine and Cymbal. There are
numerous sources for x-ray diffraction data, which are available in technical
libraries.

7.3.4 Dissonance Curve

Because crystal sounds like Bi2Mo3O12
16 have a high intrinsic dissonance

caused by tightly packed partials, the dissonance curves tend to be uniform,
having neither deep minima nor large peaks. For instance, Fig. 7.12 shows that
the dissonance curve for Bi2Mo3O12 has eight minima within two octaves
that are barely distinguishable from the general downward slope of the curve.
Thus, no intervals are significantly more consonant than any others, and the
rationale for defining the related scale via the dissonance curve vanishes.
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Fig. 7.12. Dissonance curve for bismuth molybdenum oxide has minima at the tick
marks 1.2, 1.39, 1.42, 1.56, 1.61, 1.68, 1.89, and 2.13. The lack of any genuinely con-
sonant intervals (no deep minima) suggests that these intervals might not produce
a very convincing musical scale.

This problem with the dissonance curves of highly complex spectra is
readily audible. Although the crystal spectra sound interesting, it is difficult
to find any intervals at which the sounds can be reasonably played. Octaves,
fifths, and the small dips in the dissonance curve all sound muddy in the
lower registers, and clash disastrously in the higher registers. One solution
is to return to the diffraction pattern and choose a higher threshold. This
15 Listening to materials does not necessarily have the same effect as consuming

them.
16 I have used bismuth molybdenum oxide throughout this section to describe the

process of transforming crystal data into sound (even though the musical compo-
sition is based on the spectrum of the morphine crystal) because I was unable to
locate a clean x-ray diffraction graph for morphine.
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will give a simpler spectrum and, hence, a more usable dissonance curve. The
danger is that oversimplification may lose the essence of the original diffraction
pattern.

Recall that points of minimum dissonance often develop because partials
in two simultaneously sounding complex tones coincide, and that dissonance
curves show the intervals at which a single sound can be played most con-
sonantly. But if, as with the Bi2Mo3O12 sound, there are no such intervals,
another approach is needed. Perhaps consonance can be regained by changing
the spectrum along with the interval. The simplest approach is to change the
spectrum at each scale step, so that all partials coincide, no matter what scale
steps are played. As will become clear, the total dissonance of any combination
of scale steps need not exceed the intrinsic dissonance of the original sound.

7.3.5 Create an Instrument

Think of a “crystal instrument” in which each partial location defines a scale
step. If the 25 partials of the bismuth molybdenum oxide sound of Fig. 7.11
are labeled f1, f2, ..., f25, then the scale steps occur at precisely these fre-
quencies. Construct a different spectrum at each scale step by choosing from
among the remaining partials. For instance, the spectrum at f1 might contain
partials at f1, f2, f5, f6, f10, f13, f16, f21, and f22. Similarly, the spectrum
at f6 might contain f6, f7, f13, f15, f17, and f20. This is shown diagram-
matically in Fig. 7.13, which displays a possible spectrum for each of the first
13 notes of the scale. Thus, each vertical stripe is a miniature line spectrum
specifying the frequency and amplitude of the partials played when the key
with “fundamental” fi is pressed.

Observe that each spectrum contains a subset of the partials from the
original crystal sound. When playing multiple notes, only partials that occur
in the original sound are present, and hence, the dissonance cannot be signif-
icantly greater than the intrinsic dissonance of the original (it might increase
somewhat because the partials in the combined sound can have different am-
plitudes than in the original). Each note contains only a small piece of the
“complete” timbre, which is revealed only by playing various “chords” and
tonal clusters.17

In terms of implementation, this is more complex than the previous two
examples, because each key of the sampler must contain its own waveform
(corresponding to the specified spectrum) and each spectrum must be created
separately. Nevertheless, the process of generating 25 different spectra and
assigning them to 25 different keys on the sampler is not particularly onerous,
especially when much of the work can be automated by software.
17 Essentially, the higher notes are pieces of a single grand über-chord. This is some-

what parallel to Rameau’s fundamental bass, but for inharmonic sounds.
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Fig. 7.13. The frequencies of the bismuth sound are used to construct a scale
and a family of spectra consonant with that scale. Each scale step occurs with a
fundamental fi, and a possible line spectrum is shown for each.

7.3.6 Play Music

The most striking feature of crystal sounds is their inharmonicity. The spectra
tend to be rich in frequencies within an octave of the fundamental because
the major peaks of the diffraction pattern often lie in clusters. This is in stark
contrast with conventional harmonic tones that consist of integer multiples
of a single base frequency. Crystal spectra do not sound like standard musi-
cal instruments. A tempting analogy is with the inharmonic spectra of bells.
When the crystal tones are struck, and the sound is allowed to die away slowly,
they resonate much like a bell, although additive synthesis does not require
the use of such a percussive envelope. Although some of the sounds (THC
and roscherite, for instance) are very similar, most are distinct. Perhaps the
closest comparison is with synthesizer voices with names like “soundtrack,”
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“metal vapor,” and “space pad,” which give an idea of the subjective flavor
of the sounds.

Because it has a distinct and complex quality, I chose to compose a piece
using the sound of the morphine crystal, which was truncated so as to have
37 different partials. The 37-note partial-based scale was programmed into a
sampler, and a “different” spectrum was assigned to each key, as in Fig. 7.13.
The sounds were then looped, and performance parameters like modulation,
aftertouch, and amplitude envelopes were added.

The keyboard is easy to play, although decidedly unfamiliar. As each note
consists of partials aligned precisely with the partials of the crystal sound, it is
almost impossible to hit “wrong” notes. Almost any combination of notes can
be played simultaneously, creating unique tonal clusters. In essence, partial-
based scales and spectra allow the performer to play with timbre directly,
in a highly structured way. In the Duet for Morphine and Cymbal, complex
clusters of tones are juxtaposed over a rhythmic bed supplied by the more
percussive timbre of the cymbal. The bass line was created exactly as above,
but with very simple spectra (only two or three partials per note) pitched well
below the rest of the sound mass. Finally, a partial-based scale of pure sine
waves was used for the melody lines.

7.3.7 The Sound of Data

Originally we had hoped that by listening to the sounds of crystalline struc-
tures, it would be possible to learn to identify the material from which the
sound came, using the ear as an aid in data analysis. Although we have
been unsuccessful in realizing this goal of auditory crystallography, “noise-
less sounds” such as the spectral interpretation of x-ray diffraction data can
provide a fruitful source of sounds and tunings. This gives a way to “listen”
to crystal structures and to “play” the sounds of materials.

Imitative sound synthesis captures real sounds and places them inside mu-
sical machines. Audio crystallography begins with a conceptual sound (molec-
ular resonances) that does not exist until it is mapped into the audio realm.
There are many other sources of conceptual sound data. For instance, atomic
resonances are often described via Fourier transforms, and they can be sim-
ilarly converted to sound. At the other end of the time scale, planetary and
stellar systems resonate and can be described using Fourier techniques.

Indeed, such explorations have already begun. Alexjander [B: 5] used
transform data to generate musical scales in the article “DNA Tunings” and
the CD Sequencia [D: 1], although the sounds used with these scales were
standard synthesizer tones and acoustic instruments. Terenzi [D: 44] mapped
data from radio telescopes into audio form. She comments, “The predominant
microtonality of the galaxy is a fascinating aspect that could be explored... by
creating new scales and timbres.” Indeed, part of this book presents methods
to carry out such exploration in a musical and perceptually sensible way.
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7.4 Summary

In the pursuit of genuinely xenharmonic music that does not sacrifice con-
sonance or depth of timbral material, this chapter presented three concrete
examples of related tunings and spectra. The tingshaw bell and the Chaco
rock showed how to take the spectrum of an existing sound, draw the disso-
nance curve, find the related scale, and build a playable “instrument.” The
crystal section showed how to take an arbitrary complex spectrum and to
realize it in sound via a related partial-based scale.

Despite the odd timbres and scales, the resulting music gives an impression
of tonality or key. It has the surface feeling of tonality, but it is unlike anything
possible in 12-tet. McLaren comments18:

The Chaco Canyon Rock bounces from one inharmonic “scale mem-
ber” to another, producing an astonishing sense of consonance. The
effect isn’t identical to traditional tonality–yet it produces many of
tonality’s effects. One is instantly aware of “right” and “wrong”
pitches, and there is a sense of spectral “progression.”

We call such music xentonal.
With the intent of making this chapter a “how to” manual, no amount

of detail was spared. Each of many agonizing compositional, technical, and
creative decisions was discussed, the options weighed, and then one way was
chosen. Other paths, other choices of analysis methods, windowing techniques,
scale steps, performance parameters, keyboard mappings, and so on, would
have led to different compositions. Thus, the complete process, as outlined
in the above six steps, is not completely mechanical, and there are numerous
technical and artistic pitfalls. Although the bell, the rock, and the crystal
were used throughout as examples, the methods readily apply to any sound,
although they are most useful with inharmonic sounds.

It is often desirable to augment the original sound with other comple-
mentary tones, and there are three approaches to creating new sounds that
are fully consonant with the original. Additive synthesis has already been
mentioned several times as one way to augment the timbral variation of a
piece. The use of partial-based scales is not limited to sounds created from
x-ray crystallography, and it can be readily applied in other situations. The
third technique, called spectral mappings, is a way of transforming familiar
instrumental sounds into inharmonic versions that are consonant with a de-
sired “target” spectrum. This is discussed at length in the chapter “Spectral
Mappings.”

18 In Tuning Digest 120.
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Adaptive Tunings

Throughout the centuries, composers and theorists have
wished for musical scales that are faithful to the
consonant simple integer ratios (like the octave and
fifth) but that can also be modulated to any key.
Inevitably, with a fixed (finite) scale, some intervals in
some keys must be compromised. But what if the notes
of the “scale” are allowed to vary? This chapter presents
a method of adjusting the pitches of notes dynamically,
an adaptive tuning, that maintains fidelity to a desired
set of intervals and can be modulated to any key. The
adaptive tuning algorithm changes the pitches of notes
in a musical performance so as to maximize sensory
consonance. The algorithm can operate in real time,
is responsive to the notes played, and can be readily
tailored to the spectrum of the sound. This can be viewed
as a generalized dynamic just intonation, but it can
operate without specifically musical knowledge such as
key and tonal center, and it is applicable to timbres
with inharmonic spectra as well as the more common
harmonic timbres.

8.1 Fixed vs. Variable Scales

A musical scale typically consists of an ordered set of intervals that (along
with a reference frequency such as A = 440 Hz) define the pitches of the
notes used in a given piece. As discussed at length in Chap. 4, different scales
have been used in different times and places, and scales are usually thought
of as being fixed throughout a given piece, and even throughout a complete
repertoire or musical genre. However, even master performers may deviate
significantly from the theoretically ideal pitches [B: 21]. These deviations are
not just arbitrary inaccuracies in pitch, but they are an important expressive
element. One way to model these pitch changes is statistically1; another is
to seek criteria that govern the pitch changes. For example, the goal might
be to play in a just scale that maximizes consonance even though the piece
has complex harmonic motion. The key is to use a variable scale, an adap-
tive tuning that allows the tuning to change dynamically while the music is
performed. The trick is to specify sensible criteria by which to retune.
1 As suggested in [B: 4] and discussed in Sect. 4.8.
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Imagine a trumpet player. When performing with other brasses, there is a
temptation to play in the tuning that originates naturally from the overtones
of the tubes. When performing with a fixed pitch ensemble, the temptation
is to temper the pitches. Similarly, a violinist may lock pitch to the overtones
of others in a string quartet but may temper toward 12-tet when playing
with keyboard accompaniment. Some a capella singers (such as Barbershop
quartets) are well known to deviate purposefully from 12-tet so as to lock their
pitches together. Eskelin2 advises his choral singers to “sing into the chord,
not through it,” to “lock into the chord.” In all of these cases, performers
purposely deviate from the theoretically correct 12-tet scale, adjusting their
intonation dynamically based on the musical context. The goal of an adaptive
tuning is to recapture some of these microtonal pitch variations, to allow
traditionally fixed pitch instruments such as keyboards an added element of
expressive power, to put a new musical tool into the hands of performers and
composers, and to suggest a new theory of adaptive musical scales.

8.1.1 Approaches to (Re)tuning

The simplest kind of tuning that is responsive to the intervals in a piece uses
a fixed scale within the piece but retunes between pieces. There is consider-
able historical precedent for this sensible approach. Indeed, harpsichordists
regularly retune their instruments (usually just a few notes) between pieces.
Carlos [B: 23] and Hall [B: 68] introduced quantitative measures of the ability
of fixed scales to approximate a desired set of intervals. As different pieces of
music contain different intervals, and because it is mathematically impossible
to devise a single fixed scale in which all intervals are perfectly in tune, Hall
[B: 68] suggests choosing tunings based on the piece of music to be performed.
For instance, if a piece has many thirds based on C, then a tuning that empha-
sizes the purity of this interval would be preferred. An elegant early solution
to the problem of comma drift in JI uses two chains of meantone a perfect
fifth apart. This was proposed by Vicentino in 1555 [B: 199] and is explored in
[W: 32]. The Groven System3 allows a single performer to play three acoustic
pianos that together are tuned to a 36-tone just scale.

8.1.2 Approaches to Automated (Re)tuning

With the advent of electronics, Polansky [B: 142] suggests that a “harmonic
distance function” could be used to make automated tuning decisions, and
points to the “intelligent keyboard” of Waage [B: 202] that uses a logic circuit
to automatically choose between alternate versions of thirds and sevenths de-
pending on the musical context. As early as 1970, Rosberger [B: 155] proposed
a “ratio machine” that attempts to maintain the simplest possible integer ratio
2 From [B: 54]. Discussed more fully on p. 63.
3 Described at http://vms.cc.wmich.edu/˜code/groven
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intervals at all times. Expanding on this idea, Denckla [B: 39] uses sophisti-
cated tables of intervals that define how to adjust the pitches of the currently
sounding notes given the musical key of the piece. The problem is that the
tables may grow very large, especially as more contextual information is in-
cluded. A modern implementation of this idea can be found in the justonic
tuning system [W: 14], which allows easy switching between a variety of scales
as you play. Frazer has implemented a dynamic tuning in the Midicode Syn-
thesizer [W: 11] that allows the performer to specify the root of the retuned
scale on a dedicated MIDI channel. The hermode tuning [W: 15] “analyses
chords and immediately adjusts the pitch of each note so that the prominent
harmonics line up.” Through its numerous sound examples, the website pro-
vides a strong argument for the use of tunings that can continuously adjust
pitch. The method is discussed further in Sect. 8.2. Another modern imple-
mentation of a dynamic tuning is included in Robert Walker’s Fractal Tune
Smithy [W: 31], which microtonally adjusts the pitch of each new note so as
to maximize the number of consonant dyads currently sounding.

Partch had challenged [B: 128] that “it is conceivable that an instrument
could be built that would be capable of an automatic change of pitch through-
out its entire range.” The hermode tuning system is one response. Another
approach is John deLaubenfels’ [W: 7] spring-mass paradigm that models the
tension between the currently sounding notes (as deviations from an under-
lying just intonation template) and adapts the pitches to relax the tension.
This spring model, detailed in Sect. 8.3, provides a clear physical analog for
the operation of adaptive tunings.

The bulk of this chapter realizes Partch’s challenge using a measure of con-
sonance as its “distance function” to change the pitches of notes dynamically
(and in real time) as the music is performed.4 As we will see, the strategy
can maintain a desirable set of intervals (such as the small integer ratios) ir-
respective of starting tone, transpositions, and modulations. In addition, the
adaptive tuning is responsive to the spectrum of the instruments as they are
played. Recall that the dissonance function DF (α) describes the sensory dis-
sonance of a sound with spectrum F when played at intervals α. Values of α
at which local minima of the dissonance function occur are intervals that are
(locally) maximally consonant. The adaptive tuning algorithm calculates the
(gradient of the) dissonance at each time step and adjusts the tuning of the
notes toward the nearest minimum of the dissonance curve.

8.2 The Hermode Tuning

The hermode tuning, created in 1988 by Werner Mohrlok ([B: 48], [W: 15]),
is a method of dynamically retuning electronic musical instruments in real
time so as to remove tuning errors introduced by the equal-tempered scale.
4 This first appeared in [B: 167], from which key elements of this chapter are drawn.
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In order to help retain compatibility with standard instruments playing in
standard tunings, the hermode tuning adjusts the absolute pitches so that
the sum of the pitch deviations (in cents from the nominal 12-tet) is zero.

The process begins with an analysis of the currently sounding notes. For
example, suppose that C, E, and G are commanded. The system detects the
C major chord and consults a stored table of retunings, finding (in this case)
that the E should be flattened by 14 cents and the G sharpened by 2 cents
to achieve a justly intoned chord. All three notes are then raised in pitch so
that the average deviation is zero, as illustrated in Fig. 8.1. In its normal
operation, the analysis proceeds by reducing all notes to one octave, which
greatly simplifies the tables needed to store the retuning information.

C E G

Equal Temperament
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E (-14)

G (+2)

Just Intonation in C Hermode Tuning
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Fig. 8.1. The hermode tuning retunes chords to just intervals while centering the
pitches so that the sum of all deviations is zero. This helps to maintain horizontal
consistency and compatibility with standard instruments.

“Hermode” is a contraction and anglicization of harmonischer modus,
which translates roughly as “modes of just intonation.” Thus, the goal of
the hermode system is to automatically retune the keyboard into a form of
just intonation while retaining the ability to perform in concert with other
instruments. For example, when the same note appears in successive chords,
certain (vertical) intervals may be tempered to disguise the (horizontal) mo-
tion. In order to counteract possible drifts of the tuning, the hermode tuning
does not allow the level of any chord pattern to be retuned more than ±20
cents, which effectively limits the retuning of any given note to within ±30
cents (except for some of the sevenths). Finally, when many notes are sounding
simultaneously and the optimal tuning becomes ambiguous, the frequencies of
the notes are controlled to the best horizontal line. A complete description of
the hermode tuning can be found in Mohrlok’s paper “The Hermode Tuning
System,” which is available electronically on the CD [W: 26].

The hermode tuning can operate in several modes. These provide different
ways to ensure that the retuned pitches remain close to 12-tet and pragmatic
features aimed at making the system flexible enough for real time use. Some
of these are:

(i) A mode that only adjusts thirds and fifths
(ii) A mode that includes adaptation of sevenths
(iii) A mode that considers the harmonic center of a piece



8.3 Spring Tuning 159

(iv) A mode containing a depth parameter that allows the performer
to use the hermode tuning at one extreme and equal temperament
at the other extreme

The hermode tuning is currently implemented in the Waldorf “Q” synthe-
sizer [W: 34], in the Access “Virus” [W: 33], in organs by Content [W: 5], and
will soon be added to a number of software synthesizers. Theoretically, the
hermode tuning generalizes just intonation in at least two senses. First, it is
insensitive to the particular key of the piece; that is, the same tuning strat-
egy “works” in all keys. Second, because the level at which the tunings are
equalized (above and below equal temperament) is allowed to fluctuate with
the music, there is no absolute tonal center.

8.3 Spring Tuning

To see why adaptive tunings are not completely straightforward to specify
and implement, consider trying to play the simple four-note chord C, D, G,
and A in a hypothetically perfect intonation in which all intervals are just.
The fifths can be made just (each with 702 cents) by setting C = 0, D = 204,
G = 702, and A = 906 cents.5 But C to A is a sixth; if this is to be a just
major sixth, it must be 884 cents.6 Clearly, 884 �= 906, and there is a problem.
Perfection is impossible, and compromise is necessary.

John deLaubenfels’ approach [W: 7], developed in 2000, defines a collection
of tuning “springs,” one for each of the just intervals. As shown in Fig. 8.2,
each spring connects two notes; the spring is at rest when the notes are at
a specified just interval i. If the interval between the notes is wider than
i, the springs pull inward to narrow it. If the notes are tuned too closely,
the spring pushes the pitches apart. Once all pairs of notes are connected
with appropriate springs, the algorithm simulates the tugging of the springs.
Eventually, the system reaches equilibrium where the intervals between the
notes have stabilized at a compromise tuning that balances all competing
criteria.

For example, the right-hand side of Fig. 8.2 shows the four note-chord C,
D, G, and A along with the appropriate assignments of desired intervals to
springs. As the tuning of the fifths and sixths cannot all be pure simulta-
neously, the springs move the pitches slightly away from the just intervals.
The exact values achieved depend on the strength of the springs; that is, the
constants that specify the restoring force of the springs as a function of dis-
placement. The spring tuning presumes that the “pain” caused by deviations
in tuning (measured in cents) is proportional to the square of the pitch change.
Thus, pain is analogous to energy (because the energy stored in a linear spring

5 C to G is 702 cents and G to D is also 702 cents. Hence, C to D is 1404 cents,
which is octave reduced to 204 cents. D to A is then 204 + 702 = 906 cents.

6 Recall Table 4.2 on p. 60.
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Fig. 8.2. Springs are at rest when the notes are at their assigned just intervals.
Once all notes are connected by a network of springs (the right-hand network shows
the four-note chord C, D, G, A and its springs), the algorithm simulates the pushing
and pulling of springs. At convergence, a compromise tuning is achieved.

is proportional to the square of the displacement), and the goal of the spring
tuning is to minimize the pain.

The mistuning of simultaneously sounding notes is only one kind of pain
that can occur in a variable tuning. A second kind occurs when the same
note is retuned differently at different times. This happens when the note
appears in different musical contexts, i.e., in different chords, and it may be
disconcerting in melody lines and in sustained notes when it causes the pitch
to waver and wiggle. The third kind occurs when the whole tuning wanders
up or down. All three of these issues are discussed in detail in the context of
the adaptive tuning algorithm of Sect. 8.4.

For the spring tuning, there is an elegant solution: Assign new kinds of
springs to deal with each new kind of pain. For example, Fig. 8.3 shows a
collection of springs connected horizontally between successive occurrences of
the same notes. Observe that these springs do not pull horizontally in time,
but vertically in pitch. Strengthening the springs ensures less wavering of the
pitches across time, but it pulls the vertical harmonies further from nominal.
Weakening these springs allows more variation of the pitches over time and
closer vertical harmonies. Similarly, “grounding” springs can be assigned to
combat any tendency of the tuning to drift. This can be implemented by
connecting springs from each note to the nearest 12-tet pitch (for instance).

Thus, there are three ways that the tuning can deviate from ideal and three
kinds of springs: Across each vertical interval is a spring that pulls toward the
nearest just ratio, horizontal springs control the instability of pitches over
time, and grounding springs counteract any global wandering of the tuning.
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Fig. 8.3. When notes are allowed to vary
in pitch, a C note in one chord may dif-
fer in pitch from the “same” C note in an-
other. This wandering of pitches can be con-
trolled by assigning a second set of springs
between the same notes occurring at differ-
ent (nearby) times. These springs are drawn
vertically because they do not pull horizon-
tally (in time), but only vertically (in pitch).

The model has several parameters that directly influence how the retuning
proceeds:

(i) The strength of the vertical springs may differ for each interval
type.

(ii) The strength of the horizontal strings may differ depending on the
distance in time. Setting all horizontal springs completely rigid
allows the same algorithm to find an “optimal” fixed tuning.7

(iii) The strength of the grounding springs may differ to specify the
fidelity to the underlying fixed tuning.

(iv) The strength of the springs may be a function of the loudness of
the notes.

(v) The time interval over which events are presumed to be simulta-
neous may be changed.

(vi) There may be a factor that weakens the horizontal springs when
many notes are sounding.

The large number of parameters allows considerable flexibility in the imple-
mentation and may be changed based on individual taste. For example, a
listener preferring pure intervals may de-emphasize the strength of the hori-
zontal springs whereas a listener who dislikes wavering pitches may increase
the strength of the horizontal springs. One thorny issue lies in the automatic
7 In a preferred (non-real-time) application of the spring tuning, this “calculated

optimum fixed tuning” (COFT) can be used as a starting point for further adap-
tation by tying the grounding springs to the COFT. This helps to lend horizontal
consistency to the retuned piece. The COFT is analogous to the procedure applied
to the Scarlatti sonatas in Sect. 11.2 using the consonance-based algorithm.
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specification of which size or kind of spring should be assigned to each inter-
val. For example, the just interval of a major second may be represented by
the frequency ratio 10

9 , by 9
8 , or by 8

7 , depending on the musical context. In
the spring tuning, this fundamental assignment must be made in a somewhat
ad hoc manner, unless some kind of extra high-level logic is invoked. In one
implementation, dissonances such as the major and minor seconds are not tied
together with springs (equivalently, the spring constants are set to zero). A
number of retunings of common practice pieces are available at deLaubenfels’
personal web page, see [W: 7].

8.4 Consonance-Based Adaptation

Another way of creating an adaptive tuning is to calculate the sensory disso-
nance of all notes sounding at each time instant and to move the pitches so as
to decrease the dissonance. Picture the mountainous contour of a dissonance
curve such as Fig. 8.4. If the musical score (or the performer) commands two
notes that form the interval α1, then consonance can be increased by making
the interval smaller. If the score commands α2, the consonance can be in-
creased by making the interval larger. In both cases, consonance is increased
by sliding downhill, and dissonance is increased by climbing uphill. As the
minima of the dissonance curve define the related scale, the simple strategy
of always moving downhill provides a musically sensible way to automati-
cally play in the related scale. This is the idea behind the adaptive tuning
algorithm.
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Fig. 8.4. Any interval between α1 and α2 is dynamically retuned by sliding downhill
on the dissonance curve to the nearby local minimum at α∗. This adaptive tuning
strategy provides a way to automatically play in the related scale.

The algorithm must have access to the spectra of the sounds it is to adjust
because dissonance curves are dependent on the spectra. This information
may be built-in (as in the case of a musical synthesizer or sampler that inher-
ently “knows” the timbre of its notes), or it may be calculated (via a Fourier
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transform, for instance). The algorithm adjusts the pitch of each note so as to
decrease the dissonance until a nearby minimum is reached. This modified set
of pitches (or frequencies) is then output to a sound generation unit. Thus,
whenever a new musical event occurs, the algorithm calculates the optimum
pitches so that the sound (locally) minimizes the dissonance.

There are several possible ways that the necessary adjustments can be
carried out. Consider the simple case of two notes with pitches F1 and F2
(with F1 < F2). With no adaptive tuning, the interval F2/F1 will sound.
The simplest adaptive strategy would be to calculate the dissonances of the
intervals F2/F1+ε for various values of ε, (appropriate ε’s could be determined
by the bisection method, for instance). The point of minimum dissonance is
given by that value of ε for which the dissonance is smallest. The pitches of F1
and F2 are then adjusted by an appropriate amount, and the more consonant
interval sounded.

This simple search technique is inefficient, especially when it is necessary to
calculate the dissonance of several simultaneous notes.8 The gradient descent
method [B: 205] is a better way to find the nearest local minimum of the
dissonance curve. Suppose that m notes, each with spectrum F are desired.
Let f1 < f2 < ... < fm represent the fundamental frequencies (pitches) of the
notes. A cost function D is defined to be the sum of the dissonances of all
intervals at a given time,

D =
∑
i,j

DF (
fi

fj
). (8.1)

An iteration is then conducted that updates the fi by moving downhill over
the m dimensional surface D. This is⎧⎨

⎩
new

frequency
values

⎫⎬
⎭ =

⎧⎨
⎩

old
frequency

values

⎫⎬
⎭ − {stepsize}{gradient} (8.2)

where the gradient is an approximation to the partial derivative of the cost
with respect to the ith frequency. The minus sign ensures that the algorithm
descends to look for a local minimum (rather than ascending to a local max-
imum). More concretely, the algorithm is:

8 The number of directions to search increases as 2m, where m is the number of
notes.
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Adaptive Tuning Algorithm

do
for i = 1 to m

fi(k + 1) = fi(k) − µ
dD

dfi(k)
(8.3)

endfor
until |fi(k + 1) − fi(k)| < δ for all i

where k is an iteration counter. Thus, the frequencies of all notes are modified
in proportion to the change in the cost and to the stepsize µ until convergence
is reached, where convergence means that the change in all frequencies is less
than some specified δ. Some remarks:

(i) δ should be chosen based on the tuning accuracy of the sound
generation unit.

(ii) It may sometimes be advantageous to fix the frequency of one of
the fi and to allow the rest to adapt relative to this fixed pitch.

(iii) It is sensible to carry out the adaptation with a logarithmic step-
size, that is, one that updates the frequency in cents rather than
directly in Hertz.

(iv) It is straightforward to generalize the algorithm to retune any
number of notes, each with its own spectral structure.

(v) A detailed discussion of the calculation of dD
dfi(k) is given in Ap-

pendix H.
(vi) There are many ways to carry out the minimization of D. An

iterative algorithm is proposed because closed-form solutions for
the minima are only possible in the simplest cases.

(vii) If desired, the adaptation can be slowed by decreasing the stepsize.
Outputting intermediate values causes the sound to slide into the
point of maximum consonance. This is one way to realize Darreg’s
vision of an “elastic” tuning [B: 36].

8.5 Behavior of the Algorithm

This section examines the adaptive tuning algorithm by looking at its behav-
ior in a series of simple situations. Any iterative procedure raises issues of
convergence, equilibria, and stability. As the adaptive tuning algorithm is de-
fined as a gradient descent of the dissonance D, such analysis is conceptually
straightforward. However, the function D is complicated, its error surface is
multimodal, and exact theoretical results are only possible for simple combi-
nations of simple spectra. Accordingly, the analysis focuses on a few simple
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settings, and examples are used to demonstrate which aspects of these simple
settings generalize to more complex (and hence more musically interesting)
situations. The next few examples (which are formalized as theorems in Ap-
pendix H) show the close relationship between the behavior of the algorithm
and the surface formed by the dissonance curve. In effect, the behavior of the
algorithm is to adjust the frequencies of the notes so as to make a controlled
descent of the dissonance curve.

8.5.1 Adaptation of Simple Sounds

The simplest possible case considers two notes F and G, each consisting of
a single partial. Let f0 and g0 be the initial frequencies of the two sine wave
partials, with f0 < g0, and apply the adaptive tuning algorithm. Then either

(i) fk approaches gk as k increases
(ii) fk and gk grow further apart as k increases

To see this graphically, picture the algorithm evolving on the single humped
dissonance curve of Fig. 8.5. If the initial difference between f0 and g0 is small,
then the algorithm descends the near slope of the hump, driving fk and gk

closer together until they merge. If the difference between f0 and g0 is large,
then the algorithm descends the far side of the hump and the dissonance is
decreased as fk and gk move further apart. The two partials drift away from
each other. (This is conceptually similar to the “parameter drift” of [B: 172],
where descent of an error surface leads to slow divergence of the parameter
estimates.) Together, (i) and (ii) show that the point of maximum dissonance
(the top of the hump) is an unstable equilibrium.
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Fig. 8.5. Dissonance between two notes f and g, each a pure sine wave. There are
two possible behaviors as the adaptive tuning algorithm is iterated, depending on
the starting frequency. If g is in region A, then g ultimately merges with f . If g is
in region B, then g and f ultimately drift apart.

For sounds with more complex spectra, more interesting (and useful) be-
haviors develop. Figure 8.6 shows how interlaced partials can avoid both drift-
ing and merging. Suppose that the note F consists of two partials fixed at
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frequencies f and αf with α > 1, and that G consists of a single partial at
frequency g0 that is allowed to adapt via the adaptive tuning algorithm. Then:

(i) There are three stable equilibria: at g = f , at g = αf , and at
g = (1 + α)f/2

(ii) If g0 is much less than f , then gk drifts toward zero
(iii) If g0 is much greater than f then gk drifts toward infinity

The regions of convergence for each of the possible equilibria are shown below
the horizontal axis of Fig. 8.6. As in the first example, when g is initialized
far below f or far above αf (in regions A or E), then g drifts away, and if g
starts near enough to f or αf (in regions B or D), then g ultimately merges
with f or αf .
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Fig. 8.6. Dissonance between a note with two fixed partials at f and αf , and a
note with a single partial g, as a function of g. There are five possible behaviors as
the adaptive tuning algorithm is iterated, depending on the starting frequency. If g
begins in region A, then g drifts toward zero. If g begins in region B, then g merges
with f . If g begins in region C, then g has a minimum at (1+α)f

2 . If g begins in region
D, then g merges with αf . If g begins in region E, then g drifts toward infinity.

The interesting new behavior in Fig. 8.6 occurs in region C where g is
repelled from both f and αf and becomes trapped at a new minimum at
(1+α)f

2 . In fact, this behavior is generic—sandwiched partials typically reduce
dissonance by assuming intermediate positions. This is fortunate, because it
gives rise to many of the musically useful properties of adaptive tunings. In
particular, sets of notes with interlaced partials do not tend to drift apart be-
cause it is difficult for partials to cross each other without a rise in dissonance.

To be concrete, consider two notes, F with partials at frequencies (f0, f1, ...fn)
and G with partials at frequencies (g0, g1, ...gm). Suppose that gi is sandwiched
between fj and fj+1,

fj < gi < fj+1,

and that all other partials are far away
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fj−1 << fj , fj+1 << fj+2
gi−1 << fj , fj+1 << gi+1.

Then the dissonances (and their gradients) between gi and the fi are in-
significant in comparison with the dissonances between gi and the nearby
frequencies fj and fj+1. Thus, gi acts qualitatively like the g of Fig. 8.6 as it
is adjusted by the adaptive tuning algorithm toward some intermediate equi-
librium. Of course, the actual convergent value depends on a complex set of
interactions among all partials, but gi tends to become trapped, because ap-
proaching either fj or fj+1 requires climbing a hump of the dissonance curve
and a corresponding increase in dissonance.

8.5.2 Adapting Major and Minor Chords

As more notes are adapted, the error surface increases in dimension and be-
comes more complex. Notes evolve on an m-dimensional sheet that is pocketed
with crevices of consonance into which the algorithm creeps. Even a quick
glance at Appendix H shows that the number of equations grows rapidly as
the number of interacting partials increases.

To examine the results of such interactions in a more realistic situation,
Table 8.1 reports converged values (in Hertz, accurate to the nearest integer)
for triads played with harmonic tones with varying numbers of partials. In each
case, the algorithm is initialized with fundamental frequencies that correspond
to the 12-tet notes C, E�, G (a minor chord) or to C, E, G (a major chord),
and the algorithm is iterated until convergence. No drifting notes or divergence
occurs because the partials of the notes are interlaced. In all cases, the fifth
(the interval between C and G) remains fixed at a ratio of 1.5:1. For simple
two and three partial notes, the major and minor chords merge, converging
to a “middle third” that splits the fifth into two parts with ratios 1.21 and
1.24. With four partials, the middle third splits the fifth into two nearly equal
ratios of 1.224.

Table 8.1. Converged major and minor chords differ depending on the number of
harmonic partials they contain.

Initial Initial Converged Converged Converged
notes frequencies frequencies frequencies frequencies

in 12-tet (2–3 partials) (4 partials) (5–16 partials)
C 523 523 523 523
E� 622 647 641 627
G 784 784 784 784

C 523 523 523 523
E 659 647 641 654
G 784 784 784 784
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For notes with five or more partials (up to at least 16), the two initial-
izations evolve into distinct musical entities. The major chord initialization
converges to a triad with ratios 1.2 and 1.25, and the minor chord initialization
converges to a triad with the inverted ratios 1.25 and 1.2. These are consistent
with the minor and major thirds of the just intonation scale, suggesting that
performances in the adaptive tuning are closely related to a just intonation
when played with harmonic timbres of sufficient complexity. Thus, when the
sounds have a harmonic spectra, the action of the adaptive tuning algorithm
is consistent with just intonation.

8.5.3 Adapting to Stretched Spectra

When the spectra deviate from a harmonic structure, however, the justly
tuned intervals are not necessarily consonant, and the adaptation operates so
as to minimize the sensory consonance. In extreme cases, it is easy to hear
that the ear prefers consonance over justness. A particularly striking example
is the use of sounds with stretched (and/or compressed) spectra as in the
Challenging the Octave sound example [S: 1] from Chap. 1.

Consider an inharmonic sound with partials at

f, 2.1f, 3.24f, 4.41f, and 5.6f

which are the first five partials of the stretched spectrum defined by

fn = fAlog2 n

for A = 2.1. As shown in Table 8.2, an initial set of notes at C, E, G, C con-
verges to notes with fundamental frequencies that are completely unrelated to
“normal” 12-tet intervals based on the semitone 12

√
2. The convergent values

also bear no resemblance to the just intervals. Rather, they converge near
notes of the stretched scale defined by the stretched semitone β = 12

√
2.1.

Thus, a major chord composed of notes with stretched timbres converges to a
stretched major chord. Similarly, the minor chord converges to a stretched mi-
nor chord. Sound examples [S: 46] and [S: 47] demonstrate, first in the original
12-tet tuning and then after the adaptation is completed.

8.5.4 Adaptation vs. JI vs. 12-tet

As harmonic tones are related to a scale composed of simple integer ratios, us-
ing the adaptive tuning strategy is similar to playing in a Just Intonation (JI)
major scale, at least in a diatonic setting. Significant differences occur, how-
ever, when the tonal center of the piece changes. Consider a musical fragment
that cycles through major chords around the circle of fifths:

C G D A E B F� C� G� D� A� F C
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Table 8.2. Using five partial stretched timbres, the adaptive tuning algorithm
converges to stretched major and minor chords. The chords in this table can be
heard in sound examples [S: 46] and [S: 47].

Initial Initial Nearest
notes frequency of Convergent Convergent stretched step

in 12-tet fundamental values ratios β =12 √
2.1

C 523 508 1.0 β0 = 1
E� 622 616 1.21 β3 = 1.20
G 784 784 1.54 β7 = 1.54
C 1046 1067 2.1 β12 = 2.1

C 523 523 1.0 β0 = 1
E 659 665 1.27 β4 = 1.28
G 784 808 1.54 β7 = 1.54
C 1046 1100 2.1 β12 = 2.1

For reference, this is performed in sound example [S: 48] in 12-tet. When
played in JI in the key of C major,9 as in sound example [S: 49], the progression
appears very out-of-tune. This occurs because intervals in keys near C are just
(or nearly so), whereas intervals in distant keys are not.10 For instance, major
thirds are harmoniously played at intervals of 5:4 in the keys near C, but they
are sounded as 32:25 in A and E and as 512:405 in F�. Some fifths are impure
also; the fifth in the D� chord, for example, is played as 40:27 rather than
the desired 3:2. Such inaccuracies are readily discernible to the ear and sound
out-of-tune and dissonant. Problems such as this are inevitable for any non-
equal fixed tuning [B: 68]. The adaptive tuning, on the other hand, is able
to maintain the simple 5:4 and 3:2 ratios throughout the musical fragment
because it does not maintain a fixed set of intervals. The circle of fifths is
performed again in sound example [S: 50]; all chords are just and consonant.

One might consider switching from JI in C to JI in G to JI in D and so
on, using the local musical key to determine which JI scale should be used at
a given instant. This results in a performance identical to [S: 50].11 This cures
the immediate problem for this example. Unfortunately, it is not always easy
to determine (in general) the proper local key of a piece, nor even to determine
if and when a key change has occurred. The adaptation automatically adjusts
the tuning to the desired intervals with no a priori knowledge of the musical
key required. When used with harmonic timbres, it is reasonable to view the
adaptive tuning as a way to continuously interpolate between an appropriate
family of just intonations.
9 Using the 12 note JI scale from Fig. 4.7 on p. 62.

10 Such injustices shall not go unpunished!
11 This is the approach taken by table-driven schemes such as the justonic [W: 14]

tuning.
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8.5.5 Wandering Tonics

A subtler problem12 is that variable tunings may drift or wander. For example,
Hall [B: 68] points out that if the chord pattern of Fig. 8.7 is played in JI with
the tied notes held at constant pitch, then the instrument finishes lower than
it begins. Equal temperament prevents this drift in tonal center by forcing the
mistuning of many of the intervals away from their just small integer ratios.
The adaptive tuning maintains the just ratios, and the tonal center remains
fixed. This is possible because the pitches of the notes are allowed to vary
microtonally. For instance, the C note in the second chord is played at 528
Hz, and the “same” note in the first chord is played at 523 Hz.

Frequencies when 
played in 12-tet:

  392   440   440   392    392
  329.5 329.5 293.5 293.5  329.5
  261.5 261.5 293.5 247    261.5
  131   110    87.5  98    131

Frequencies when 
played in adaptive 
tuning:

  392.5 440   438.5 391    392.5
  327   330   292   294    327
  261.5 264   292   245    261.5
  131   110    87.5  98    131

Frequencies when
played in JI with held 
notes:

  392.5 436---436   387.5--387.5
  327   327   290.5-290.5  323
  261.5-261.5 290.5 242    258.5
  131   109    87    96.5  129

Ratios when played in 
adaptive tuning and 
in JI:

  6/5   4/3   3/2   4/3    6/5
  5/4   5/4   1/1   6/5    5/4
  2/1   6/5   5/3   5/4    2/1

Fig. 8.7. An example of drift in Just Intonation: the fragment ends about 21 cents
lower than it begins. 12-tet maintains the pitch by distorting the simple integer
ratios. The adaptive tuning microtonally adjusts the pitches of the notes to maintain
simple ratios and to avoid the wandering pitch. Frequency values are rounded to the
nearest 0.5 Hz. The three cases are performed in sound examples [S: 51] to [S: 53].

12 Gary Morrison, in the Tuning Digest (9/9/96), argues that wandering tonics can
also be viewed as a feature of dynamic tunings that “have a fascinating musical
effect.”
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Three renditions of Fig. 8.7 are played in sound examples [S: 51] to [S: 53].
In [S: 51], the phrase is played six times in just intonation. Because of the tied
notes, the tuning drifts down about 21 cents each repeat. As the first and the
final chords are identical, each repeat starts where the previous one ends. After
five repetitions, it has drifted down about a semitone. The final rendition is
played at the original pitch to emphasize the drift. For comparison, [S: 52]
plays the same phrase in 12-tet; of course, there is no drift. Similarly, [S: 53]
plays the phrase in adaptive tuning. Again there is no drift; yet all chords
retain the consonance of simple integer ratios.

One of the major advantages of the 12-tet scale over JI is that it can be
transposed to any key. The adaptive tuning strategy shares this advantage,
as demonstrated by the circle of fifths example. Both 12-tet and the adaptive
tuning can be played starting on any note (in any key). The 12-tet tuning has
sacrificed consonance so that (say) all C notes can have the same pitch. As
before, the adaptive tuning algorithm modifies the pitch of each note in each
chord slightly to increase the consonance. Thus, the C note in the C chord
has a (slightly) different frequency from the C note in the F chord, and from
the (12-tet enharmonically equivalent) B� note in the G� chord.

When restricted to a single key (or to a family of closely related keys),
JI has the advantage that it sounds more consonant than 12-tet (at least
for harmonic timbres), because all intervals in 12-tet are mistuned somewhat
from the simple integer ratios. The adaptive tuning shares this advantage
with JI. Thus, the difference between an adapted piece and the same piece
played in 12-tet is roughly the same as the difference between JI and 12-tet,
for pieces in a single key when played with harmonic timbres. Whether this
increase in consonance is worth the increase in complexity (and effort) is much
debated, although the existence of groups such as the Just Intonation Network
is evidence that some find the differences worthy of exploration.

When focusing on timbres with harmonic spectra, the adaptive spring
tuning of Sect. 8.3 and the consonance-based adaptation have much the same
effect, although the spring tuning requires more information because it must
specify which just interval to assign to each spring. When the timbres are
inharmonic, however, neither the spring tuning nor the table-driven models
are appropriate.

8.5.6 Adaptation to Inharmonic Spectra

A major advantage of the adaptive tuning approach becomes apparent when
the timbres of the instruments are inharmonic, that is, when the partials
are not harmonically related. Consider a “bell-like” or “gong-like” instrument
with the inharmonic spectrum of Fig. 8.8, which was designed for play in 9-tet
using the techniques of Chap. 12. The dissonance curve is significantly different
from the harmonic dissonance curve. The most consonant intervals occur at
steps of the 9-tet scale (the bottom axis) and are distinct from the simple
integer ratios.The 12-tet scale steps (shown in the top axis) do not closely
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approximate most of these consonant intervals. Table 8.3 demonstrates the
behavior of the adaptive tuning algorithm when used with this 9-tet tone.
Pairs of notes are initialized at standard 12-tet; the algorithm compresses or
expands them to the nearest minimum of the dissonance curve. In all cases,
the converged values are intervals in 9-tet. Similarly, a standard major chord
converges to the root, third, and fifth scale steps of the 9-tet scale.

9-tet scale steps

12-tet scale steps
unison                 M3 P4         P5                         octave
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Fig. 8.8. Dissonance curve for an inharmonic timbre with partials at 1, β9, β14, β18,
β21, β25, β27, and β30, where β = 9√2. This timbre is appropriate for 9-tet, because
minima of the dissonance curve occur at many of the 9-tet scale steps (bottom axis)
and not at the steps of the 12-tone scale steps (top axis). Observe that every third
step in 9-tet is equal to every fourth step in 12-tet. This follows from the numerical
coincidence that (9

√
2)3 = (12

√
2)4.

The adaptive tuning strategy can be viewed as a generalization of just
intonation in two directions. First, it is independent of the key of the music
being played; that is, it automatically adjusts the intonation as the notes of
the piece move through various keys. This is done without any specifically
“musical” knowledge such as the local key of the music. Second, the adaptive
tuning strategy is applicable to inharmonic as well as harmonic sounds, thus
broadening the notion of just intonation to include a larger palette of sounds.
Recall that a scale and a timbre are said to be related if the timbre generates
a dissonance curve with local minima at the scale steps. Using this notion
of related scales and timbres, the action of the algorithm can be described
succinctly:

The adaptive tuning algorithm automatically retunes notes so as
to play in intervals drawn from the scale related to the timbre of
the notes.

8.6 The Sound of Adaptive Tunings

This section examines the adaptive tuning algorithm by listening to its behav-
ior. Several simple sound examples demonstrate the kinds of effects possible.
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Table 8.3. Using the 9-tet sound of Fig. 8.8, the adaptive tuning algorithm con-
verges to minima of the related dissonance curve. The major chord converges to a
chord with 9-tet scale steps 0, 3, and 5.

Initial Initial Nearest
notes frequency of Convergent Convergent 9-tet step

in 12-tet fundamental values ratios β =9 √
2

C 523 528
E� 622 617

1.17 β2 = 1.17

C 523 528
E 659 659

1.26 β3 = 1.26

C 523 518
F 698 705

1.36 β4 = 1.36

C 523 513
F� 739 755

1.47 β5 = 1.47

C 523 528
G 783 777

1.47 β5 = 1.47

C 523 523
G� 830 830

1.59 β6 = 1.59

C 523 519
A 880 888

1.71 β7 = 1.71

C 523 527
E 659 664

1.26 β3 = 1.26

G 783 774
1.47 β5 = 1.47

The compositions of Chap. 9 (see especially Table 9.1 on p. 189) demonstrate
the artistic potential.

8.6.1 Listening to Adaptation

In sound example [S: 54], the adaptation is slowed so that it is possible to hear
the controlled descent of the dissonance curve. Three notes are initialized
at the ratios 1, 1.335, and 1.587, which are the 12-tet intervals of a fourth
and a minor sixth (for instance, C, F , and A�). Each note has a spectrum
containing four inharmonic partials at f, 1.414f, 1.7f, 2f . Because of the
dense clustering of the partials and the particular intervals chosen, the primary
perception of this tonal cluster is its roughness and beating. As the adaptation
proceeds, the roughness decreases steadily until all of the most prominent
beats are removed. The final adapted ratios are 1, 1.414, and 1.703.

This is illustrated in Fig. 8.9, where the vertical grid on the left shows the
familiar locations of the 12-tet scale steps. The three notes are represented by
the three vertical lines, and the positions of the partials are marked by the
small circles. During adaptation, the lowest note descends, and the higher two
ascend, eventually settling on a “chord” defined by the intervals g, 1.41g, and
1.7g. The arrows pointing left show the locations of four pair of partials that
are (nearly) coinciding.
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F#=1.41 f

C=1.0 f

F=1.33 f

Ab =1.58 f

C=2.0 f

C=4.0 f

1.0 g

1.41 g

1.7 g

2.0 g

2.4 g

F#=1.41 f

C=1.0 f

F=1.33 f

Ab =1.58 f

C=2.0 f

C=4.0 f

1.0 g

1.41 g

1.7 g

2.0 g

2.4 g

Fig. 8.9. Three notes have funda-
mentals at C, F , and A�, and par-
tials at 1.0f , 1.41f , 1.7f , and 2.0f .
After adaptation, the C at fre-
quency f slides down to frequency
g, and the other two notes slide
up to 1.41g and 1.70g. The arrows
on the right emphasize the result-
ing four pairs of (almost) coincid-
ing partials. Sound example [S: 54]
demonstrates.

Sound example [S: 54] performs the adaptation three times at three dif-
ferent speeds. The gradual removal of beats is clearly audible in the slowest.
When faster, the adaptation takes on the character of a sliding portamento.
There is still some roughness remaining in the sound even when the adapta-
tion is complete, which is due to the inherent sensory dissonance of the sound.
The remaining slow beats (about one per second) are due to the resolution of
the audio equipment.

There are two time scales involved in the adaptation of a musical passage.
First is the rate at which time evolves in the music, the speed at which notes
occur. Second is the time in which the adaptation occurs, which is determined
by the stepsize parameter. The two times are essentially independent13; that
is, the relative rates of the times can be chosen by the performer or composer.
For instance, the adaptation can be iterated until convergence before the
sound starts, as was done in Fig. 8.7 and sound examples [S: 50] and [S: 53].
Alternatively, intermediate values of the adaptive process can be incorporated
into the performance, as was done in sound example [S: 54]. The resulting
pitch glide can give an interesting elasticity to the tuning, analogous to a
guitar bending strings into tune or a brass player lipping the sound to improve
the intonation. Adaptation provides a kind of “intelligent” portamento that
begins wherever commanded by the performer and slides smoothly to a nearby
most- consonant chord. The speed of the slide is directly controllable and may
be (virtually) instantaneous or as slow as desired.

13 The inevitable time lag due to the computation of the algorithm can be made
almost imperceptible by using a reasonably fast processor.
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8.6.2 Wavering Pitches

When the two time rates are coupled incorrectly, there may be some unusual
(and undesirable) effects. Several sound examples demonstrate using the first
section of Domenico Scarlatti’s harpsichord sonata K1. These are as follows:

(i) [S: 55]: Scarlatti’s K1 sonata in 12-tet
(ii) [S: 56]: Scarlatti’s K1 sonata with adaptation (incorrect stepsizes)
(iii) [S: 57]: Scarlatti’s K1 sonata with adaptation.

The first two measures of the sonata are shown in Fig. 8.10. The first eight
notes in all three are identical because only one note is sounding. When two
voices occur simultaneously, both are adapted, and the adapted version differs
from the 12-tet version. The most obvious change is during the trill at the end
of the second measure, although subtler differences can be heard throughout.
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Fig. 8.10. Scarlatti’s Sonata K1 is played in 12-tet, and with different speeds of
adaptation. The first two measures are shown.

Sound example [S: 58] focuses attention on the second measure by playing
all three versions one after the other. As written (and as heard in 12-tet),
the trill alternates between A and B�, and it is accompanied by a slower
repeated A an octave below. When adapted (assuming a harmonic spectrum
for the harpsichord),14 the behavior of the algorithm can best be described
by reference to a dissonance curve for harmonic sounds (such as in Fig. 6.1
on p. 100). The octaves in the trill are unchanged, because the octave is a
minimum of the dissonance curve. The interval between A and B� does not
fall on a minimum, and the adaptation moves downhill on the dissonance
curve, pushing the notes apart to the nearby minimum that occurs at a ratio
of 2.25 (which is just a bit more than an octave plus a whole tone). The
algorithm essentially “splits the difference” by sharpening the B� about 50
cents and simultaneously flattening the A about 50 cents. It is the rapid
oscillation between the true A and the flat A that causes the wavering.
14 The harpsichord is assumed to have nine harmonic partials where the ith partial

has amplitude 0.9i. See Fig. 11.7 on p. 234.
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Although the algorithm is moving each pair to the most consonant nearby
interval, the overall effect is unlikely to be described as restful consonance.
Rather, the rapid wiggling of the lower tone during the trill is probably confus-
ing and disconcerting. This kind of wavering of the pitch can occur whenever
rapidly varying tones occur over a bed of sustained sounds. Although this
may be useful as a special effect, it is certainly not always desirable. The
strangeness of the gliding of the adaptive tuning is especially noticeable when
played using an instrumental sound like the harpsichord that cannot bend its
pitch.

There are several different ways to fix the wavering pitch problem. The
simplest is to adapt the notes with a slower time constant, like the elastic
tuning of sound example [S: 54]. By adapting more slowly, the pitches of
rapid trills such as in the second measure of the Scarlatti piece do not have
time to wander far, thus reducing the waviness. Another solution is to adapt
those notes that are already sounding more slowly than newer notes. This is
implemented by making the stepsize corresponding to new notes larger than
the stepsize corresponding to held notes. A third approach, using the idea of
a musical “context” or “memory,” is explored in Sect. 9.4.

To investigate this, the same two measures of the Scarlatti K1 sonata are
played with new notes adapted ten times as fast as held notes. In sound exam-
ple [S: 58](c), the wavering of the pitch beneath the trill is almost inaudible.
A careful look at the adapted notes shows that the sustained A descends only
about 10 cents, and the B�’s ascend almost 90 cents, again forming an inter-
val of 2.25. Thus, the sustained A only wiggles imperceptibly and the B� has
risen to (almost) a B.

This example demonstrates that the use of the adaptive tuning can be at
odds with a composers intent. Likely, Scarlatti meant for the dissonance of
the trill to be part of the effect of the piece (else why write it?). By turning
this dissonance into a slightly wavering series of consonances, this intent has
been subverted, underscoring the danger of applying a musical transformation
in a setting to which it is not appropriate. This example shows the behavior
of the adaptive tuning algorithm in a particularly unfriendly setting. When
many notes are sounding at once, new notes (such as the trill) become less
likely to cause large wavering changes. Thus, the simple two note setting is
the most likely place to encounter the wavering pitch phenomenon.

8.6.3 Sliding Pitches

In the adaptive tuning algorithm, whenever a new note occurs, all currently
sounding notes are re-adapted. In some situations, like the Scarlatti example,
this can cause an undesirable wavering pitch. In other situations, however,
the pitches glide gracefully, smoothly connecting one chord to another. In
yet other situations, the adaptation may cause new “chords” to form as the
pitches change. Sound example [S: 59] contains six short segments:

(i) A single measure in 12-tet
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(ii) The “same” measure after adaptation
(iii) The measure (i) followed immediately by (ii)
(iv) Another measure in 12-tet
(v) The “same” measure after adaptation
(vi) The measure (iv) followed immediately by (v)

Both (i) and (ii) start on a F major chord. The adapted version is slightly
closer to a justly intoned chord, but this is probably imperceptible. The most
obvious change occurs at the second beat. Although the 12-tet version simply
continues to arpeggiate, one note of the adapted version slides up. Perhaps
because this tone is moving against a relatively fixed background, it jumps
out and becomes the “main event” of the passage. When the chord changes
to G major at the third beat, an A note remains suspended. In the adapted
version, this repels the sliding note, which moves back down to a G note on
the third beat.

Thus, the adaptation has actually added something of musical interest. In
fact, adaptation will sometimes change the “chord” being played. In parts (iv)
and (v) of sound example [S: 59], one measure of a F chord is played in 12-tet,
followed by its adapted version. Although the basic harmony remains fixed
in the original 12-tet, the chord changes in the adapted version on the fourth
beat. The change appears to be to a nearby, closely related chord, although
in reality it is to a nearby microtonal variant of the original.

Sound example [S: 60], Three Ears, contains all the measures from sound
example [S: 59]. Many other similar passages occur—the algorithm causes in-
teresting glides and unusual microtonal adjustments of the notes, all within an
“easy-listening” setting. The microtonal movement is done in a perceptually
sensible fashion. In the Scarlatti examples [S: 58], the sliding pitches were a
liability. In sound examples [S: 59] and in the Three Ears, they are exploited
as a new kind of “intelligent” musical effect.

8.7 Summary

The adaptive tuning strategy provides a new solution to the long-standing
problem of scale formation. Just intonations (and related scales) sacrifice the
ability to modulate music through multiple keys, and 12-tet sacrifices the
consonance of intervals. Adaptive tunings retain both consonance and the
ability to modulate, at the expense of (real-time) microtonal adjustments in
the pitch of the notes. The spring tuning provides a simple physical model of
the stresses of mistunings, and the consonance-based adaptive tuning encodes
a basic human perception, the sensory dissonance curves.

Adaptive tuning algorithms are implementable in software or hardware and
can be readily incorporated into electronic music studios. Just as many MIDI
synthesizers have built-in alternate tunings tables that allow the musician to
play in various just intonations and temperaments, an adaptive tuning feature
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could be readily added to sound modules. The musician can then effortlessly
play in a scale that continuously adjusts to the timbre and the performance
in such a way as to maximize sensory consonance. One concrete realization
appears in Chap. 9.

The behavior of the adaptive tuning algorithm can be described in terms
of notes continuously descending a complex multidimensional landscape stud-
ded with dissonant mountains and consonant valleys. These behaviors are
described mathematically in Appendix H. For harmonic timbres, the adap-
tive tuning acts like a just intonation that automatically adjusts to the key
of the piece, with no specifically musical knowledge required. For harmonic
timbres, the action of the spring tuning and the consonance-based adapta-
tions are similar. For inharmonic timbres, the adaptive tuning automatically
adjusts the frequencies of the tones to a nearby minimum of the dissonance
curve, providing an automated way to play in the scale related to the spectrum
of the sound. Adaptive tunings are determined by the spectra of the sounds
and by the piece of music performed; chords and melodies tend to become
more “in tune with themselves.”
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The adaptive tuning of the last chapter adjusts the
pitches of notes in a musical performance to minimize
the sensory dissonance of the currently sounding notes.
This chapter presents a real-time implementation called
Adaptun (written in the Max programming language and
available on the CD in the software folder) that can
be readily tailored to the timbre (or spectrum) of the
sound. Several tricks for sculpting the sound of the
adaptive process are discussed. Wandering pitches can
be tamed with an appropriate context, a (inaudible)
collection of partials that are used in the calculation
of dissonance within the algorithm, but that are not
themselves adapted or sounded. The overall feel of the
tuning is effected by whether the adaptation converges
fully before sounding (or whether intermediate pitch
bends are allowed). Whether adaptation occurs when
currently sounding notes cease (or only when new notes
enter) can also have an impact on the overall solidity of
the piece. Several compositional techniques are explored
in detail, and a collection of sound examples and
musical compositions highlight both the advantages and
weaknesses of the method.

9.1 Practical Adaptive Tunings

To bring the techniques of adaptive tunings into sharper focus, this chapter
looks at several examples of the use of adaptation in tuning. In some (such
as Local Anomaly [S: 79]), all notes adapt continuously and simultaneously.
In others (such as Wing Donevier [S: 85]), all notes are adapted completely
before they are sounded. Recalled Opus [S: 82] presents an adaptation of a
(synthesized) string quartet in which a “context” is used to help tame ex-
cess horizontal (melodic) motion. Several compositions (which are listed in
Table 9.1) are discussed at length, and steps are detailed to highlight the
practical issues, techniques, and tradeoffs that develop when applying adap-
tive tunings.

The next section discusses the Adaptun software, and Sect. 9.3 details some
of the simplifications to the basic algorithm of Chap. 8 that are used to make
the program operate efficiently in real time. The use of a context is discussed
in Sect. 9.4 as a way of imposing a kind of consistency on the adaptation
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to reduce some of the melodic artifacts. The bulk of the chapter provides an
extensive series of examples. Many of these are short snippets exploring some
feature of the adaptive process, and many are complete compositions. The
final section poses some of the aesthetic questions that arise in the use of
adaptation in musical contexts.

9.2 A Real-Time Implementation in Max

Figure 9.1 shows the main screen of the adaptive tuning program Adaptun,
which was first presented in [B: 171]. The user must first configure the pro-
gram to access the MIDI hardware. This is done using the two menus labeled
Set Input Port and Set Output Port, which list all valid MIDI sources and
destinations. The figure shows the input US-428 Port 1, which is my hard-
ware, and the output is set to ∞ IAC Bus # 2, which is an interapplication
(virtual) port that allows MIDI data to be transferred between applications.
The interapplication ports allow Adaptun to exchange data in real time with
sequencers, software synthesizers, or other programs. In particular, the out-
put of Adaptun can be recorded by setting the input of a MIDI sequencer to
receive on the appropriate IAC bus.

In normal operation, the user plays a MIDI keyboard. The program rechan-
nelizes and retunes the performance. Each currently sounding note is assigned
a unique MIDI channel, and the adapted note and appropriate pitch bend com-
mands are output on that channel. As the algorithm iterates, updated pitch
bend commands continue to fine tune the pitches. The MIDI sound module
must be set to receive on the appropriate MIDI channels with “pitch bend
amount” set so that the extremes of ±64 correspond to the setting chosen
in the box labeled PB value in synth. The finest pitch resolution possible
is about 1.56 cents when this is set to 1 semitone, 3.12 cents when set to 2
semitones, and so on.

There are several displays that demonstrate the activity of the program.
First, the message box directly under the block labeled Adapt shows the nor-
malized sensory dissonance of the currently sounding notes. The bar graph on
the left displays the sensory dissonance as a percentage of the original sensory
dissonance of the current notes. A large value means that the pitches did not
change much, and a small value means that the pitches were moved far enough
to cause a significant decrease in sensory dissonance. The large display in the
center shows how many notes are currently adapting (how many pieces the
line is broken into) and whether these notes have adapted up in pitch (the
segment moves to the right) or down in pitch (the segment moves to the left).
The screen snapshot in Fig. 9.1 shows the adaptation of three notes; two have
moved down and one up. There is a wraparound in effect on this display;
when a note is retuned more than a semitone, it returns to its nominal posi-
tion. The number of actively adapting tones is also displayed numerically in
the topmost message box.
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Fig. 9.1. Main screen of the adaptive tuning program Adaptun, implemented in the
Max programming language.

The user has several options that can be changed by clicking on message
boxes.1 One is labeled speed and depth of adaptation in Fig. 9.1. This
represents the stepsize parameter µ from (8.2) and (8.3) on p. 163. When
small, the adaptation proceeds slowly and smoothly over the dissonance sur-
face. Larger values allow more rapid adaptation, but the motion is less smooth.
In extreme cases, the algorithm may jump over the nearest local minimum
and descend into a minimum far from the initial values of the intervals. The
relationship between the speed of adaptation and “real time” is complex, and
it depends on the speed of the processor and the number of other tasks occur-
ring simultaneously. The message box labeled # of partials in each note

1 When a Max message box is selected, its value can be changed by dragging the
cursor or by typing in a new value. Changes are output at the bottom of the box
and incorporated into subsequent processing.
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specifies the maximum number of partials that are used. (The actual values
for the partials are discussed in detail in Sect. 9.3.)

There are two useful tools at the bottom of the main screen. The menu
labeled input MIDI file lets the user replace (or augment) the keyboard
input with data from a standard MIDI file. The menu has options to stop,
start, and read. First, a file is read. When started, adaptation occurs just as
if the input were arriving from the keyboard. The message box immediately
below the menu specifies the tempo at which the sequence will be played. This
is especially useful for older (slower) machines. A standard MIDI file (SMF)
can be played (and adapted) at a slow tempo and then replayed at normal
speed, increasing the apparent speed of the adaptation. Finally, the all notes
off button sends “note-off” messages on all channels, in the unlikely event
that a note gets stuck.

9.3 The Simplified Algorithm

In order to operate in real time (actual performance depends on processor
speed), several simplifications are made. These involve the specification of
the spectra of the input sounds, using only a special case of the dissonance
calculation, and a simplification of the adaptive update.

The dissonance measure2 in (8.1) on p. 163 is dependent on the spectra
of the currently sounding notes, and so the algorithm (8.3) must have access
to these spectra. Although it should eventually be possible to measure the
spectra from an audio source in real time, the current MIDI implementation
assumes that the spectra are known a priori. The spectra are defined in a
table, one for each MIDI channel, and they are assumed fixed throughout the
piece (or until the table is changed). They are stored in the collection3 file
timbre.col. The default spectra are harmonic with a number of partials set
by the user in the message box on the main screen, although this can easily
be changed by editing timbre.col. The format of the data reflects the format
used throughout Adaptun; all pitches are defined by an integer

100 ∗ (MIDI Note Number) + (Number of Cents). (9.1)

For instance, a note with fundamental 15 cents above middle C would be
represented as 6015 = 100 ∗ 60 + 15 because 60 is the MIDI note number for
middle C. Similarly, all intervals are represented internally in cents: an octave
is thus 1200 and a just major third is 386.

Second, the calculation of the dissonance is simplified from (8.1) by using
a single “look-up” table to implement the underlying dissonance curves.4 A
2 This is further detailed in (H.2).
3 In Max, a “collection” is a text file that stores numbers, symbols, and lists.
4 This look-up table simplifies the implementation of (8.1) and (E.2) because no

transcendental functions need be calculated.
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nominal value of 500 Hz is used for all calculations between all partials, rather
than directly evaluating the exponentials. In most cases, this will have little
effect, although it does mean that the magnitude of the dissonances will be
underestimated in the low registers and overestimated in the high. More im-
portantly, the loudness parameters a1 and a2 are set to unity. Combined with
the assumption of fixed spectra, this can be interpreted as implying that the
algorithm operates on a highly idealized, averaged version of the spectrum of
the sound.

The numerical complexity of the iteration (8.3) is dominated by the calcu-
lation of the gradient term, due to its complexity (which grows worse in high
dimensions when there are many notes sounding simultaneously). One simpli-
fication uses an approximation to bypass the explicit calculation of the gradi-
ent. Adaptun adopts a variation of the simultaneous perturbation stochastic
approximation (SPSA) method of [B: 180].5 To be concrete, the function

g(fi(k)) =
D(fi(k) + c∆(k)) − D(fi(k) − c∆(k))

2c∆(k)

where ∆(k) is a randomly chosen Bernoulli ±1 random vector, can be viewed
as an approximation to the gradient dD

dfi(k) . This approximation grows closer
as c approaches zero. The algorithm for adaptive tuning is then

fi(k + 1) = fi(k) − µg(fi(k)). (9.2)

In the standard SPSA, convergence to the optimal value can be guaranteed if
both the stepsize µ and the perturbation size c converge to zero at appropriate
rates, and if the cost function D is sufficiently smooth [B: 179]. In the case of
adaptive tunings, it is important that the stepsize and perturbation size not
vanish, because this would imply that the algorithm becomes insensitive to
new notes as they occur.

In the adaptive tuning application, there is a granularity to pitch space
induced by the MIDI pitch bend resolution of about 1.56 cents. This is near
to the resolving power of the ear (on the order of 1 cent), and so it is rea-
sonable to choose µ and c so that the updates to the fi are (on average)
roughly this size. This is the strategy followed by Adaptun, although the user-
chooseable parameter labeled speed and depth of adaptation gives some
control over the size of the adaptive steps. Convergence to a fixed value is
unlikely when the stepsizes do not decay to zero. Rather, some kind of con-
vergence in distribution should be expected, although a thorough analysis of
the theoretical implications of the fixed-stepsize version of SPSA remain unex-
plored. Nonetheless, the audible results of the algorithm are vividly portrayed
in Sect. 9.5.
5 This can also be viewed as a variant of the classic Kiefer–Wolfowitz algorithm

[B: 84].
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9.4 Context, Persistence, and Memory

Introspection suggests that people readily develop a notion of “context” when
listening to music and that it is easy to tell when the context is violated,
for instance, when a piece changes key or an out-of-tune note is performed.
Although the exact nature of this context is a matter of speculation, it is
clearly related to the memory of recent sounds. It is not unreasonable to
suppose that the human auditory system might retain a memory of recent
sound events, and that these memories might contribute to and color present
perceptions. There are examples throughout the psychological literature of
experiments in which subjects’ perceptions are modified by their expectations,
and we hypothesize that an analogous mechanism may be partly responsible
for the context sensitivity of musical dissonance.

Three different ways of incorporating the idea of a musical context into
the sensory dissonance calculation are suggested in [B: 173], in the hopes of
being able to model some of the more obvious effects.

(i) The exponential window uses a one-sided window to emphasize
recent partials and to gradually attenuate the influence of older
sounds.

(ii) The persistence model directly preserves the most prominent re-
cent partials and discounts their contribution to dissonance in
proportion to the elapsed time.

(iii) The context model supposes that there is a set of privileged partials
that persist over time to enter the dissonance calculations.

All three models augment the sensory dissonance calculation to include par-
tials not currently sounding; these extra partials originate from the windowing,
the persistence, or the context. A series of detailed examples in [B: 173] shows
how each model explains some aspects but fails to explain others. The con-
text model is the most successful, although the problem of how the auditory
system might create the context in the first place remains unresolved.

To see how this might work, consider a simple context that consists of a
set of partials at 220, 330, 440, and 660 Hz. When a harmonic note A or E
is played at a fundamental of 220 or 330 Hz, many of their partials coincide
with those of the context, and the dissonance calculation (which now includes
the partials in the context as well as those in the currently sounding notes)
is barely larger than the intrinsic dissonance of the A or E. When, however,
a G� note is sounded (with fundamental at about 233 Hz), the partials of
the note will interact with the partials of the context to produce a significant
dissonance.

The context idea is implemented in Adaptun using a static “drone.” The
check box labeled drone enables a fixed context that is defined in the collection
file drone.col. The format of the data is the same as in (9.1) above. For
example, the drone file for the four-partial context of the previous paragraph
is:
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1, 4500;
2, 5202;
3, 5700;
4, 6402;

(The “02” occurs because the perfect fifth between 330 Hz and 220 Hz corre-
sponds to 702 cents, not 700 cents as in the tempered scale.) When the drone
switch is enabled, notes that are played on the keyboard (or notes that are
played from the input MIDI file menu) are adapted with a cost function
that includes both the currently sounding notes and the partials specified in
the drone file. The drone is inaudible, but it provides a framework around
which the adaptation occurs. Examples are provided in the next section.

9.5 Examples

This section provides several examples that demonstrate the adaptive tuning
algorithm and explores the kinds of effects possible with the various options
in Adaptun. Discussions of the compositional process and demonstrations of
the artistic potential of the adaptive tunings are deferred until Sect. 9.6.

9.5.1 Randomized Adaptation

The motion of the adapting partials in sound example [S: 54] was shown pic-
torially in Fig. 8.9 on p. 174. When using Adaptun to carry out the adaptation
(rather than (8.3), the true gradient algorithm), the final converged value of
g may differ from run to run. This is because the iteration is no longer com-
pletely deterministic; the probe directions ∆(k) in (9.2) are random, and the
algorithm will follow (slightly) different trajectories each time. The bottom of
the dissonance landscape is always defined by the ratio of the fundamentals
of the notes (in this case, g, 1.41g, and 1.7g) but the exact value of g may
vary.

In most cases, the convergent values of the Adaptun algorithm will be
the same as the converged values of the deterministic version. An exception
occurs when the initial intervals happen to be maximally dissonant, that is,
when they lie near a peak of the dissonance surface. The deterministic version
will always descend into the same consonant valley, but the probe directions of
Adaptun’s SPSA method may cause it to descend in either direction. This can
be exploited as an interesting effect, as in the second adaptive study [S: 62] or
the Recalled Opus [S: 82] where pairs of notes are repeatedly initialized near a
dissonant peak and allowed to slide down: sometimes contracting to a unison
and sometimes expanding to a minor third.

9.5.2 Adaptive Study No. 1

Sound example [S: 61] is orchestrated for four synthesized “wind” voices.
When several notes are sounded simultaneously, their pitches are often changed
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significantly by the adaptation. This is emphasized by the motif, which begins
with a lone voice. When the second voice enters, both adapt, giving rise to
pitch glides and sweeps. As the timbres have a harmonic structure, most of
the resulting intervals are actually justly intoned because the notes adapt to
align a partial of the lower note with some partial of the upper. By focusing
attention on the pitch glides (which begin at 12-tet scale steps), this demon-
strates clearly how distant many of the common 12-tet intervals are from their
just counterparts.

Perhaps the most disconcerting aspect of the study is the way the pitches
wander. As long as the adaptation is applied only to currently sounding notes,
successive notes may differ: The C note in one chord may be retuned from the
C note in the next. This can produce an unpleasant “wavy” or “slimy” sound.
This effect is easy to hear in the long notes that are held while several others
enter and leave. For instance, between 0:36 and 0:44 seconds (and again at
1:31 to 1:39), there is a three-note chord played. The three notes adapt to
the most consonant nearby location. Then the top two notes change while
the bottom is held; again all three adapt to their most consonant intervals.
This happens repeatedly. Each time the top two notes change, the held note
readapts, and its pitch slowly and noticeably wanders. Although the vertical
sonority is maintained, the horizontal retunings are distracting.

The most straightforward way to forbid this kind of behavior is to leave
currently sounding notes fixed as newly entering notes adapt their pitches.
This can be implemented by setting the stepsize µ to zero for those funda-
mentals corresponding to held notes. Unfortunately, this does not address the
fundamental problem; it only addresses the symptom that can be heard clearly
in this sound example. A better way is by the introduction of the inaudible
“drone,” or context.

9.5.3 A Melody in Context

Adaptun implements a primitive notion of memory or context in its drone func-
tion. A collection of fixed frequencies are prespecified in the file drone.col,
and these frequencies enter into the dissonance calculation although they are
not sounded.

The simplest case is when the spectrum of the adapting sound consists of
a single sine wave as in parts (a) and (b) of Fig. 9.2. The unheard context
is represented by the dashed horizontal lines. Initially, the frequency of the
note is different from any of the frequencies of the context. If the initial note
is close to one of the frequencies of the context, then dissonance is decreased
by moving them closer together. The note converges to the nearest frequency
of the context, as shown by the arrow. In (b), the initial note is distant from
any of the frequencies of the context. When both distances are larger than
the point of maximum dissonance (the peaks of the curves in Fig. 3.8 on
p. 47), then dissonance is decreased by moving further away. Thus, the pitch
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is pushed away from both of the nearby frequencies of the context, and it
converges to some intermediate position.

(a) (b) (c) (d) (f)

fr
eq

ue
nc

y
time

(e)

Fig. 9.2. The dashed horizontal grid defines a fixed “context” against which the
notes adapt. When the note has a spectrum consisting of a single sine wave partial
as in (a) and (b), then the note will typically adjust its pitch until it coincides with
the nearest partial of the context as in (a), or else it will be repelled from the nearby
partials of the context as in (b). When the spectrum has two partials, then the
adaptation may align both partials as in (c), one as in (d), or none as in (e). In
(f), the partials fight to align themselves with the context, eventually converging to
minimize the beating.

Generally the timbre will be more complex than a single sine wave. Figure
9.2 shows several other cases. In parts (c), (d), and (e), the timbre consists of
two sine wave partials. Depending on the initial pitch (and the details of the
context), this may converge so that both partials overlap the context as in (c),
so that one partial merges with a frequency of the context and the other does
not as in (d), or to some intermediate position where neither partial coincides
with the context, as in (e). Part (f) gives the flavor of the general case when
the timbre is complex with many sine wave partials and the context is dense.
Typically, some partials converge to nearby frequencies in the context and
some will not.

To see how this might function in a more realistic setting, suppose that the
current context consists of the note C and its first 16 harmonics. When a new
harmonic note occurs, it is adapted not only in relationship to other currently
sounding notes, but also with respect to the partials of the C. Because partials
of the adapting notes often converge to coincide with partials in the context
(as in part (f) of Fig. 9.2), there is a good chance that a partial of the note
will align with a partial of the context. When this occurs, the adapted interval
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will be just, formed from the small integer ratio defined by the harmonic of
the note with that of the context.

Thus, the context provides a structure that influences the adaptation of all
the sounding notes, like an unheard drone. In this way, it can give a horizontal
consistency to the adaptation that is lacking when no memory is allowed.

9.5.4 Adaptive Study No. 2

The next example, presented in [S: 62], is orchestrated for four synthesized
“violin” voices. Like the first study, the adaptive process is clearly audible
in the sweeping and gliding of the pitches. For this performance, however, a
context consisting of all octaves of C plus all octaves of G was used.6

The context encourages consistency in the pitches, maintaining (an un-
heard) template to which the currently sounding notes adapt. Although the
study still contains significant pitch adaptation, the final resting places are
constrained so that the adjusted pitches are related to the unheard C or G.
Typically, some harmonic of each adapted note aligns with one of the octaves
of the C or G template.

In several places throughout the piece, adjacent notes (of the 12-tet scale)
are played simultaneously. For the specified timbres, this is near the peak of
the dissonance curve. Depending on exactly which notes are played, the order
in which they are played, and the vagaries of the random test directions ∆(k)
of (9.2), sometimes the two pitches adapt to an interval at about 316 cents (a
just minor third) by moving apart in pitch, and sometimes they merge into a
unison at some intermediate pitch. In either case, the primary sensation is of
the motion.

9.5.5 A Recollection

Many of the kinds of pitch slides and glides that are so obvious in the two
adaptive studies are exploited in a more structured way in Recalled Opus
[S: 82]. Adaptun was used to play four string voices (a synthesized “string
quartet”). Each tone begins on a 12-tet pitch and adapts the pitches in real
time. The action of the algorithm is unmistakable.

Because the string timbres are harmonic, the retuning converges primarily
to various just intervals. When the pitches begin close to JI, such as a 12-tet
fifth, the adjustment is only a few cents. But when the pitches begin far away
from JI (such as a 12-tet minor second), the pitch sweeps are dramatic. All of
the pitch bending is done by the algorithm in real time.7 This piece provides a
nonverbal and visceral demonstration of the differences between JI and 12-tet.
6 The drone file contained all C’s 2400, 3600, 4800, 6000, . . . plus all G’s

3100, 4300, 5500, 6700, . . ..
7 The piece was not performed in one pass, several individual sections were recorded

separately and then spliced together.
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9.6 Compositional Techniques and Adaptation

Adaptive tunings are not constrained to any particular style of music, and
the previous sound examples suggest that a number of interesting and un-
usual effects are possible. One avenue of exploration is perhaps obvious: Play
with Adaptun, and allow happy accidents to occur. The adaptive studies and
Recalled Opus [S: 82] were derived from spontaneous improvisations that crys-
tallized into repeatable forms. Persistence of Time [S: 81] began with a three-
against-two rhythmic bed, and repeated improvisation led to the final piece.

Table 9.1 lists the adaptively tuned pieces that appear on the CD along
with three compositional parameters. The third column indicates whether
a context was used during adaptation, as discussed in the previous section
using the drone option in Adaptun. The fourth column specifies whether the
algorithm was allowed to achieve full convergence before the notes are sounded
(indicated by y) or whether all intermediate pitches were output (n). This
can have a major impact on the sound and effect of the piece. For example,
Persistence of Time does not have the kind of slimy undulating pitches that
are so conspicuous in Recalled Opus. The column labeled “Adapt on Note-
off” specifies whether the adaptation is redone when notes end (that is, each
time the number of currently sounding notes changes) or whether adaptation
occurs only when new notes begin. This is one of the reasons Wing Donevier
sounds more steady than Excitalking Very Much.

Table 9.1. Several musical compositions appearing on the CD-ROM use adaptive
tunings. Also indicated are whether a context was used, whether the algorithm was
allowed to output intermediate pitches as it adapted (or only after convergence), and
whether the adaptation was conducted at note-off events as well as note-on events.

Name of File Context Converge Adapt on See
Piece Fully Note-off
Adventiles in a Distorium adventiles.mp3 y n y [S: 74]
Aerophonious Intent aerophonious.mp3 y n n [S: 75]
Story of Earlight earlight.mp3 n n n [S: 76]
Excitalking Very Much excitalking.mp3 y y n [S: 77]
Inspective Liquency inspective.mp3 n n y [S: 78]
Local Anomaly localanomaly.mp3 n n y [S: 79]
Maximum Dissonance maxdiss.mp3 n y n [S: 80]
Persistence of Time persistence.mp3 n y n [S: 81]
Recalled Opus recalledopus.mp3 y n y [S: 82]
Saint Vitus Dance saintvitus.mp3 n n y [S: 83]
Simpossible Taker simpossible.mp3 y y y [S: 84]
Three Ears three ears.mp3 n y y [S: 60]
Wing Donevier wing.mp3 y y n [S: 85]
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With the exception of Recalled Opus, all of the pieces in Table 9.1 were
created using a method of adaptive randomization, a compositional technique
that is particularly appropriate for adaptive tunings. The adaptive random-
ization begins with a simple rhythmic pattern, adds complexity, orchestration,
and timbral variety without regard for harmonic or melodic content, and then
tames the dissonances by selective application of the adaptive tuning algo-
rithm. The first step is to select an arbitrary pattern of notes triggering a set
of synthesized sounds. As the pitches are essentially random, the sequence is
wildly and uniformly dissonant. Application of the adaptive tuning algorithm
perturbs the pitches of all currently sounding notes at each time instant to the
nearest intervals that maximize consonance. Sometimes the dissonances are
tamed and interesting phrases occur. By winnowing the results, separating de-
sirable and undesirable elements, reorchestrating, and using the cut-and-paste
operations available in modern audio editing software, strange and unusual
pieces can be constructed.

There are many possible sources for musical patterns. They might be con-
structed mathematically (like the three-against-two pattern of Persistence of
Time), they might be a complete piece (Three Ears was first composed in
12-tet and the adaptation imposed at a later stage), or they might be only a
rhythm part (Wing Donevier began as a standard MIDI drum part8 played in
an aggressive seven beats per measure). The classical MIDI archive at [W: 4]
contains thousands of MIDI files free for downloading, and there are many
other sources on the web of both commercial and public domain libraries of
MIDI files.

In order to demonstrate the technique concretely, Fig. 9.3 shows the first
four measures of a standard MIDI drum track.9 The information is displayed
in a kind of “piano-roll” notation10 in which the vertical axis represents MIDI
note-number. Time proceeds along the horizontal axis. MIDI note events are
shown in bold black. For drum tracks, there is a standard assignment of note
numbers to instruments,11 and the relevant ones (bass drum, snare, and three
cymbals) are labeled on the left-hand side of the figure. This is performed as
written in sound example [S: 63].

One of the interesting features of the MIDI standard is that note events are
not necessarily tied to their default instrumentation. Sound example [S: 64],
for instance, reorchestrates the four measures in Fig. 9.3 by assigning the
lowest two notes to bass guitar (instead of bass drum and snare) and the
upper notes to guitar (instead of cymbals) as indicated by the reassignment on
the right-hand side. Even more useful than the reorchestration are the editing
capabilities offered by modern software. Notes (and other MIDI events) can be

8 From the Keyfax [W: 17] collection of drum tracks performed by Bill Bruford.
9 Sequenced by Keyfax Software [W: 17] in the Breakbeats collection.

10 Figures 9.3 through 9.6 show screen snapshots from Digital Performer, a com-
mercial audio and MIDI sequencer [W: 20].

11 Details of the MIDI file specification can be found at [W: 25].
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bass
snare

cymbals

time

standard MIDI
drum assignment reassignment

bass

guitar

Fig. 9.3. A standard MIDI drum file can be played as a percussion part (sound
example [S: 63] performs this sequence with the standard instruments indicated on
the left), or it can be reorchestrated (sound example [S: 64] reassigns the notes to
guitar and bass as indicated on the right).

rearranged in many ways using simple cut-and-paste techniques. Figure 9.4,
for example, shows the same four measures as Fig. 9.3, with the upper notes
(that were originally devoted to the cymbals) repeated, offset in pitch, and
time-stretched by factors of two (one slower and one faster). As before, this
can be performed on any desired set of instruments. Sound examples [S: 65]
through [S: 67] demonstrate three simple variations.

bass

time

slow

medium

fast

Fig. 9.4. The standard MIDI file in Fig. 9.3 is edited, creating more complex and
interesting patterns. Sound examples [S: 65] through [S: 67] demonstrate.

When the instrumentation is finalized (in this case, using harmonic sam-
ples of guitar and bass), then the piece can be adapted. This is demonstrated
in [S: 68] using the default settings in Adaptun. Compare this sparse example
with the fully orchestrated Simpossible Taker [S: 84], which applied this same
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method to a set of MIDI “hip-hop” drum patterns.12 In order to tame some
of the pitch sweeps, a context was used and all notes were allowed to converge
fully. The remaining pitch glides are due to the adaptation of held notes. As
all sounding notes readjust whenever a note enters or leaves, the held notes
slide to their new “most consonant” pitch. This effect is already familiar from
Three Ears [S: 60].

There are many other ways that MIDI data can be transformed to create
interesting sequences. Figure 9.5 shows the data of Fig. 9.4 edited in several
ways. The bass guitar part is randomized over an octave, creating a new bass
line with considerable motion. Using the instrumentation of [S: 65], this can
be heard in sound example [S: 69]. The “fast” line is also randomized and
transposed, resulting in a rapid arpeggiation. This is performed in [S: 70]
using the same guitar samples as in [S: 65]. Finally, the “slow” line of Fig. 9.4
is transposed up and randomized, creating a constrained random melody.
Orchestrating the melody with a synthetic-sounding flute results in sound
example [S: 71].

randomized 
bass

time

randomized
rhythm

randomized
melody

Fig. 9.5. The standard MIDI file in Fig. 9.4 is edited, creating more complex and
interesting (randomized) patterns. Sound examples [S: 69] and [S: 70] demonstrate.

Although these are interesting in their own way, they can be combined
with the adaptive process to create a large assortment of unusual effects. For
example, sound example [S: 72] is an adapted version of [S: 71]. The sound is
more aligned, almost lighter in the adapted version, although the pitch glides
in the guitar may be disconcerting. Sound example [S: 73] repeats the same
piece but using two methods to reduce the amount of pitch uncertainty: first
by allowing the convergence to complete before outputting the notes, and
then by disallowing adaptation when notes cease to sound. This technique is
a template of many of the compositions in Table 9.1.
12 Commercially available from [W: 17].
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9.6.1 A Wing

Wing Donevier [S: 85] is named after a fictional captain who fell at the siege
of Eriastur (itself a fictional medieval town). In 7/4 time, this piece began
as a standard MIDI drum file from Keyfax Software [W: 17] in their Bill
Bruford collection. The original is orchestrated solely for percussion and hence
is nontonal, that is, in no particular key. It is recorded as a MIDI file, and so
it is easy to assign different voices. A context consisting of all octaves of low
C (65.4 Hz) and all octaves of low G (98 Hz) was used. The adaptive process
moves the pitches of all notes so as to maximize the instantaneous sensory
consonance between the currently sounding notes and the immutable context.

The result is still atonal, but not overly dissonant. Each vertical slice of
time is fairly consonant, although melodically (horizontally) there are many
small adjustments. After adaptation, the MIDI file was reorchestrated with
bass, synth, and drums. The adaptation is allowed to converge completely
before each note is sounded, and no adaptation is done when note-off events
occur. Together, these choices remove most of the wavering pitches.

The screen snapshot in Figure 9.6 shows the sequence window of a com-
bined audio/MIDI editor.13 The numbers in the upper right represent mea-
sures. The small icons just below represent miniaturized versions of the MIDI
tracks familiar from Figs. 9.3 though 9.5 that contain MIDI performance data.
These are labeled by their instrumentation (bass, rhy1, rhy2, mel, etc.) and
are sent to the IAC (interapplication MIDI) # 1 bus and hence to Adaptun.
The return path uses IAC # 2, and this is record enabled so that the adapted
data can be recorded for further editing and compositing. The adapted data
are also output to “Unity,” a software synthesizer.14 Finally, the audio output
of the synthesizer is sent to the digital to analog converters, which, in this
case, is a Tascam US-428.

9.6.2 An Anomaly

Local Anomaly [S: 79] is another piece in which all notes were retuned adap-
tively beginning with a randomized MIDI drum file. The major timbres are
again guitar-like (and hence primarily harmonic), but the use of the adap-
tation is quite different from both Wing Donevier and the string quartet
Recalled Opus. Besides the obvious rhythmic intensity of the piece, the notes
come rapidly. Rarely is a note held much longer than the time it takes it to
converge to the nearby “most consonant” interval. As no context is used (and
none of the ‘cures’ for wavering pitches are invoked), the pitch of each note is
in constant motion.

Thus, one of the most prominent features of Local Anomaly is the pitch
slides, which give an “elasticity” to the tuning analogous to a guitar bending
13 The program is Digital Performer by Mark of the Unicorn [W: 20].
14 Created by Bitheadz software [W: 2].
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Interapplication 
Bus #1 sends 

MIDI data to Max

Interapplication 
Bus #2 returns 
adapted data to 

sequencer

adapted data sent 
to software synth "Unity"

audio returns for
recording

measures represents MIDI tracks

adapted data has
pitch bends for retuningaudio output

Fig. 9.6. This screen snapshot shows how MIDI information can be sent from the
sequencer to Max (which is running Adaptun) and then returned to the sequencer
for recording. The adapted MIDI data are then output to a software synthesizer so
that the results can be heard.

strings into (or out of) tune. All glides in Local Anomaly are created by the
adaptive process, which provides a kind of “intelligent” portamento that be-
gins where commanded by the performer (or MIDI file) and slides smoothly
to a nearby “most consonant” set of intervals. The tonal center in Recalled
Opus was kept reasonably stable by careful composition. A context was used
to ensure stability of Wing Doneveir. In contrast, the pitches fall where they
may in Local Anomaly and there is no clear notion of musical “key.” It is easy
to hear the wriggling about of the tonal center (if indeed this piece can be
said to have one). Perhaps it is better to think of it as having an “average”
tonality that happens to have a large variance.

It is not easy to put these effects into words. The tonality is slinky and
greasy, the drums funky and somewhat dark. The piece has an energetic mi-
nor cast. Even though there are both (just) major and (just) minor thirds
throughout, the primary perception is of their wriggling around. There is a
sense in which Local Anomaly “gets rid of scales and chords,” bypassing any
kind of fixed-pitch scales or tunings. At the same time, it is not without a
considerable structure that is readily perceptible.

9.7 Toward an Aesthetic of Adaptation

The adaptive tuning strategy can be viewed as a generalization of just into-
nation in two respects. First, it is independent of the key of the music being
played; that is, it automatically adjusts the intonation as the notes of the
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piece move through various keys. This is done without any specifically “musi-
cal” knowledge such as the local “key” of the music, although such knowledge
can be incorporated in a simple way via the context, the unheard drone. Sec-
ond, although not stressed here, the adaptive tuning strategy is applicable to
inharmonic as well as harmonic sounds. This broadens the notion of just into-
nation to include a larger palette of sounds. The adaptation provides a kind
of “intelligent” portamento that begins where commanded by the performer
and slides smoothly to a nearby “most consonant” set of intervals.

A shortcoming of the adaptive tuning approach is that sensory consonance
is not a globally desirable property in music. Typically, a composer strives to
move from consonance to dissonance and back again, and so indiscriminate
application of the algorithm may, at least in principle, lead to pieces that lose
appropriate dissonances. In practice, this may not be a large problem because
it is always easy to increase dissonance by increasing the complexity of the
sound, for example, by playing more notes. Alternatively, the algorithm could
be applied selectively to places where consonance is most desired.

An extreme example occurs in Maximum Dissonance [S: 80], which, like
its name, reverses the effect of the algorithm so as to maximize (rather than
minimize) the sensory dissonance at each time instant. The piece is fairly
difficult to listen to, especially at first, although it has a certain rhythmic
vitality. Even with all of the dissonance, it cannot be said to be truly unlis-
tenable (like the mismatched tuning/timbre combinations in sound examples
[S: 3] and [S: 5]). This is probably because the dissonance is not uniform; it
increases and decreases with the number of notes. With few notes, the algo-
rithm can only increase the dissonance a small amount; with more notes, the
algorithm is able to increase the dissonance significantly.

Considered as a group, perhaps the most obvious feature of the adaptively
tuned pieces in Table 9.1 is the pitch glides—rarely do notes sustain without
changing pitch. A sensible strategy when orchestrating such a piece is to use
timbres that familiarly bend and slide: for example, violin and fretless bass
rather than harpsichord and piano. Another technique that is used exten-
sively in these pieces is hocketing; rather than playing a melodic passage with
a single instrumental sound, each note is performed with a different sound.
Inspective Liquency and Aerophonious Intent incorporate extensive hocket-
ing. Pitch instabilities are not, however, an intrinsic property of the adaptive
process, but rather a function of the particular program (i.e., Adaptun) used
to carry out the adaptation. For example, pitch glides are absent from Wing
Donevier and Persistence of Time.

The compositional technique of adaptive randomization begins with a pat-
tern that is random melodically and harmonically (although not rhythmi-
cally). Complexity can be added to the sequence in many ways: duplicating
notes and offsetting them in time or transposing in pitch, reversing patterns
in time, randomizing or inverting pitches, quantizing, and so on. After orches-
trating, some semblance of tonal order can be reimposed using the adaptive
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tuning. Full pieces can be constructed by cut-and-paste methods. Of course,
more traditional compositional methods may still be applied.

By functioning at the level of successions of partials (and not at the level
of notes), the sensory dissonance model does not deal directly with pitch,
and hence it does not address melody, or melodic consonance. Rasch [B: 146]
describes an experiment in which:

Short musical fragments consisting of a melody part and a syn-
chronous bass part were mistuned in various ways and in various
degrees. Mistuning was applied to the harmonic intervals between si-
multaneous tones in melody and bass... The fragments were presented
to musically trained subjects for judgments of the perceived quality of
intonation. Results showed that the melodic mistunings of the melody
parts had the largest disturbing effects on the perceived quality of in-
tonation...

Interpreting “quality of intonation” as roughly equivalent to melodic disso-
nance, this suggests that the misalignment of the tones with the internal
template was more important than the misalignment due to the dissonance
between simultaneous tones.

Such observations suggest why attempts to retune pieces of the common
practice period into just intonation, adaptive tunings, or other theoretically
ideal tunings may fail15; squeezing harmonies into just intonation requires
that melodies be warped out of tune. If the melodic dissonance described
by Rasch dominates the harmonic dissonance, then the process of changing
tunings may introduce more dissonance, albeit of a different kind. This does
not imply that it is impossible (or difficult or undesirable) to compose in these
alternative tunings, nor does it suggest that they are somehow inferior; rather,
it suggests that pieces may be more appropriately performed in the tunings
in which they were conceived.

9.8 Implementations and Variations

There are several ways that adaptive tunings can be added to (or incorporated
in) a computer-based music environment. These include:

(i) Software to manipulate Standard MIDI Files (or the equivalent). In such
an implementation, the musician or composer generates a Standard MIDI
File (SMF). The adaptive tuning algorithm is implemented as a soft-
ware program that reads the SMF, adapts the tuning of the notes as
described above, and writes a modified SMF file that can subsequently be

15 The effort to improve Beethoven or Bach by retuning pieces to just intonation pro-
duced a sense that the music was “unpleasantly slimy” (to quote George Bernard
Shaw when listening to Bach on Bosanquet’s 53-tone per octave organ [B: 106])
or badly out of tune due to the melodic distortions.
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played via standard sound modules or manipulated further by the musi-
cian/composer in a sequencer program.

(ii) A stand-alone piece of hardware (or software to emulate such hardware)
that interrupts the flow of MIDI data from the controller (for instance,
the keyboard), adapts the tuning, and outputs the modified notes.

(iii) The adaptive tuning strategy can be incorporated directly into the sound
generation unit (the synthesizer or sampler).

(iv) Direct manipulation of digitized sound.

The software strategy (i) has the advantage that it may be simply and
inexpensively added to any computer-based electronic music system. The dis-
advantage is that it is inherently not a real-time implementation. On the other
hand, both the stand-alone approach (ii) and the built-in approach (iii) are
capable of real time operation. Adaptun is in the second class. As the algo-
rithm requires the spectra of the sounds, this must be input by the operator
in both (i) and (ii). Of course, a frequency analysis module could be added to
the software/hardware, but this would increase the complexity. The built-in
solution (iii) does not suffer from any of these complications (indeed, the syn-
thesizer inherently “knows” the spectrum of the sound it is producing) and
is consequently preferred for MIDI implementation, although it would clearly
require a commitment by musical equipment manufacturers.

The adaptive tuning can also be implemented in hardware (or software
to emulate such hardware) that directly manipulates digitized sound. Such a
device would perform an appropriate analysis of the sound (a Fast Fourier
Transform, wavelet decomposition, or equivalent) to determine the current
spectrum of the sound, run the adaptive algorithm to modify the spectrum,
and then return the modified spectrum to the time domain with an inverse
transform. The device could be operated off-line or in real time if sufficient
computing resources were devoted to the task. Such an implementation is not,
however, completely straightforward: it may be more of an adaptive “timbre”
algorithm than an adaptive “tuning.” This is an exciting area for future re-
search.

Throughout Chaps. 8 and 9, the adaptive tuning algorithm has been stated
in terms of an optimization problem based on dissonance curves solvable by
gradient descent methods. Other algorithms are certainly possible. For in-
stance, instead of laboriously descending the error surface, an algorithm might
exploit the fact that the adaptation often converges to intervals that align the
partials of simultaneously sounding notes. An algorithm that operated by sim-
ply lining up the partials would have much the effect of the consonance-based
adaptation without much of the overhead. More generally, other optimization
criteria based on other psychoacoustic measures of sound quality and solvable
by other types of algorithms are also possible. For example, incorporating
a virtual pitch model or a model of masking might allow the algorithm to
function in a wider range of situations. Indeed, as the state of knowledge of
psychoacoustic phenomena increases, new methods of adaptation seem likely.



198 9 A Wing, An Anomaly, A Recollection

9.9 Summary

Just as the theory of four taste bud receptors cannot explain the typical
diet of an era or the intricacies of French cuisine, so the theories of sensory
dissonance cannot explain the history of musical style or the intricacies of a
masterpiece. Even restricting attention to the realm of sensory dissonance,
the average amount of dissonance considered appropriate for a piece of music
varies widely with style, historical era, instrumentation, and experience of the
listener.

The intent of Adaptun is to give the adventurous composer a new option
in terms of musical scale: one that is not constrained a priori to a small set
of pitches, yet that retains some control over consonance and dissonance. The
incorporation of the “context” feature helps to maintain a sense of melodic
consistency while allowing the pitches to adapt to (nearly) optimal intervals.

This algorithm does not avoid the melodic artifacts associated with just
intonation, but it automates intonation decisions. Perhaps more importantly,
it can handle sounds with inharmonic spectra, such as bells, which fall outside
conventional tuning theories.
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The Gamelan

The gamelan “orchestras” of Central Java in Indonesia
are one of the great musical traditions. The gamelan
consists of a large family of inharmonic metallophones
that are tuned to either the five-note slendro or the
seven-tone pelog scales. Neither scale lies close to 12-
tet. The inharmonic spectra of certain instruments of
the gamelan are related to the unusual intervals of the
pelog and slendro scales in much the same way that
the harmonic spectrum of instruments in the Western
tradition is related to the Western diatonic scale.

10.1 A Living Tradition

The gamelan plays many roles in traditional Javanese society: from religion
and ceremony to education and entertainment. In recent years, recordings
of gamelan music have become available in the West.1 First impressions are
often of an energetic, strangely shimmering sound mass punctuated with odd
vocal gestures. The exotically tuned ensemble plays phrases that repeat over
and over, with variations that slowly evolve through pieces of near symphonic
length. A deep gong punctuates sections, and the music is driven forward
by vigorous drumming and dynamic rhythmic articulations. Indeed, the word
gamelan can be translated literally as “pounding of a hammer.”2

The unique sounds are produced by an assortment of metallophones that
include numerous gongs and xylophone or glockenspiel-like instruments of
various sizes, timbres, and tones. At first glance, the bonangs and kenongs
appear to be collections of upside-down pots and pans hit with sticks, and the
saron players seem to pound a small collection of metal bars with hammers.
As we will see, this is akin to viewing a Stradivarius as a wooden box with
strings. Gamelan instruments are finely crafted, carefully tuned, and are the
1 For instance, the excellent series from the World Music Library includes Game-

lan Gong Kebyar of Eka Cita [D: 18], Gender Wayang of Sukawati [D: 19], the
Klênêngan Session of the Solonese Gamelan [D: 25], Gamelan Gong Gede of the
Batur Temple [D: 17], and the Gamelan of Cirebon [D: 16]. Other recordings are
available from the Library of Congress (Music for the Gods [D: 29]), from CMP
records (Gamelan Batel Wayang Ramayana [D: 15]), from Lyrichord (music of I.
W. Sadra [D: 38]), and from Nonesuch (Music from the Morning of the World
[D: 27].

2 gamel means “hammer,” and -an is a suffix meaning “action.”
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result of a long cultural tradition that values precision and refinement in its
music, instruments, and musicians.

The first major study of the instruments, repertoire, and history of the
gamelan (“the result of twenty-eight years’ listening, collecting, and reflect-
ing”) was the landmark Music in Java [B: 90]. Kunst discusses the various
instruments of the gamelan and the tuning systems and observes a difference
in the listening aesthetic between the Javanese and the Western ear:

of necessity a virtue was born: this partial discrepancy between vo-
cally and instrumentally produced tones has developed unmistakably
into an aesthetic element... a play of tensions alternately arising and
disappearing... these discrepancies in intonation are to some extent
satisfying to the Javanese ear.3

Kunst’s love of the music and the people is obvious, and he catalogs a number
of gamelan “themes” so that they would not be lost. Kunst offers a dire
warning:

Once again foreign influences are affecting it [gamelan music], but this
time the interloper is... like a corrosive acid, like a transfusion from
a different blood group, [which] attacks and destroys it in its pro-
foundest essence... one can almost watch–or rather hear–native music
degenerating day by day.

Fortunately, this apocalyptic vision has failed to materialize, and gamelan
music has not only survived, but flourished.

There are many reasons why gamelan music challenges Western listeners.
The timbre of the instruments is unusually bright and harsh. The scales and
tunings are unfamiliar. Both the tunings and the timbres are discussed at
length in later sections because they are easily quantifiable. But there are
also profound differences in the basic structure of the music. In the Guide
to the Gamelan, Sorrell [B: 177] describes the Javanese concept of an inner
melody in the evocative passage:

the concept of an inner melody... is the common basis of all the parts
in the gamelan and yet which is not literally stated by any instrument.
Rather, it is in the minds of the musicians. It is therefore felt, or, one
may say, internally sung.

Thus, listening to and understanding the inner melody of a gamelan piece
is different from listening to and understanding the outer melody of a sym-
phony. In many traditional Western forms, the themes are stated, developed,
and restated. In contrast, the gamelan performance presents many different
ways of disguising the same underlying theme. An analogy may be fruitful. A
syncopated rhythm has an underlying pulse. Although this pulse may never be
3 A modern investigation of the perception of music among the Balinese can be

found in [B: 82].
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stated literally, it forms an essential part of the listening experience. To truly
“understand” the syncopated rhythm, it is necessary to “hear” something that
is not there!

10.2 An Unwitting Ethnomusicologist

There are as many different gamelan tunings as there are gamelans because
instruments in the Indonesian musical tradition are not all tuned to a single
standard reference scale. Rather, each instrument is tuned and timbrally ad-
justed to work in its own orchestral context; each instrument is created for
and remains with a single ensemble. Each gamelan is tuned to its own variant
of pelog or slendro. Every kettle of each bonang, every key of each saron, is
hand shaped with hammer and file. The result is that a piece played on one
gamelan inevitably differs in intonation, tone, and feel from the same piece
played on another gamelan.

This presents an intriguing challenge. Recall that Western diatonic scales
are intimately connected to4 sounds with harmonic spectra. Perhaps a similar
relationship exists between the pelog and slendro scales and the inharmonic
sounds of the saron, bonang, gender, or gong. Further, perhaps the differences
between the tunings of various gamelans can be explained in terms of the
differences between the spectra of the various instruments.

An obvious starting point is to search the literature, and to correlate the
spectra of the gamelan instruments with the tunings of the gamelans from
which they come. Although several important studies over the years have
documented the variation in the tunings of the gamelans, only one published
article [B: 159] has detailed the spectra of any gamelan instruments, and this
was not a complete study, even of the one gamelan. Of the metallophones, only
the jegongan (a kind of Balinese gender) and the gong are studied. Clearly,
more data are required.

Accordingly, I traveled to Indonesia between August and December 1995.
A portable DAT machine and microphone5 made it possible to carry every-
thing needed for full fidelity recordings, which could be analyzed back in the
lab. Gathering more data (i.e., recording each key of each instrument in the
gamelan) was not straightforward. Although equipped for the technological
task, I was underprepared for the social and cultural aspects. A few months
of study of Bahasa Indonesia (the language) was adequate for basic survival,
but it was not enough to conduct genuine interviews. Reading several books6

on ethnomusicology (in general) and Indonesia (in particular) readied me for
4 In the jargon of the previous chapters, “related to.”
5 Along with rechargeable batteries, a copy of Everyday Indonesian, and a backpack

of essentials.
6 Including the excellent general works by Merriam [B: 112] and Nettl [B: 121],

and books specifically about the gamelan such as those by Kunst [B: 90], Sorrell
[B: 177], and Tenzer [B: 193].
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some of the issues I would confront, but it was not enough to provide ready
answers.

In particular, it was difficult to approach gamelan masters with my request,
in part because of the oddity of the task (usually people are more interested
in gamelan performance and music than in the instruments), in part because
of language difficulties, and in part because of property issues. Gamelans are
often owned by the village, and it is considered improper for individuals to
profit from public resources. This was further complicated by the diversity of
Indonesian society; each region has its own customs and sense of propriety.
Offering the gamelan master a small gift earmarked for the gamelan (to help
with maintenance and upkeep) often seemed to be appropriate.

Eventually, I met Basuki Rachmanto at the University of Gadjah Mada
in Yogyakarta, who became interested in the project, and helped find and
record eight complete (pelog and slendro) gamelans. Basuki also introduced
Gunawen Widiyanto, the son of a respected gamelan-smith in Surakarta. Gu-
nawen arranged to record nine complete gamelans in the Surakarta area and
helped me to interview several gamelan makers and tuners. Without the gen-
erous help of Basuki and Gunawen, it would have taken far longer to have
accomplished far less. In addition, I am grateful to Ben Suharto of the ISI in
Yogyakarta, and to Deni Hermawan of the STSI in Bandung for allowing me
to record their “performance” gamelans.

10.3 The Instruments

Most of the idiophones of the gamelan are percussion instruments made from
metal. They are struck with a variety of mallets that range from hard wood
to woolen ball heads; harder mallets give a brighter tone with more high
partials, and softer mallets return a more muted sound. Names of the instru-
ments vary by region, and the names used here (gong, gender, saron, bonang,
kenong, gambang) are common in the Central Javan cities of Yogyakarta and
Surakarta.

Most of the instruments consist of a set of keys, kettles, or bells of definite
shape, arranged on a wooden frame so that they may be readily struck by
the performer. Each key is hand forged in a charcoal furnace. This is a slow,
grueling process; a crew of three or four workers can beat a hot slab of metal
into a rough bowl shape over the course of several hours.7 Detailed shaping
is done by hammer once it has cooled, and then the keys are polished. A
complete set of keys is tuned by the master tuner using a hand file, although
the final tuning is not done until all of the instruments are assembled.

Like most percussion instruments, the metallophones of the gamelan have
inharmonic spectra. Each kind of instrument has its own idiosyncrasies, and
the remainder of this section looks at each of the instruments in turn. All
7 It takes 60 workers about 5 months to build a complete gamelan.
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samples in this chapter are from either the Gamelan Swastigitha,8 which is
under the capable direction of Suprapto Atmosutijo, or from Gamelan Kyai
Kaduk Manis, which was built for Pak Cokro (K.R.T. Wasitodiningrat), also
of Yogyakarta. Gamelan Kyai Kaduk Manis was built in 1997, is in excellent
condition, and hence is a good example of a modern gamelan, although it was
modeled after one of the palace gamelans in Surakarta. Gamelan Swastigitha
is considerably older, although it is certainly post-World War II.

10.3.1 Saron

Sarons are a kind of metal keyed xylophone. Each key is a solid rectangular
chunk of bronze whose top has been rounded slightly, as in Fig. 10.1. Keys are
suspended above a trough-shaped frame on two metal pins. Sarons appear in
a large range of sizes (and hence pitches), and each usually has between six
and nine keys.

saron gender

Fig. 10.1. Keys of the saron and
gender act much like uniform metal
bars, but details of their shape and
contour cause important differences
in the spectra of the sound.

Sarons are usually played with an interesting two-handed technique. First,
the wooden hammer strikes a key at an angle so that the mass of the ham-
mer does not interfere with the resonance. The player then mutes the key
with the thumb and forefinger of the free hand by pinching it. Thus, at each
moment, the player strikes a new note while damping the old. Fast passages
are played by two (or more) players hocketing on matched instruments, that
is, alternating notes in a predetermined way. The saron often plays the main
theme, although it can also be heard playing a supporting role by syncopating
or duplicating the main themes. Its keen, sparkling sound is one of the most
characteristic timbres of the gamelan.

The sound, and hence the spectrum of the saron, varies somewhat from
gamelan to gamelan, but the pitch is always determined by the fundamental.
The spectra appear to come in two basic varieties. The simpler kind is shown
in Fig. 10.2, which plots the spectra of two typical saron keys from gamelan
Swastigitha.9 The top spectrum has partials at f , 2.71f , and 4.84f , and the
bottom spectrum has partials at f , 2.62f , 4.53f , 4.83f , and 5.91f . Over the
8 Ngadinegawan MJ 3/122, Yogyakarta.
9 Except where explicitly stated, all spectra in this chapter were computed using a

32K FFT. Each plot represents the behavior in the first 3/4 second of the sample.
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whole set of instruments, four partials appear consistently. The median of
these values is

f, 2.76f, 4.72f, and 5.92f

which may be taken as a kind of generic saron key for this gamelan. Observe
that this is close to, but significantly different from, the spectrum of an ideal
bar. In particular, the third and fourth partials of the ideal bar are 5.4f and
8.9f , and the Swastigitha sarons are uniformly lower.
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Fig. 10.2. Spectra of two typical keys of a saron from gamelan Swastigitha from
Yogya.

The second kind of saron spectrum is exemplified by the sarons of Gamelan
Kyai Kaduk Manis in Fig. 10.3, which have prominent partials at

f, 2.34f, 2.76f, 4.75f, 5.08f, 5.91f, and at
f, 2.31f, 2.63f, 4.65f, 5.02f, 6.22f.

Essentially, the partials near 2.7 and 4.8 have bifurcated so that a pair occurs
where previously there was one. An idealized or generic version of the sarons
of Gamelan Kyai Kaduk Manis is

f, 2.39f, 2.78f, 4.75f, 5.08f, 5.96f.

The origin of the bifurcated partials so prominent in the sarons of Kyai
Kaduk Manis is not obvious. Perhaps they are caused by some impurity (or
nonuniformity) in the brass, or perhaps from some accidental deviation in
physical dimensions, but these seem unlikely because the intervals between the
pairs are so consistent across the keys of all 11 sarons. Rather, it would appear
that this timbre is intentional, that the tuner chose to encourage these closely
spaced modes.10 Indeed, referring back to the Swastigitha sarons, the higher
10 Perhaps it is inherent in the rounded shape of the saron keys, or perhaps it

is caused by some careful sculpting of the physical contour of the keys. If, for
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Fig. 10.3. Spectra of two typical keys of a saron from gamelan Kyai Kaduk Manis
from Yogya.

of the two pairs are visible; they are prominent in the bottom spectrum, and
the arrow in the upper spectrum points to a small, but observable bifurcated
partial.

10.3.2 Gender

The gender is a metallophone with thin bronze keys (see Fig. 10.1) that are
suspended above tubular resonators, much like a vibraphone. The air column
vibrates in sympathy with certain partials, reinforcing the sound. When tuning
a gamelan, the gender is usually tuned first, and all other instruments are
tuned to the gender.

Genders are often played with soft disk-headed mallets, in such a way as
to paraphrase and restate the melody. The padded mallet tends to give a
soft, mellow sound. As the instrument resounds for a long time, the player
usually mutes old notes with the heel of the hand while striking new notes.
Larger (lower pitched) genders play slowly, and the smaller and higher pitched
instruments move more rapidly.

The spectra of two typical gender hits are shown in Fig. 10.4. These have
prominent partials at

f, 2.01f, 2.57f, 4.05f, 4.8f, 6.27f, and
f, 1.97f, 2.78f, 4.49f, 5.33f, 6.97f

which can be interpreted as a metal bar (the partials at or near 2.7f and
5.3f) or as a modified saron bar (the partials at or near 2.7f and 4.8f) in
conjunction with harmonic partials at or near 2f , 4f , and 7f . This makes

instance, one side of the key was slightly thinner than the other, then the two
sides might vibrate at slightly different frequencies.
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physical sense because the gender is a metal bar. The harmonic partials are
likely due to the resonances of the air column.
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Fig. 10.4. Spectra of two typical gender hits.

In [B: 159], the resonances of four bars of a jegongan (a large Balinese
gender) are found to be nearly identical to the resonances of an ideal bar.
Presumably, these were measured without the air resonances, because there
is no hint of the harmonic partials that are so prominent in Fig. 10.4.

10.3.3 Bonang

A bonang usually consists of two tiers of bronze kettles. Each kettle is shaped
like a broad-rimmed gong as in Fig. 10.5, and it is suspended open side down-
ward on two strings tied to a wooden frame. The player holds two hard,
wrapped mallets, and strikes the protruding knobs on the top end. The ket-
tles in a slendro bonang are often arranged antisymmetrically:

6 5 3 2 1̇
1 2· 3· 5· 6·

in the two ranks so that the performer can easily play (near-octave) pairs of
notes. The dots indicate notes in the octave above or below.

A typical pelog bonang is similarly arranged:

4 6 5 3 2 7 1·
1 7· 2· 3· 5· 6· 4·

Kunst describes the musical function of the bonangs eloquently:
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bonang

kenong

knob

rim

a

Fig. 10.5. The kettles of the bo-
nang and kenong are shaped simi-
larly, but the rim of the kenong is
longer and the sound generally sus-
tains longer.

[the bonangs] devote themselves to the paraphrasing of the main
theme. Now they anticipate it, now they analyze it into smaller values
and imitate it in the octave. Then again, they syncopate it... then they
fill up the melodic gaps with their penetrating tinkling sound.

As the bonang has a unique bell-like shape, there is no ideal to which it can
be compared. The spectrum of three different bonang kettles have prominent
partials at

f, 1.58f, 3.84f, 3.92f
f, 1.52f, 3.41f, 3.9f,

f, 1.46f, 1.58f, 3.47f, 3.71f, 4.12f, 4.49f

as shown in Fig. 10.6. The first two are typical and a good generic bonang
spectrum is

f, 1.52f, 3.46f, 3.92f.

Many of the bonang kettles also demonstrate the behavior of bifurcating par-
tials previously encountered in certain of the more complex saron keys. For
instance, in the lower spectrum in Fig. 10.6, the partials at 1.46f and 1.58f
might be interpreted as children of the generic bonang partial at 1.52f , and
those at 3.47f and 3.71f might be derived from the generic partial at 3.46f .

The kenong is a kind of kettle with a larger rim that makes a clear and
sustained sound. It is often used to subdivide the long gong phrases into
smaller pieces, and hence it serves a primarily rhythmic function. Spectra of
the kenong are similar to those of the bonang, despite the differences in shape.

10.3.4 Gong

Perhaps the most characteristic sound of the gamelan is the deep, dark strokes
of the gong marking the end of each musical phrase. The largest gongs can
have a diameter up to a meter, weigh 60 or more kilograms, and have a
fundamental frequency of only 40 or 50 Hz. Gongs may come in a variety of
shapes, and Fig. 10.7 shows a fairly common profile.
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Fig. 10.6. Spectra of three typical bonang kettles.

According to tradition, gongs are of divine origin, and they were used as a
signaling system among the Gods. Kunst [B: 90] reports that some gongs are
protected by powerful beliefs; for instance, no European is allowed to touch
the sacred gong at Lodaya. “One civil servant, who ventured nevertheless to
touch it, died soon afterwards.”

Without a doubt, the acoustic behavior of gongs is complicated. Figure
10.8 shows the first four seconds of a gong stroke, divided into 32K (3/4
second) segments. The first ten partials are at frequencies

90, 135, 151, 180, 241, 269, 314, 359, 538, 626

which is

f, 1.49f, 1.67f, 2f, 2.67f, 2.98f, 3.47f, 3.98f, 5.97f, 6.94f

Fig. 10.7. The giant gongs of the gamelan
have a rich deep sound that can last well over
30 seconds. “The sound of the gong, beaten
heavily, rolls on its ponderous beats like the
ocean tide.” Quoted from Kunst [B: 90].
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for f = 90 Hz, the perceived pitch. All of these partials are integer multiples
of 15 Hz,11 which is not directly perceptible. Equivalently, the “scale” formed
by these ten partials (after reduction back into a single octave) is

1, 4/3, 3/2, 5/3, 7/4, 2

which is a simple just pentatonic scale.
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Fig. 10.8. Partials of the gong rise
and fall as time evolves. Curves
show the spectrum for successive
time periods.

One interesting behavior is the rising and falling of partials as the sound
evolves. For instance, consider the partial at 626 Hz, which slowly decays in
amplitude until 3 seconds, when it suddenly begins to regain prominence.
Similarly, the partial at 495 Hz falls and then grows, Such energy exchanges
give the gong its characteristic evolving timbre—as if the partials of the gong
are smoothly sweeping up and down the pentatonic scale.

Rossing and Shepherd [B: 159] suggest that the two prominent octave
partials (at 90 and 180 Hz in this case) that determine the pitch arise from
two axisymmetric modes of vibration and are tuned by careful control of the
ratio of the mass of the dome to the total mass.

10.3.5 Gambang

The gambang is essentially a Javanese xylophone. Three or four octaves of
wooden keys lie on soft cushions that are mounted on a wooden frame. The
11 Rameau [B: 145] would have found this remarkable.
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lower keys tend to be large and flat, and the higher keys are shorter and
rounder. The sound is heavily damped, more of a plink than a dong. The
spectra of typical gambang strikes are shown in Fig. 10.9. These are very
close to the spectrum of an ideal bar, and hence the gambang is best thought
of in this way.
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Fig. 10.9. Observe how these two
hits of the gambang have spectra
close to that of an ideal bar. The
top has partials in the ratios 1, 2.86,
5.4, 8.4 and the bottom has partials
in the ratios 1, 2.73, 5.26, 8.3.

10.3.6 Other Instruments

The kendang is a full-bellied wooden drum, not dissimilar to a conga drum.
The head is traditionally made of buffalo skin that is stretched by means of
rattan hoops. The kendang player is, more than anyone else, the conductor
of the gamelan. Often, the kendang signals impending changes by stylized
rhythmic messages, and subtle hand motions are used to indicate which parts
are to be emphasized.

Besides the fixed pitch instruments of a typical gamelan, there are in-
struments that are often used in specific kinds of gamelan styles. In some
styles, the theme is played12 by the rebab, a two-stringed bowed lute with a
heart-shaped body. By its nature, the rebab plays far more fluidly than the
metallophones. The strings are often made from thin copper wire, and the
bow is stretched taut by two fingers of the right hand, much like the Chinese
erhu. There is no fingerboard as on a violin; rather, the strings are stopped by
pressure from the fingers alone. Because the bow is applied near the bridge,
the rebab has a more nasal quality than the violin. The spectrum of the sound
is primarily harmonic, as expected from a stringed instrument.

The suling is an aerophone, an end blown bamboo tube with tone holes
cut appropriately to sound in the pelog or the slendro scale. Air is forced to
cross the wedge-shaped sound hole by means of an ingenious bamboo ring that
encircles the mouthpiece. It is thus as easy to blow as a Western recorder. It
12 Sometimes the rebab lags the “melody” (the balungan) slightly, and sometimes it

anticipates.
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is also easy to bend the pitches of notes by partially covering the holes, which
allows the suling to imitate the call of a bird or the inflections of a voice in
its richly ornamented parts. Like most instruments based on the resonance of
air columns, the spectrum is primarily harmonic.

Finally, gamelan performances often include singing. This may be during
an interpretation of the wayang kulit (shadow puppets), or it may represent
a characters voice in a dramatic stage performance or a popular show. Thus,
gamelan music includes several families of inharmonic instruments, each with
their own character, and yet retains a basic compatibility with harmonic in-
struments such as the rebab, the suling, and the human voice.

10.4 Tuning the Gamelan

Gamelan tunings come in two flavors: the five-note slendro and the seven-note
pelog. The earliest reported measurements of these tunings are from Kunst
[B: 90], who observed that the interval between each note in a slendro scale
is equal to 240 cents. This implies that slendro is similar to 5-tet:

note: 6 1 2 3 5 6
cents: 240 240 240 240 240

The naming of notes is only partially numerical. In slendro, there is no 4, and
the scale is often considered to start (and end) on 6.

Pelog, according to Kunst, is more complex, consisting of seven unequal
divisions of the octave:

note: 1 2 3 4 5 6 7 1
cents: 120 150 270 150 115 165 250

Unfortunately, Kunst’s tone measurements were conducted using a monochord
(a stretched string, to which the desired tones are compared by ear) and so
are of limited accuracy. As more modern investigations show, the above scales
are only part of the story.13

First, each gamelan is tuned differently. Hence, the pelog of one gamelan
may differ substantially from the pelog of another. Second, tunings tend not
to have exact 2:1 octaves. Rather, the octaves can be either stretched (slightly
larger than 2:1) or compressed (slightly smaller). Third, each “octave” of a
gamelan may differ from other “octaves” of the same gamelan. And fourth,
there is usually some note that is common between the slendro and pelog
scales of a given gamelan, although matching notes differ from gamelan to
gamelan.

An extensive set of measurements is carried out in Tone Measurements of
Outstanding Javanese Gamelans in Yogyakarta and Surakarta [B: 190], which
13 Kunst also offers an explanation for the tunings of the gamelan in terms of von

Hornbostel’s theory of a cycle of “blown” (compressed) fifths.
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gives the tunings of 70 gamelans.14 The measurements were taken using an
analog electronic system with an accuracy of about 1 Hz. The technique re-
quires that all higher partials be filtered out, and so only the fundamentals
are reported. This is completely adequate for measuring the tunings, because
the pitches of the metallophones are determined by the fundamentals. Unfor-
tunately, it means that information about the timbre (spectra) of the instru-
ments has been lost.

Kunst measured the tuning of one saron in each gamelan, and extrapolated
from that to the tuning of the whole gamelan. This was unfortunate for two
reasons. First, tunings may differ somewhat depending on the register. Second,
Kunst failed to observe that the tunings were not genuinely octave based. For
instance, the notes 6 and D:6 (or 6̇ and 6) need not be in an exact 2:1 ratio.
This latter fact is one of the most remarkable aspects of the gamelan tunings,
at least from the octavo-centric Western viewpoint. The octave stretching (and
compressing) is amply demonstrated in [B: 190], and pseudo-octaves ranging
from 1191 to 1232 cents are reported.15

Another striking aspect of the data in [B: 190] is the accuracy to which
gamelans are tuned. For instance, of the 11 instruments tuned to pitch 6 in
the fifth register of Gamelan Kyahi Kanyutmesem (Table 3 of [B: 190]), all are
within 3 Hz of 582. Eight are within 1 Hz of 580. It is therefore not a tenable
position that gamelan octaves are stretched or compressed by accident, or by
inability to tune the instruments accurately enough. Similarly, the differences
in tuning between various gamelans are far greater than the variation within
gamelans. The variety of gamelan tunings is intentional.

10.4.1 A Tale of Two Gamelans

This section examines the tunings of Gamelan Swastigitha and Gamelan Kyai
Kaduk Manis in detail. The slendro tuning of Gamelan Swastigitha is shown
in Table L.2 on p. 378, where the calculation of the fundamental of each key
is accurate to about 1 Hz. With the exception of the gambang,16 the tuning is
extremely consistent. Different instruments in the same column have keys at
the same pitch, and these rarely differ by more than 1 or 2 Hz. For example,
the six metallophones at note 6 in register II are all between 471 and 472 Hz.

The last row of the table shows the median values within each column,
and this represents an idealized tuning for this gamelan. Translating these
values into cents and arranging by register shows the internal structure of
this slendro scale:
14 Originally published in Indonesian in 1972, this book has been recently translated

into English.
15 Carterette [B: 26] reanalyzes the data from [B: 190] and describes the stretching

of the scales concretely by finding the best exponential fit.
16 It may be that the gambang is harder to tune than the others because of its short

envelope. It may also be that the wood becomes nicked, scratched, and detuned
far more easily than the metallophones.
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Gamelan Swastigitha: Slendro
register intervals “octave”

I 252 240 244 244 239 1219
II 233 249 243 235 246 1206
III 235 248 238 252 237 1210

average 240 246 242 241 241 1210

Each octave is stretched by an average of 10 cents. The scale is remarkably
uniform; the mean difference of this scale from 5-tet is 2 cents, and the max-
imum error is 6. To place this in perspective, consider the just major scale
of Table 6.1 (p. 101) and its approximation by 12-tet scale steps. The mean
difference between these two is 8.8 cents, and the largest error is 16 cents.

Similarly, the slendro tuning of Kyai Kaduk Manis is given in Table L.3
on p. 378. Reformatting this into cents gives:

Gamelan Kyai Kaduk Manis: Slendro
register intervals “octave”

I 231 223 239 247 253 1193
II 237 237 238 234 250 1196
III 243 239 225 250 242 1199

average 237 233 234 244 248 1196

Again, the scale is very close to 5-tet (mean difference of 5.6 cents, maximum
difference eight cents), but the octaves of this tuning are compressed slightly.
All of these values fall well within the ranges observed in [B: 190].

Pelog tunings for the gamelans are given in Tables L.4 and L.5 on pp. 379
and 380. Rearranging the data gives:

Gamelan Swastigitha: Pelog
register intervals “octave”

I 100 145 301 121 99 162 261 1189
II 133 153 275 117 106 181 234 1199
III 123 166 269 119 119 173 238 1207

average 119 155 282 119 108 172 244 1199

and
Gamelan Kyai Kaduk Manis: Pelog

register intervals “octave”
I 166 161 267 119 119 171 237 1240
II 147 145 274 115 104 197 209 1191
III 158 154 258 96 154 180 206 1206

average 157 153 266 110 126 183 217 1212

Obviously, pelog is not an equal-tempered scale. Surjodiningrat et al. [B: 190]
average the tunings from thirty pelog gamelans to obtain

120, 138, 281, 136, 110, 158, 263
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but they are clear to state that this “does not mean the best but only the
average.”

In fact, a general pattern for pelog scales is

S1, S2, L1, S3, S4, S5, L2,

where the Si represent small intervals and the Li represent large intervals.17

The actual values of the Si and Li vary considerably among gamelans and
even within the same gamelan, so this pattern cannot be taken too literally.

10.4.2 Conversations about Tuning

Why is your gamelan tuned this way? While traveling through Indonesia, I
asked this question many times. People who tune gamelans, those who play,
and those who build them were often willing to comment, and their answers
ranged from practical tuning advice to mystical explanations, from detailed
historical justifications to friendly ironic smiles that meant “what a silly ques-
tion.”

Before describing the responses, consider the question. If asked why the
piano is tuned as it is, perhaps you would describe the historical progression
from Pythagorean to equal temperaments, perhaps comment how 12-tet allows
modulation through all of the keys, perhaps describe how the major scale
originates from a juxtaposition of certain major triads, as an approximation
to the harmonic series, or as a conjunction of tetrachords.18 Similarly, it would
be unreasonable to expect any kind of unanimity of answers about gamelan
tuning.

The most common answer was to name a gamelan that had been used as
a tuning reference, reflecting a common practice for the initial tuning of the
gender. For instance, Pak Cokro, the master of Gamelan Kyai Kaduk Manis,
said that it was referenced to a respected gamelan at the palace in Surakarta.
“In ancient times it was necessary to tune the gender right in the palace,”
said Pak Cokro, “but in modern times most people use a tape recorder.” A
gamelan by Siswosumarto19 was similarly referenced to the gamelan at the
National Radio Station,20 and a gamelan of Mulgo Samsiyo21 was referenced
to a gamelan at the University in Yogyakarta.22 Mulgo Samsiyo uses an elec-
tronic tuning device to tune the genders. “All the others are the same as the
genders,” he said.
17 This provides an interesting inversion of the diatonic scale defined by

L, L, S, L, L, L, S.
18 If you were reading this book, you might comment how 12-tet is an approximation

to a scale related to sounds with a harmonic spectrum.
19 Kaplingan Jatiteken Rt. 04/V. (Timor Bengawan Solo) Ds. Laban-Mojolaban Skh

Surakarta.
20 RRI, Surakarta.
21 Dk. Gendengan Rt. 1/IV. Ds. Wirun Mojolaban, Sukoharjo-Jateng.
22 ISI, Yogyakarta.
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Suhirdjan,23 a gamelan maker and tuner in Yogyakarta, described the
tuning procedure. “You pick a scale and then tune the gender to that scale.
Then all the other instruments are fit to the gender.” I asked how the initial
scale is chosen. “Just tune until it sounds right,” he said. This sentiment was
echoed far more poetically by Purwardjito,24 an instructor at the Arts College
in Surakarta, “Gamelans are tuned to nature. In the west you tune with your
mind. In Indonesia, we tune with the heart.”

Both Suhirdjan and Purwardjito are proficient with the techniques of tun-
ing. Each described in detail the parts of the saron key that must be scraped
to raise or lower the pitch, and these accord well with techniques used to tune
xylophone keys.25 The bonang family is trickier, but both agreed that filing
from the outside of the rim tends to lower the pitch, and filing the inside has
the opposite effect. Filing the knob on the outside also raises the pitch. The
greatest factor, however, is the angle marked a in Fig. 10.5; smaller angles cor-
respond to lower pitches, and larger angles correspond to high pitches. “This
should only be changed in the gong factory, since it is dangerous to hammer
a bronze kettle–it might crack.” Purwardjito continues, “It’s also important
that the walls be uniform. When the thickness is uneven, the sound damps
out much more quickly. We say the sound is drowning in water.” Gongs are
hard to tune. “You never know which way the pitch is going to go when you
hit or file it,” says Suhirdjan, “Each gong has its own personality.”

Neither tuner uses beats when he tunes, although both are well aware of
their existence. Towards the end of the interviews, I asked “a complicated
question.” Grabbing a bonang, I placed my hand so as to damp out all but
the fundamental. After I hit it, I whistled the pitch of the fundamental. I
then shifted the position of my hand so as to damp out all but the partial
at about 1.5f , and then highlighted the pitch of this partial26 by whistling.
There were two kinds of reactions. Some of the informers, like Suhirdjan,
denied that there were two different pitches. “I hear both as the same pitch...
or as different parts of the same pitch,” he said. “It’s like when you hit the
same kettle softly, it is the same pitch as when you hit it hard. They are
the same pitch, but different.” Clearly, Suhirdjan is listening holistically. Very
likely he tunes in a holistic way as well.

Purwardjito’s reaction was different. First he laughed. Then he said, “Ah, I
see. You mean the supporting27 tone... There are many kinds of tuning. There
is the tuning in the furnace, where you determine the shape. There is the fine
tuning with file and hammer. When you tune the gender [to the reference
scale], you only pay attention to the pitch. But when you tune the bonang,

23 Condronegaran Mj. 1/951, Gedong Kiwo, Yogyakarta.
24 STSI Surakarta. Jur-Karawitan, Kentingan Jebres.
25 See, for instance, [B: 124].
26 Which to my ear was now the dominant sound.
27 Gunawen, who was translating the conversation, conferred with Purwardjito for

several moments, searching for the right word, eventually settling on “support-
ing.”
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the kenong, or the gongs, you pay attention to the supporting tones.” This
kind of attention is analytical listening, and presumably Purwardjito tunes
analytically as well.

10.5 Spectrum and Tuning

Just as Western theoreticians do not generally think in terms of correlating
the spectrum of an instrument with its tuning, Indonesian gamelan tuners
are unlikely to have developed their scales with a detailed awareness of the
spectra of their instruments. Rather, they used their ears to create compatible
scales and instruments.

A key tool in relating harmonic sounds to diatonic (just) scales is the disso-
nance curve. The partials of the sound are specified, and then the related scale
is defined by the minima of the dissonance curve. Although gamelan tuners
can tune with remarkable accuracy, the number of different partials they can
reliably control is limited, usually only two to four.28 Such sparse spectra lead
to dissonance curves with only a few widely spaced minima, not enough to
explain any of the extant scales. Thus, the situation for the gamelan is a bit
more complex, because no single instrument has the appropriate spectrum.

One clue to the resolution of this dilemma is in the first quote in this
chapter where Kunst spoke of the “discrepancy” between the vocal and in-
strumental tones of the gamelan. Another clue is that gamelan music includes
several kinds of inharmonic instruments, and yet it retains compatibility with
harmonic instruments such as the rebab, suling, and the human voice. Thus,
gamelan scales can be viewed in terms of the spectra of two different instru-
ments. That is, both pelog and slendro scales can be viewed as minima of the
dissonance curve29 generated by an inharmonic instrument in combination
with a harmonic sound.

10.5.1 Slendro

Slendro is simpler than pelog both because it contains fewer notes and because
it varies less from gamelan to gamelan. A generic bonang with partials at
f, 1.52f, 3.46f, 3.92f was experimentally derived in the previous sections.
Drawing the dissonance curve for this spectrum F in combination with a
harmonic spectrum G with partials at g, 2g, 3g, 4g gives the dissonance
curve30 of Fig. 10.10.

Observe that many of the minima of this curve occur at or very near steps
of the 5-tet scale, which are themselves very near the steps of typical slendro
28 Usually only two to four partials are at consistent intervals throughout an instru-

ment.
29 The section “Dissonance Curves for Multiple Spectra” in the chapter “Related

Spectra and Scales” details how such dissonance curves are drawn.
30 All partials were assumed of equal magnitude.
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Fig. 10.10. Sounds F (a generic bonang) and G (a harmonic sound with four
partials) generate a dissonance curve with many minima close to the steps of 5-tet,
which is shown for comparison.

tunings. Thus, it is reasonable to interpret slendro tunings using the same
principles as were used to derive the just scales as a basis of Western harmonic
music. In fact, the deviation of slendro from 5-tet (and from the minima of the
dissonance curve of Fig. 10.10) is smaller31 than is the deviation of the just
scale from 12-tet (and from the minima of the dissonance curve for harmonic
sounds). In essence, the theory provides a better explanation for the slendro
tunings than it does for Western tunings.

Besides the coincidence of the minima with scale steps, there are two
notable features of this curve. First, there are three minima very close to the
octave: at 1.96, 1.98, and 2.0. This variation in minima of the dissonance curve
near the octave mirrors the variation in “octaves” of the slendro scales, and
it may provide a hint as to why there is no single fixed octave in the slendro
world. Second, observe the minimum at 1.02. With a fundamental of 100 Hz,
this minimum would occur at 102 Hz, giving a beat rate of 2 per second. At
a fundamental of 500 Hz, this minimum would occur at 510 Hz, with a beat
rate of 10 Hz. This may be a hint as to the origin of the aesthetic of beats
that the gamelan is famous for.

One objection to this analysis is that some arbitrary choices are made. For
instance, why was G chosen to have four partials? Why not more? Why as-
sume all partials are of equal importance (by assuming equal amplitudes)?
Certainly, the particular values were chosen so that Fig. 10.10 was clear.
Nonetheless, as in all dissonance curves, the fundamental features (in this
case, the alignment of the minima with steps of the 5-tet scale) are relatively
invariant to small changes in the assumptions. For instance, dropping a par-
tial from G does not change any of the minima. Adding a partial to G causes
another (extraneous) minimum to occur at 1.44. Deleting the partial at 3.92
from F causes the minima at 1.02 and 1.96 to disappear. Changing the am-
plitudes to more closely match the actual spectra only changes the height of
the various minima, not their location. Indeed, the fundamental features are
robust.
31 Both in average and in maximum error.
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10.5.2 Pelog

The pelog scale of one gamelan may differ substantially from the pelog of
another. Thus, pelog is not as easily explained as slendro, which could be
reasonably approximated by 5-tet.

One approach that appears fruitful is to combine the spectrum of the saron
with a harmonic spectrum, in much the same way that slendro was approached
as a combination of the bonang and a harmonic sound. To get a close match
between the minima of the dissonance curve and the scale, however, it is not
enough to use a saron averaged over all of the gamelans. Rather, the spectrum
of the sarons actually used in the gamelan must be employed. For instance,
a typical saron from gamelan Swastigitha was given in previous sections as
f, 2.76f, 4.72f, 5.92f . Drawing the dissonance curve for this F along with a
harmonic G containing five partials gives the dissonance curve of Fig. 10.11.
Unlike the slendro scale, only half of this curve contains scale steps of the
desired scale, so only this half is shown. Observe the close relation between
the minima of the curve and the scale steps of the Swastigitha pelog scale.

1

1.0               1.18           1.38 1.48 1.57         1.77     1.98ratio
cents      0                  289            558  674  786          988     1176
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Fig. 10.11. Dissonance curve generated by the spectrum of the Swastigitha saron
combined with a harmonic sound has minima near many of the scale steps of the
Swastigitha pelog scale.

Although the first step of the scale is missing from the dissonance curve,
the others are clearly present. Some of the scale steps are not aligned exactly,
for instance, the second scale step is 289 cents on the curve but is averaged to
274 for the gamelan. Actual values over the three octaves of the gamelan are
245, 286, and 289, so the 289 is actually reasonable. The largest discrepancies
occur in the last two steps. The next to last step is the only one that occurs on
a broad minimum (the others all occur at the sharp, well-defined kind), and
so it is not surprising that this value would have the largest variance. Indeed,
the value of this step varies by more than 40 cents over the three octaves of
the gamelan. The last step (near the octave) is understandable by the same
mechanism as in the slendro scales. Looking over the whole curve (and not just
this half), there are minima at 1.98, 2.0, and 2.14, and the three actual octaves
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of the gamelan occur at 1.98, 1.99, and 2.01. Again, this may be interpreted
in terms of the stretching and/or compressing of the octaves. Certainly, it is
reasonable that the actual scales used should reflect the uncertainty of this
placement of the “octave.”

The sarons of Gamelan Kyai Kaduk Manis have somewhat more complex
spectra, and the generic saron with partials at

f, 2.39f, 2.78f, 4.75f, 5.08f, 5.96f

can be combined with a sound G with five harmonics to give the dissonance
curve of Fig. 10.12. This displays the same qualitative features as the previous
figure: The first scale step is missing, and the seventh step (the octave) is not
completely certain.32 By a numerical coincidence, the next to last step is very
close, but it again falls on a broad minimum and the exact value cannot be
taken too seriously. Overall, however, the match between the minima of the
dissonance curve and the measured values are good.

1                                                                                   2

ratio     1               1.19         1.39  1.49 1.58     1.78      1.98
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Fig. 10.12. Dissonance curve generated by the spectrum of the generic saron of
Gamelan Kyai Kaduk Manis combined with a harmonic sound has minima near
many of the scale steps of the Kyai Kaduk Manis pelog scale.

This does not imply that gamelan tuners actively listen to the partials of
their instruments and sculpt them consciously so as to match the spectrum
and the scale. Gamelan tuners view their task much differently; as a cycle of
listening and filing that repeats until the gamelan “sounds right.” Nonethe-
less, gamelan tuners like Suhirdjan, while listening holistically, do manipulate
the partials as they tune. They do so in an intuitive way that is the result of
a long period of apprenticeship, considerable skill in the techniques of tuning,
and a deep insight into the way that gamelans “should” sound. Tuners like
Purwardjito, by listening to the “supporting” tones as he tunes, may be lis-
tening and tuning more analytically. Purwardjito sees himself as tuning “from
the heart.” I believe him.
32 There are again three “octaves” in the full curve. These occur at 1.98, 1.99, and

2.09.
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10.6 Summary

A few general observations:

(i) In almost all cases, the lowest spectral peak is the largest. It is reasonable
to call this lowest spectral peak the “fundamental,” because it corresponds
closely to its pitch.

(ii) The gamelan orchestras are “in-tune” with themselves in the sense that
whenever two instruments occupy the same “note” of the scale, the fun-
damentals are rarely more than a few Hertz apart.

(iii) The relative amplitudes of the partials are heavily dependent on the angle,
position, and force of the strike. The frequency of the partials is (compar-
atively) insensitive to the excitation.

(iv) The slendro tunings are very close to 5-tet, although the octave (or more
properly, the pseudo-octave) of the scales are often slightly stretched or
compressed from a perfect 2:1 octave.

(v) There are two classes of metallophones that are simple enough to un-
derstand: the bar-shaped instruments (saron and gender) and the kettle-
shaped instruments (bonang and kenong). The acoustic behavior of the
gongs, which is very complicated, is an area for further research.

(vi) The spectra of the bar-like instruments of the gamelan differ from the the-
oretically ideal bar. The differences are consistent enough to be considered
purposeful.

(vii) The temporal evolution of the spectra of all bar-like instruments is sim-
ple... all partials decay. The higher partials decay faster.

(viii) There is no simple theoretical shape to which the spectrum of the kettle
instruments can be compared. The partials of the keys are consistent
across each gamelan.

(ix) The temporal evolution of the kettle spectra is more complex than that
of the bar instruments. The cluster of high partials dies away quickly,
whereas the partials near 1.5f grow (with respect to the fundamental) as
time evolves, in many cases becoming the dominant (largest) partial and
the most prominent part of the sound.

The method of dissonance curves can be used to correlate the spectra of
instruments of the gamelan with the slendro and pelog scales in much the
way that they can be used to correlate harmonic instruments with certain
Western scales. The slendro scale can be viewed as a result of the spectrum
of the bonang in combination with a harmonic sound, whereas the pelog scale
can be (slightly less surely) viewed as resulting from a combination of the
spectrum of the saron and a harmonic sound. Thus, gamelan scales exploit
the unique features of the spectra of the inharmonic instruments of which they
are composed, and yet retain a basic compatibility with harmonic sounds like
the voice.
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Consonance-Based Musical Analysis

The measurement of (sensory) consonance and
dissonance is applied to the analysis of music using
dissonance scores. Comparisons with a traditional
score-based analysis of a Scarlatti sonata show how
the contour and variance of the dissonance score
can be used to concretely describe the evolution of
dissonance over time. Dissonance scores can also be
applied in situations where no musical score exists,
and two examples are given: a xenharmonic piece by
Carlos and a Balinese gamelan performance. Another
application, to historical musicology, attempts to
reconstruct probable tunings used by Scarlatti from an
analysis of his extant work.

11.1 A Dissonance “Score”

There are many ways to analyze a piece of music. Approaches include the
chord grammars and thematic processes of functional harmony as in Piston
[B: 137], the harmonic and melodic tensions of Hindemith [B: 72], the har-
monic and intervallic series of Schoenberg [B: 164], or in terms of the har-
monic motion and structural hierarchy of Schenker [B: 163]. In most such
musical analyses, the discussion of (functional) consonance and dissonance is
based directly on the score, by an examination of the intervals, the harmonic
context, and the tonal motion. This chapter introduces a way to explore the
sensory consonance of a piece of music by calculating the performed disso-
nance at each time instant. The result is a graph called the dissonance score
that shows how dissonance changes throughout the piece; the flow from con-
sonance to dissonance (and back again) is directly displayed.

Consonance and dissonance are only one aspect of harmony, which is itself
only one part of a complete analysis that must include melody and rhythm.
Furthermore, sensory consonance and dissonance are not identical to the more
traditional functional consonance and dissonance, and hence the dissonance
score must be interpreted carefully. Nonetheless, the dissonance score is ca-
pable of conveying useful information that cannot be obtained in other ways.
For instance, different performances of the same piece differ by virtue of the
instruments used, idiosyncrasies of the musicians, and of the acoustic space
in which the performance occurs. Dissonance scores reflect these differences
and allow a comparison between various performances of the same piece. Dis-
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sonance scores can also be drawn for music for which no musical score exists,
and hence, they are applicable to a wider range of musics than those based
on a formal score.

11.1.1 Drawing Dissonance Scores

Suppose that a musical piece has been recorded and digitized. The piece is
partitioned into small segments, and the sensory dissonance of the sound in
each segment is calculated by the techniques of the previous chapters. The
dissonance score plots these values over time. Details are shown in Fig. 11.1.

Window FFT Peak
Detection

Dissonance
Calculation

waveform              windowed            spectrum         line spectrum 
                              waveform

f   f   ... f1   2       m
frequency

frequencym
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Fig. 11.1. Dissonance scores are calculated from a musical performance by win-
dowing, applying an FFT, simplifying to a line spectrum, calculating the dissonance
between all pairs of partials in the line spectrum, and then summing.

For example, one composer known for his innovative use of dissonance is
the eighteenth century harpsichordist Domenico Scarlatti (1685–1757). Claude
Roland-Manuel, in the liner notes to [D: 42], comments:

Scarlatti’s audaciously original harmonies, and his acciaccaturas–
clusters and blocks of chords inherited from the Spanish guitar, taking
dissonance almost to its ultimate limits...

Whether “ultimate” or not, there is no doubt that Scarlatti’s sonatas were
innovative in both their harmonic motion and their use of dissonance. They
provide an interesting case study for the use of dissonance scores.

Figure 11.2 shows four versions of the dissonance score for the first half (40
measures) of Scarlatti’s sonata1 K380 in E major. In all cases, the horizontal
axis represents time, which is indicated in measures by the numbers above the
curves, whereas the vertical axis is the calculated2 sensory dissonance. The
top score was calculated from a standard MIDI file, assuming a single idealized
harpsichord timbre for each note. Data for the other three performances were
obtained by direct digital transfer from harpsichord performances on CD by
[D: 30], [D: 37], and [D: 42] using the technique of Fig. 11.1.
1 The prefix K stands for the harpsichordist Ralph Kirkpatrick, author of the stan-

dard catalog of Scarlatti’s sonatas.
2 In each curve, the point of maximum dissonance is normalized to unity.
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Fig. 11.2. Dissonance scores for several harpsichord performances of Scarlatti’s
sonata K380. Numbers indicate measures.

For the Scarlatti sonata, the data were partitioned into L = 8K segments
and the FFT of each segment was calculated. The most significant spectral
frequencies (and their magnitudes) were then used to calculate the dissonance
of each segment.3 Each plotted point represents about 0.2 seconds, and the
darker central lines are a moving average of the dissonance values over 10
points, or about 2 seconds. It is easy to plot the curves. But what do they
mean?

11.1.2 Interpreting Dissonance Scores

To interpret the dissonance scores, it will help to correlate them with other,
more traditional kinds of musical analysis. Figure 11.3 presents the musical
score of the first 40 measures of Scarlatti’s sonata K380. The piece begins
with four repetitions (with slight variations in register and dynamics) of a I,
V pattern, each ending in a trilled open fifth. These four repetitions appear
in each of the dissonance scores as the first four little hills. In the idealized
MIDI performance, the first pair of hillocks are identical and the second pair
3 This simplification to the “most important” frequency components is not com-

pletely straightforward. An algorithm is discussed in Appendix C. Details of the
calculations are given in Appendix E in equation E.6.
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Sonata K380

Domenico Scarlatti

Fig. 11.3. Musical score to Scarlatti’s sonata K380 (part one of two).

are identical, but larger. This reflects the fact that lower octaves have greater
sensory dissonance than higher.4 Measures 9 to 12 consist of descending runs
that outline V , I, V . In the idealized performance, this is a short V-shaped
segment, reflecting the fact that measures 9 and 11 contain bass notes, whereas
the run is unaccompanied in the middle measure.

In measure 12, the melodic line begins the first of four repetitions. Under-
lying this repetitive figure is an E chord in measures 12 and 14, a F� dominant
7 in measure 13, and an A� diminished in measure 15. Although these may
be mild compared with (say) passages from Stravinsky’s Rites of Spring, they
are considerably more dissonant than the previous sections. Besides the dis-
sonance inherent in the bass clef chords, there is the D� neighboring tone in
the melody, which forms a major seventh with the drone-like E. In addition,
the A�’s in the thirteenth and fifteenth measures form a repeated tritone.
4 This is a direct result of the widening of the sine wave dissonance curves at lower

frequencies.
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Fig. 11.3. Musical score to Scarlatti’s sonata K380 (continued).

The dissonance of these four measures is clearly visible in the idealized MIDI
performance as the large hump beginning at measure 12.

Scarlatti extricates himself from this dissonance by resolving from B ma-
jor, through E major, and then to F�, with a trilled suspension resolving down
to the third. The melodic figure, which is transposed down twice, ties this to
the previous four measures, and the journey into dissonance and back is com-
pleted by the end of measure 18. In the idealized performance, this return is
apparent in the fluctuating low-level dissonances leading into measure 19.

Similarly, the remainder of the dissonance score can be interpreted in terms
of the intervals, chords, and density of notes present in the original score. For
instance, the two small bumps beginning at measure 19 are caused by the
rhythmic “hunting horn” motif, whereas the large plateau starting at measure
23 is a result of the strong bass chords that again include an A� diminished.
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When repeated at measures 27 and 31, the idealized dissonance score repeats
almost exactly, just as in the musical score. When the first half of K380 ends in
measure 40 by resolving to three octaves of B, the dissonance decreases toward
zero. Thus, dissonance scores directly display some of the same qualitative
information that can be interpreted indirectly from the musical score.

11.1.3 Comparing Dissonance Scores

Recall that sensory dissonance depends not only on the intervals, but also
on the spectrum of the sound and its amplitude.5 As dissonance scores can
be drawn directly from a recorded performance, they can be used to com-
pare different renditions of the same piece. For instance, where one performer
might execute a phrase lightly, another might strike boldly. The brighter tone
with more high harmonics will have greater dissonance, and it will appear
differently on the dissonance score.

Figure 11.2 shows three different interpretations of the first half of K380
played by Newman, Ross, and Sgrizzi. Newman plays the “Magnum Opus
Harpsichord” built by Hill and Tyre. At almost 11 feet, this lavishly illus-
trated three-manual instrument has five sets of strings and “may be the largest
harpsichord ever constructed.”6 It has a full, lush sound. Ross plays the harp-
sichord of Anthony Sidey, which is a more traditional double-manual instru-
ment. Sgrizzi plays the Neupert harpsichord at the Cathédrale San Lorenzo.
Although the liner notes contain no information about the instrument, it
clearly has at least two manuals, and the timbre of the two are different: One
is bright, and the other is subdued and harp-like.

Performances of a piece can vary in many dimensions, including tempo,
dynamics, tone color of the instrument, ornamentation, and properties of
the recording environment such as reverberation, microphone placement, and
equalization. These will all effect the dissonance score. For instance, a hall
with large reverberation time (or equivalently, a long artificial reverberation
added to the recording) will cause notes to sound longer. When sustained
tones overlap, the dissonance increases because the spectra from all simulta-
neously sounding partials contributes to the dissonance calculation. Similarly,
a faster rendition will tend to have more dissonance than a slower one, all else
being equal, because successive notes overlap more. Although the dynamics
of a harpsichord are relatively fixed (approximately the same force is applied
each time a note is plucked), differences between instruments are significant,
and differences between manuals and registers on the same instrument are
inevitable. Thus, the performer has considerable control over nuances that
effect the perceived dissonance of the rendition.
5 Other factors being equal, a louder sound has greater sensory dissonance than a

softer sound.
6 According to the liner notes of [D: 30].
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Dissonance scores display detailed information about the performance. For
instance, the first eight measures appear as the first four bumps on the disso-
nance curves. Newman’s version parallels the idealized MIDI performance; the
first two bumps are both small, and the second two bumps are larger. Ross is
similar, except that the fourth repetition is played with less dissonance than
the third. The musical score marks dynamics for these phrases: mf for the
first and third, pp for the second and fourth. Ross faithfully interprets these
dynamic markings by reducing the dissonance.

In contrast, Sgrizzi decreases dissonance throughout the four phrases. The
timbre of the instrument changes noticeably in the lower octave repetitions;
presumably, Sgrizzi has changed manuals, and the effect is to decrease the
dissonance despite the lowering of the octave. In measures 9 to 12, Sgrizzi
returns to the brighter register. By playing these measures legato, the notes
of the runs overlap, and these become the most dissonant passage in the piece.

One of the most obvious features of the dissonance scores is the rapid
change in the instantaneous dissonances, which form a fuzzy halo about the
averaged curve. These fluctuations can be quantified by calculating the sum
squared deviation of the raw dissonance values from the averaged values. The
standard deviations are:

Sgrizzi 0.124
Newman 0.133
Ross 0.155

In contrast to the human performances, the MIDI performance has very little
fluctuation, with a standard deviation of only 0.063. This is because the MIDI
dissonance score assumes an idealized harpsichord timbre containing exactly
nine harmonic partials, an idealized instrument in which each note was identi-
cal except for transposition, and an idealized (quantized) performance.7 Such
a performance does not, of course, constitute an ideal performance, but it
does provide a skeleton of the expected flow of consonance and dissonance
throughout the piece.

Sgrizzi’s low standard deviation is especially apparent in his careful han-
dling of the dissonant chords in measures 12 through 19. Part of the low
overall dissonance of this portion is likely due to the slow pace of the ren-
dition, but the low variance also demonstrates a meticulous attention to the
constancy of the musical flow. In contrast, Ross maintains both a high level
of dissonance and a large variance throughout the phrase. This is due in part
to the faster pace, but the high variance is caused by the rhythmic expression
of the bass chords, which are played with deliberate attacks and an almost
staccato articulation. The variance of Newman’s performance is midway be-
tween Sgrizzi and Ross, but it is notable for its coherence. Observe how the
third and fourth hills (measures 5–6 and 7–8) are almost exactly the same.
Similarly, the “hunting horn” phrase in measures 19–27 is almost identical to
7 The standard MIDI file is currently available on the Internet at the Classical

Music Archives [W: 4].
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the repeat in measures 27–34. Both Ross and Sgrizzi approach the two ap-
pearances of this motif differently. Ross builds tension by slowly incrementing
the dissonance, whereas Sgrizzi slowly relaxes throughout the phrase.

Scarlatti’s sonatas, although written for harpsichord, have often been
adapted for piano, and many have been transcribed for classical guitar. Fig-
ure 11.4 shows the dissonance score for a performance of K380 on piano by
[D: 33] and on guitar by [D: 14]. Pogorelich exploits the greater dynamic range
of the piano to emphasize certain aspects of the piece. The first theme, for
instance, follows Kirkpatrick’s dynamic markings closely, and the dissonance
follows the volume and the register. Pogorelich races through measures 12-19,
but does so very softly. This controls the dissonance so that it peaks in the
repeated hunting call of measures 19 and 27. This dissonance is due more to
sheer volume than to the intervallic makeup of the chords. It is a sensible,
although not inevitable, approach.

Fisk
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Fig. 11.4. Dissonance scores for two renditions of Scarlatti’s sonata K380. Pogore-
lich performs on piano, and Fisk plays guitar.

Fisk’s realization is almost as fast overall as Pogorelich’s, but the tempo is
more even. Where Pogorelich lingers in the first few measures and then charges
through the next few, Fisk trods along with toe-tapping steadiness. Fisk’s
interpretation is unique among the performances because he treats the whole
40 measures as one long phrase. Observe how the dissonance score slowly rises
and falls over the course of the piece, indicating this fluidity of motion. All
other performances are segmented into (more or less) eight measure phrases,
and the dissonance score rises and falls in synchrony. Although dissonance
scores can give a quantitative assessment, they cannot pass judgment on the
desirability of such interpretive decisions.

Dissonance scores must not be viewed carelessly. For instance, larger vari-
ance of the dissonance score might imply a more expressive performance, but
it might also indicate a sloppiness of execution. Smaller variance points to
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more careful control, perhaps more “technique,” but it might also correspond
to a more “mechanical” rendition. When comparing two dissonance scores of
the same piece, the variation in dissonance due to the performance is more
significant than the amount of dissonance, because both are normalized to
unity. For instance, points of maximum or minimum dissonance might occur
at different places, indicating those portions of the piece the performer wishes
to emphasize or de-emphasize. Similarly, the contour of the dissonance curve
carries much of the important information, but it requires an act of judgment
to determine what contour is most desirable for a given piece.

Thus, dissonance scores can display unique information about a piece, and
they may be used as an analytical tool to help concretely describe the motion
from consonance to dissonance, and back again.

11.1.4 When There Is No Score

The dissonance score is not a notation, but a tool for analysis. Although it
cannot supply as much information as a musical score, it is applicable in
situations (to xenharmonic, aleatoric, serial, or ethnic musics, for example)
where no scores exist and where traditional analytic techniques cannot be
applied. To demonstrate the potential, this section briefly examines a short
movement from Carlos’ Beauty in the Beast and a segment from a Balinese
gamelan performance. The dissonance scores are drawn, and they are related
to various aspects of the music and the performances.

Beautiful Beasts

The title track of the symphonic Beauty in the Beast by Carlos [D: 5] is played
in two xenharmonic scales. The alpha and beta scales are nonoctave-based
tunings with equal steps of 78 and 63.8 cents, respectively. Although both
scales can support recognizable triads, neither allows a standard diatonic scale,
and neither repeats at the octave. Hence, it is not obvious how to apply
standard analytical techniques, even if a score was available.

Figure 11.5 shows the dissonance score of the first 84 seconds of Beauty
in the Beast along with the waveform, and an indication of how it might
be divided into thematic sections. Section A is the “beast” motif, which is
repeated with variations in A′. B is a soft transition section featuring wind
chimes, which slowly builds into the “beauty” theme C. C ′ repeats the theme
with melody, and in C ′′ the melody slowly fades into the background.

Both the beauty theme and the beast theme have an internal structure
that is displayed by the dissonance score; each theme contains two dissonance
bumps. In both A and A′, the paired humps are roughly the same size. The
bimodal structure of the beauty theme is less obvious because of the ampli-
tude changes, which are apparent from the waveform. The long-term flow of
the piece shows the characteristic motif of motion from consonance, through
dissonance, and back again.
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Fig. 11.5. First 1:24 of Carlos’ Beauty in the Beast showing dissonance score, am-
plitude of waveform, and thematic structure.

The variance of the performance from its average is 0.955. Although this
is smaller than any of Scarlatti performances (except for the idealized MIDI
version), it would be rash to draw any conclusions from this. Perhaps the
small variance is due to the synthesized nature of the work, which might lend
precision to the performance. Perhaps it is due to the slower overall motion
of the piece, or perhaps it is something inherent in the unusual tuning.

Gamelan Eka Cita

The gamelan, an “orchestra” of percussive instruments, is the primary indige-
nous musical tradition of Java and Bali. Music played by the gamelan is varied
and complex, with styles that change over time and vary by place in much
the way that styles wax and wane in the Western tradition. Gong Kebyar,
which means “gong bursting forth,” is a vibrant form of gamelan playing that
began in Bali in the middle of the century, and it has flourished to become
one of the dominant styles. Each year, the Bali State Arts Council sponsors
the “All Bali Gong Kebyar Festival” in which gamelans from across the island
compete. Eka Cita, an orchestra from the village of Abian Kapas Kaja near
Denpassar, won the competition several years in a row, and a recording was
made of their concert in [D: 18].

I. Wayan Beratha based Bandrangan, the second track on the CD, on the
ritual spear dance Baris Gede. This energetic piece contains large contrasts
in sound density, volume, and texture. The primary form of the piece consists
of a short cycle, each beginning with a deep gong stroke, and each midpoint
accented by a higher gong. The first 87 seconds (the complete piece is over
15 minutes) are displayed in Fig. 11.6, which shows the dissonance score and
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the waveform. The cycles are marked by the grid at the bottom, and they
are aligned with the primary gong hits. Many of the gong strokes are visible
in the waveform, but they figure prominently throughout the segment even
when they are not visible.
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Fig. 11.6. First 1:27 of Baris Gede Bandrangan by I. Wayan Beratha, showing
dissonance score, amplitude of waveform, and rhythmic structure.

Indonesia currently maintains a series of Institutes (called STSI8 or ASTI)
and Universities9 that support and promote traditional culture, and they offer
degrees in traditional music, dance, and painting, as well as courses in eth-
nomusicology and other “modernized” approaches to the study of the arts.
Lacking immersion in the culture, it is difficult to analyze this (or any other)
gamelan piece in more than a superficial manner. As with the analyses of
Western music in the previous sections, the intention is to show how the tech-
nique of the dissonance score may be applied. Any conclusions drawn from
this analysis must be considered tentative.

The first part of Baris Gede Bandrangan, shown in Fig. 11.6, can be
thought of as containing several sections. A is a soft introduction that sets the
pace. In B, the drummer (who is also the leader of the ensemble) crescendos,
introducing the major “theme” in C along with the first gong strokes. These
gong hits continue throughout the segment, delineating the cycles shown in
the bottom grid. In D, a series of matching chords overlays the cycle, and this
is repeated. In E and F , two different “melody” lines occur, again starting
and stopping at cycle boundaries.
8 Skola Tinggi Seni Indonesian.
9 Such as Gadjah Mada University.
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The dissonance score reflects some of these changes. Both dissonance peaks
marked B are caused by the drum, which marks the beginning and/or end
of a section. The peaks at D are a result of the raucous chording, and the
smaller peaks E and F are produced by the rapid melodic motion of the
higher pitched metallophones. Perhaps the most striking aspect of this score,
at least in comparison with the Western pieces analyzed earlier, is that the
dissonance peaks are episodic. That is, each cycle has a roughly constant
dissonance, which changes abruptly at cycle boundaries.

In the pieces by Scarlatti and Carlos, the contour of the dissonance score
delineates the major phrases as it slowly rises and falls. Apparently, in the
gamelan tradition, (sensory) dissonance is used completely differently. Abrupt
changes in dissonance are the norm, and these changes seem to reflect the
entrance and exit of various instruments at cycle boundaries. If this pattern
holds (for more than this single segment of a single composition), then this
may be indicative of a fundamental difference in the musical aesthetic between
the gamelan and Western traditions.

The standard deviation of the dissonance score of Fig. 11.6 about its mean
(again, the average is drawn as the darker line) is 0.094. If this can be inter-
preted (as in the Western context) as a measure of the consistency of the
performance, then this is a remarkable figure. It is considerably smaller than
any of the Scarlatti performances, despite the fact that the gamelan is played
by several musicians simultaneously.

11.2 Reconstruction of Historical Tunings

In 12-tet, there is no difference between various musical keys, there are no
restrictions on modulation, and key tonality is not a significant structure in
music. Three hundred years ago, the musical context was different. Until about
1780, keyboard instruments were tuned so that commonly used intervals were
purer (closer to just) than less-used intervals. The resulting nonequal semi-
tones gave a different harmonic color to each musical key, and these colors
were part of the musical language of the time, both philosophically and prac-
tically. To understand the musical language of early keyboard composers, the
tuning in which their music was conceived and heard is important.

However, few composers documented the exact tunings used in their music.
Although there is sufficient historical evidence that the period and nationality
of a composer can narrow the choice considerably, there are often significant
variances between historically justifiable tunings for any specific piece of mu-
sic. The tuning preferences of Domenico Scarlatti are particularly uncertain,
because he was born and trained in Italy, but spent most of his career in Por-
tugal and Spain, and did all of his significant composing while under strong
Spanish influence. A method that might infer information concerning his tun-
ing preferences solely from his surviving music would therefore be of value to
musicians and musicologists.
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This section discusses a quantitative method based on a measure of the
sensory consonance and dissonance of the intervals in a tuning and their fre-
quency of occurrence within the compositions. The presumption is that the
composer would avoid passages using intervals that are markedly out-of-tune
or dissonant (such as wolf fifths) except in passing, and would tend on average
to emphasize those intervals and keys that are relatively pure. This investi-
gation first appeared in an article co-authored with John Sankey called, “A
consonance-based approach to the harpsichord tuning of Domenico Scarlatti”
[B: 160], which finds tunings that minimize the dissonance over all intervals
actually used by Scarlatti in his sonatas, and compares the results to several
well-known historical tunings.

The method is equally applicable to other early keyboard composers.
Barnes [B: 11] conducts a statistical analysis of the intervals that appeared
in Bach’s pieces to try and determine which tunings Bach was most likely to
have used. This is similar in spirit to the present approach, but the optimiza-
tion proceeds under a culture-dependent interval selection and classification
scheme, rather than a psychoacoustic measure.

11.2.1 Total Dissonance

There are four basic steps to find the most consonant tuning for a piece (or
collection of pieces) of music. These are:

(i) Specify the spectrum of each sound
(ii) Find (or count) the number of occurrences of each interval class,

and weight by their duration
(iii) Choose an initial “guess” for the optimization algorithm
(iv) Implement a gradient descent (or other local optimization algo-

rithm) to find the nearest “least dissonant” set of intervals

The bulk of this section describes these steps in detail.
As the Scarlatti sonatas were composed for harpsichord, a spectrum was

chosen that approximates an idealized harpsichord string. The sound is as-
sumed to contain 32 harmonic partials at frequencies

f, 2f, 3f, ..., 32f

where f is the fundamental. The amplitude of the partials is assumed to die
away at a rate of .75n, where n is the partial number. Surviving historical
harpsichords vary considerably in these parameters. The low strings of some
have more than 80 discernible partials, decreasing with an exponent as high as
0.9, whereas the high strings of others display as few as 8 partials with a more
rapid decay. The amplitudes of the partials also vary due to the position at
which the string is plucked (which may vary even on the same harpsichord),
and from interactions among the strings. The chosen spectrum is a reasonable
approximation to the average sound of a harpsichord in the portion of its range
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in which a musician is most sensitive to questions of tuning. Three typical
harpsichord timbres are shown in Fig. 11.7 for comparison.
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Fig. 11.7. Spectra of three notes
of a harpsichord with fundamen-
tals at 104 Hz, 370 Hz, and 1048
Hz (corresponding to notes G�, F�,
and C). All partials lie close to
a harmonic series, and the higher
notes have fewer harmonics than
the lower notes.

The sonatas of Scarlatti recordings have been encoded by John Sankey in
Standard MIDI File (SMF) format,10 which is a widely accepted standard for
encoding the finger motions of a keyboard player as a function of time. These
finger motions can be used to (re)synthesize the performance. A program was
written to parse the SMF files and to collate the required information about
frequency of occurrence of intervals and their duration in performance.

Recall that the sensory dissonance DF (fj/fi) between two notes with fun-
damentals fi and fj is the sum of all dissonances11 between all pairs of sine
wave partials. The Total Dissonance (TD) of a musical passage of m notes is
defined to be the sum of the dissonances weighted by the duration over which
the intervals overlap in time. Thus

TD =
m−1∑
i=1

m∑
j=i+1

DF (fj/fi) t(i, j)

where t(i, j) is the total time during which notes i and j sound simultaneously.
Although the amplitude of a single held note of a harpsichord decreases with
10 The files are currently available on the Internet at [W: 4].
11 See equation E.7 for details of the calculation of DF (fj/fi).
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time, it increases significantly each time a succeeding note is played due to
coupling via their shared soundboard. Given the high note rates in the sonatas,
this rectangular sound intensity distribution is a reasonable approximation.

An n-note tuning based on the octave contains n − 1 distinct intervals
between 1:1 and 2:1. Observe that the TD for a musical composition depends
on the tuning because the different intervals have different values of DF (fj/fi).
By choosing the tuning properly, the total dissonance of the passage can
be minimized, or equivalently, the consonance can be maximized. Thus, the
problem of choosing the tuning that maximizes consonance can be stated as
an optimization problem: Minimize the “cost” (the TD of the composition)
by choice of the intervals that define the tuning. This optimization problem
can be solved using a variety of techniques; perhaps the simplest is to use a
gradient descent method. This is similar to the adaptive tuning method, but
the TD maintains a history of the piece via the t(i, j) terms. Adaptive tunings
can be considered a special (instantaneous) case.

Let I0 be the initial “tuning vector” containing a list of the intervals that
define the tuning. A (locally) optimal I∗ can be found by iterating

Ik+1 = Ik − µ
dTD

dIk

until convergence, where µ is a small positive stepsize and k is the iteration
counter. The algorithm has “converged” when the change in each element of
the update term has the same sign. Calculation is straightforward, although
somewhat tedious. In most cases, the algorithm is initialized at the 12-tone
equal-tempered scale; that is, I0 is a vector in which all adjacent intervals are
100 cents.

A tuning for which a desired composition (or collection of compositions)
has smaller TD is to be preferred as far as consonance is concerned. In the
context of attempting to draw historical implications, the measure TD may
provide reason for rejecting tunings (those that are overly dissonant) or re-
considering tunings (those with near-optimal values of TD). Such judgments
cannot be made mechanically, they must be tempered with musical insight.
The variation in values of the TD for different tunings is small, less than 1%
between musically useful tunings, and are therefore expressed in parts per
thousand (0/00) difference from 12-tet. A difference of 10/00 is clearly audible
to a trained musical ear in typical musical contexts.12

Music of course does not consist solely of consonances. Baroque music
is full of trills and similar features that involve overlapped seconds in real
performance, and Scarlatti made heavy use of solidly overlapped seconds, de-
liberate dissonances, as a rhythmic device. Consequently, all intervals smaller
than three semitones were omitted from the calculations of the TD. This had
surprisingly little effect on the values of the convergent tunings; the precaution
may be unnecessary with other composers.
12 For this reason, a numerical precision of nine decimal places or greater is advisable

for the calculations of TD.
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11.2.2 Tunings for a Single Sonata

As harpsichords (in contrast to organs) were tuned frequently, usually by the
performer, it is likely that composers might have changed their preferred tun-
ing over the course of their lifetime, or used more than one tuning depending
on the music to be played. Both of these are well documented in the case of
Rameau. One way to investigate this is to initialize the tuning vector I0 to
the intervals of 12-tet, and find the optimum tunings I∗ that minimize the
TD for each sonata individually.

A histogram of all tunings obtained is shown in Fig. 11.8. The height of
a bar shows the number of sonatas for which the optimum tuning contains
a note of the given pitch. As can be seen, for most of the 11 pitches, there
are two strong preferences. The location of the pure fifths13 ascending and
descending from C is shown below the frequency bars. The minimization pro-
cess for samples as small as one sonata often “locks on” to the predominately
nonunison minimum at pure fifths. This effect continues to dominate even
when groups of up to ten sonatas are evaluated. Although baroque musicians
often refined the tuning of their instruments before performing suites of pieces
using a consistent tonality set, it is impractical to completely retune an instru-
ment every 5 or 10 minutes, the length of a typical sonata pair with repeats
and variations.
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Fig. 11.8. The relative distribution of “optimal” tunings when considering each of
the sonatas individually. Observe the clustering at the Pythagorean (pure) fifths.

The primary formal structure of most of the sonatas follows two sym-
metries: Tonalities are mirrored about a central double bar, and thematic
material repeats after the double bar (although not always in exactly the
same order). For example, K1 begins in D minor, progresses to A major at
the double bar 14, and ends in D minor bar 31; thematically, bar 1 matches
bar 14; 2–5, 22–25; 7, 17; 9, 18; 13, 31. One expects that Scarlatti’s tuning(s)
would have complemented and been consistent with these symmetries. Many
of the single-sonata tunings found by this optimization method are not. For
13 e.g., 702n mod 1200 for n = −11 to 11.
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example, bars 9 and 18 in K1 are symmetrically designed to strongly establish
the tonalities D minor and F major, respectively, but the pure D − A fifth
on which bar 9 is based is inconsistent with the F − C fifth of bar 18, a very
audible 15 cents smaller than pure in this tuning. By comparison, these inter-
vals differ by only 4 cents in the Vallotti A tuning. Using optimized tunings
to retune sections of music of sonata length does not, therefore, seem to be a
reliable guide to the practice of Scarlatti, nor to be useful in detecting changes
in tuning preferences over his oeuvre.

11.2.3 Tunings for All Sonatas

When all of the sonatas are treated as a set, this kind of overspecialization to
particular intervals does not occur, but there are a large number of minima
of the TD within a musically useful range.

One tuning obtained while minimizing from 12-tet (labeled TDE in Ta-
ble 11.1) has several interesting features. Many theorists, in the past and still
today, consider the numerical structure of a scale to be important, often fa-
voring just scales that consist of the simplest possible number of ratios. The
12-tet-refined tuning is one of this class: Take four notes a = 1, b = 9/8,
c = 4/3, and d = 3/2. Then d = 4b/3 and d = 9c/b, so every note is just
with respect to all others. Three such groups overlap to make a 12-note scale
C − D − F − G, E − F� − A − B, A� − B� − D� − E�. The tuning TDE found
to be optimal for the sonatas contains two of these quartets. However, unlike
many just tunings, this one is specially designed for use with an extended
body of music, namely, the sonatas. There is no historical evidence that any
influential performer or composer actually used such a tuning, but it is worth
listening to by anyone wishing to hear the sonatas in a different but musical
way. The technique of minimizing TD is a fertile source of new tunings for
modern keyboard composers—there are many musically interesting tunings
that have not been explored.

Table 11.1. Derived tunings. All values rounded to the nearest cent.

Label cents
TDE 98 200 302 402 506 605 698 800 900 1004 1104
TDA1 86 193 291 386 498 585 697 786 889 995 1087
TDA2 88 200 294 386 498 586 698 790 884 996 1084

The relative14 TD of a number of tunings that are documented in the
musical literature of Scarlatti’s time are shown in Table 11.2. The tunings
are defined in Table L.1 of Appendix L. Meantone tuning, in which all fifths
are equal except one wolf fifth G� − E�, was the most common tuning at the
14 All TD values are normalized so that the TD of 12-tet is zero.
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close of the Middle Ages. It was considered to be in the key of D, and it
was modified steadily toward equal temperament by increasing the size of the
equal fifths as time progressed. However, as only one note needs to be retuned
to transpose any meantone tuning into the tuning for an adjacent fifth (e.g.,
to add or subtract one sharp or flat from the key signature), many performers
did so to improve the sound of their favorite keys.

Table 11.2. Total Dissonance TD (in 0/00 deviation from 12-tet) and strength s
of various historical and derived tunings over all Scarlatti’s sonatas.

Tuning TD s

12-tet 0 0
Bethisy -0.4 4.1
Rameau b -0.5 7.1
Werkmeister 5 -0.6 2.6
d’Alembert -0.8 4.1
Barca -1.0 2.4
Werkmeister 3 -1.9 3.1
Kirnberger 3 -1.9 3.4
Corrette -2.2 6.8
Vallotti A -2.5 2.9
Chaumont -3.3 7.7
Rameau � -4.0 7.1
1/4 Comma A -5.8 10.3
Kirnberger 2 -6.0 4.5
TDE -1.6 2.2
TDA1 -2.3 4.6
TDA2 -7.1 5.6

The TD for the set of all Scarlatti sonatas is shown in Fig. 11.9 versus
the size of the equal fifths and the position of the wolf fifth. There is a sharp
maximum with fifths 3.42 cents less than 12-tet when the wolf is between E�
and B� or between E� and G�, precisely the medieval 1/4-comma tunings in
the keys of A and D. There is another broader maximum with fifths 1.8 cents
larger than 12-tet, which is close to the ancient Pythagorean tuning with pure
fifths. The general shape of the meantone TD of the entire keyboard oeuvre
of Scarlatti is, therefore, in accord with historical musical practice.

Many historical harpsichord tunings have been quantified by Asselin [B: 8];
the tunings used in this study are shown in Table L.1 of Appendix L. As the
harpsichord scale has 11 degrees of freedom, it is desirable to characterize
each tuning by a smaller number of musically useful parameters. The mean
absolute difference between the various tunings and 12-tet gives a kind of
“strength” parameter. Define

s(t) = mean |c(k, e) − c(k, t)|
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Fig. 11.9. The relation between consonance, size of equal fifths in a meantone-type
tuning, and position of the unequal wolf fifth, for all sonatas as one unit.

where c(k, e) is the pitch in cents of note k from the first note of the 12-tet
scale, c(k, t) the corresponding pitch of tuning t, and the function c has been
normalized so that

mean c(k, e) = mean c(k, t)

to remove the pitch scale dependence of the dissonance function. Historically,
the value of s(t) has decreased with time, from 10 cents for the medieval
1/4-comma meantone tuning to essentially zero for modern piano tunings. In
general, a low value of s is associated with tunings that work in a wide variety
of keys, a high value with tunings placing many restrictions on modulation.

Figure 11.10 plots the TD of each tuning (in 0/00 of the TD of 12-tet)
versus the strength of the tuning. If a series of meantone-type tunings in A is
constructed, with the size of the equal fifths decreasing from 12-tet (100 cents)
to 96 cents, the locus of TD and s is the solid line shown. (It is the same curve
as that for the wolf between E� and B� in Fig. 11.9.) In Fig. 11.10, a decrease
of both the TD and s represents an improvement in both consonance and in
modulatability. A decrease in the TD associated with an increase in s requires
a choice based on musical context, because any improvement in consonance
will be offset by a reduction in the range of keys in which the consonance will
occur.
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Fig. 11.10. The vertical axis plots the TD of all sonatas when played in the tunings
of Table 11.2 as a percentage of the TD of all sonatas when played in 12-tet. The
horizontal axis gives the mean absolute deviation of each tuning from the 12-tet
scale.

In general, French tunings sought to purify the sound of major thirds,
whereas Italian and German tunings were more closely derived from the fifth-
based meantone. The two schools may be separated by the dotted line in
Fig. 11.10; again, the TD is in accordance with historical knowledge. Both
Italian tunings in A show superior consonance to those in D, and Rameau’s
“sharp” tuning has greater consonance than that in B�. (Modulated versions
of any tuning have the same strength s.) The expectation from this figure
is that Kirnberger 2 should be by far the best tuning for the sonatas, with
meantone (1/4 comma) second except perhaps in some remote tonalities due
to its strength. Next should be the sharp tuning of Rameau (again with pos-
sible difficulties in some tonalities), followed by Vallotti A, and then Barca A.
Unfortunately, other factors intervene.

A primary phrase pattern widely used in Western music, and particularly
by Scarlatti in the sonatas, is a gradual increase of musical tension culmi-
nating in a musical steady state (stasis) or a release of tension (resolution).
Increasing pitch, volume, rapidity, harmonic density, and harmonic dissonance
are techniques of increasing musical tension. A skilled composer will use these
various techniques in a mutually supporting way, in consistent patterns. If,
therefore, use of a particular tuning enhances the ebb and flow of musical
tension, it may be the tuning that the composer used to hear music. As such
a small proportion of potential intervals can be simultaneously in perfect tune
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in one tuning, it is likely that an erroneous tuning at least occasionally results
in a glaring mismatch of musical shape.

The TD predictions fail with the second tuning of Kirnberger when this
tension structure is taken into account—the consonances in this tuning often
fall in Scarlatti’s relatively long tonal transition passages and all too frequently
come to abrupt halts with unacceptably dissonant stases. For example, sonata
K1 begins the second section with an A major triad ascent to an E in the
treble, and then repeats the figure in the bass under the sustained E. With
Kirnberger 2, A − E is almost 11 cents smaller than just, one of the most
dissonant fifths in the tuning. In both the Vallotti A and d’Alembert tunings,
by comparison, A−E is a bit less than 1/4 comma smaller than just, precisely
right for an interim pause in the overall-upward passage of which the A to E
phrase forms a part. Besides frequently failing the tension-topology criterion
and the symmetry criteria discussed earlier, the 1/4-comma meantone tuning
too often produces phrases that stay consistently out of tune for too long at
a time (although obviously not long enough to affect the TD sufficiently), for
example, the chromatic passages in bars 10–14 and 35–38 of K3. In fact, these
bars together with their symmetric pair 58–63 and 84–87 cannot be played in
consistent tune with any placement of a 1/4-comma-tuning wolf fifth.

However, although the tonal colors of Rameau are clearly in evidence, so
are the consonances, which fall in the right places, and the tuning is particu-
larly evocative in many of Scarlatti’s slow plaintive melodic passages (K11, for
example). The smooth matches of the Vallotti A tonal structure with those
implicit in the music are very consistent, if unremarkable. The French tun-
ings do indeed mostly have problems with dissonances in many places (the
chromatic passages of K3, for example).

The historical instructions for some tunings are uncertain, even deliber-
ately ambiguous, so modern numeric reconstructions may be slightly in error.
This is almost certainly the case for the tuning of d’Alembert, which was de-
scribed and redescribed in remarkably varied terms by several authors (e.g.,
Bethisy) of the time. The gradient algorithm was again applied to succes-
sively reduce the TD in small steps for the set of all sonatas, beginning with
d’Alembert’s tuning (instead of initializing with 12-tet), with the hope that
this might correct minor errors in what is basically a good tuning. Two routes
the algorithm took are shown by dashed lines in Fig. 11.10. The longer (right)
curve shows the route when the only criterion for the change in I was lower
TD. The shorter curve emanating from d’Alembert’s tuning resulted when I
was optimized for lower s and lower TD simultaneously. The first minimiza-
tion proceeded well beyond the optimum musical point along the path, ending
up at a tuning (TDA2 in Fig. 11.10) that made the most common intervals
perfectly consonant but far too many lesser used musically important ones
unacceptably dissonant (for example, the repeated high D − A fifths of K1,
17 cents flat).

Furthermore, if this optimization from the d’Alembert tuning is applied
individually to the few sonatas where the TDA1 tuning has residual difficul-
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ties, a similar behavior is observed. At first, the sound improves, and then,
with further iteration, the tuning becomes “overspecialized.” For example, the
fifths ending many phrases of K328, and the chords closing each half, are a
bit more discordant with TDA1 than one would wish, although consistently
so. Applying the refinement procedure for this sonata alone produces the tun-
ing included in Table 11.1—the fifths and chords all improve in consonance
compared with TDA1, without changing the sound of the rest of the sonata
adversely or changing the basic color of the tuning. This is in accordance with
historical practice, where a basic tuning would be “touched up” for a while to
play a group of pieces that benefited from it (as opposed to the minimum-TD
tunings that varied too much between sonatas to be practical).

11.3 What’s Wrong with This Picture?

The music hall is austere—it is exactly the kind of place a Scarlatti or a
Rameau might have played. The harpsichord is an immaculate reproduction
made by the finest craftsmen from a historically authenticated model. The per-
former is well versed in the ornamentation and playing techniques of the period
and is perhaps even costumed in clothes of the time. The music begins—in
12-tet.

What’s wrong with this picture is the sound. 12-tet was not used regu-
larly in Western music until well into the eighteenth century, and yet even
performers who strive for authentic renditions often ignore this.15 Perhaps
this is excusable for Scarlatti, whose tuning preferences are uncertain, but no
such excuse is possible for Rameau, whose treatise [B: 145] is one of the major
theoretical works of his century. Imagine taking a serial piece by Schoenberg
or Babbit, and “purifying” it for play in a major scale. Is the damage to
Scarlatti’s vision any less?

Although firm conclusions about tunings actually used by Scarlatti await
his resurrection, the total dissonance of a large volume of music is a useful tool
for studies of 12-tone keyboard tunings in a historical context, although it is
insufficient by itself. Use of total dissonance to optimize a 12-tone tuning for a
historical body of music can produce musically valuable results, but it must be
tempered with musical judgment, in particular to prevent overspecialization
of the intervals.

This chapter has shown how to apply the idea of sensory dissonance to
musical analysis. For instance, there are many possible tunings in which a
given piece of music might be performed. By drawing dissonance scores for
different tunings (12-tet, just, meantone, adaptive, and so on), their impact
can be investigated, at least in terms of the expected motion of dissonance.
15 Few recordings of Scarlatti’s sonatas are performed in nonequal tunings. There

are dozens in 12-tet, many played on beautiful period harpsichords and boasting
authentic-sounding blurbs on the cover.
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Dissonance scores might also be useful as a measure of the “distance” between
various performances. For instance, the area between the averaged curves
of two renditions provides an objective criterion by which to say that two
performances are or are not similar. One subtlety is that the dissonance scores
must be aligned (probably by a kind of resampling) so that measures and
even beats of one performance are coincident with corresponding measures
and beats in the other. Most likely, this alignment must be done by hand
because it is not obvious how to automatically align two performances when
they differ in tempo.
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From Tuning to Spectrum

The related scale for a given spectrum is found by
drawing the dissonance curve and locating the minima.
The complementary problem of finding a spectrum for
a given scale is not as simple, because there is no single
“best” spectrum for a given scale. But it is often possible
to find “locally best” spectra, which can be specified
as the solution to a certain constrained optimization
problem. For some kinds of scales, such as n-tet,
properties of the dissonance curves can be exploited to
directly solve the problem. A general “symbolic method”
for constructing related spectra works well for scales
built from a small number of successive intervals.

12.1 Looking for Spectra

Given a tuning, what spectra are most consonant? Whether composing in
n-tet, in some historical or ethnic scale, or in some arbitrarily specified scale,
related spectra are important because they provide the composer and/or per-
former additional flexibility in terms of controlling the consonance and disso-
nance of a given piece.

For example, the Pythagorean tuning is sometimes criticized because its
major third is sharp compared with the equal-tempered third, which is sharper
than the just third. This excessive sharpness is heard as a roughness or beat-
ing, and it is especially noticeable in slow, sustained passages. Using a related
spectrum that is specifically crafted for use in the Pythagorean tuning, how-
ever, can ameliorate much of this roughness. The composer or performer thus
has the option of exploiting a smoother, more consonant third than is available
when using unrelated spectra.

12.2 Spectrum Selection as an Optimization Problem

Any set of m scale tones specifies a set of m−1 intervals (ratios) r1, r2, ..., rm−1.
The naive approach to the problem of spectrum selection is to choose a set
of n partials f1, f2, ..., fn and amplitudes a1, a2, ..., an to minimize the sum
of the dissonances over all m − 1 intervals. Unfortunately, this can lead to
“trivial” timbres in two ways. Zero dissonance occurs when all amplitudes are
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zero, and dissonance can always be minimized by choosing the ri arbitrarily
large. To avoid such trivial solutions, some constraints are needed.

Recall that the dissonance between two tones is defined as the sum of the
dissonances between all pairs of partials, weighted by the product of their
amplitudes. (Now would be an excellent time to review the section Drawing
Dissonance Curves on p. 99 in the chapter Relating Spectrum and Scale if this
seems hazy.) If any amplitude is zero, then that partial contributes nothing
to the dissonance; if all amplitudes are zero, there is no dissonance. Thus,
one answer to the naive minimization problem is that the dissonance can
be minimized over all the desired scale steps by choosing to play silence—a
waveform with zero amplitude! The simplest way to avoid this problem is to
forbid the amplitudes ai to change.1

Constraint 1: Fix the amplitudes of the partials.

A somewhat more subtle way that the naive minimization problem can
fail to provide a sensible solution is a consequence of the second property of
dissonance curves (see p. 121), which says that for sufficiently large intervals,
dissonance decreases as the interval increases. Imagine a spectrum in which
all partials separate more and more widely, sliding off toward infinity. Such
infinitely sparse spectra minimize the dissonance at any desired set of scale
steps and give a second “trivial” solution to the minimization problem. The
simplest way to avoid this escape to infinity is to constrain the frequencies
of all partials to lie in some finite range. The cost will then be reduced by
spreading the partials throughout the set, while trying to keep it especially
low at the scale steps ri.

Constraint 2: Force all frequencies to lie in a predetermined region.

Fixing the amplitudes and constraining the frequencies of the partials are
enough to avoid trivial solutions, but they are still not enough to provide good
solutions. Although the resulting scale steps do tend to have reasonably small
dissonance values, they often do not fall at minima of the dissonance curves.
Consider an alternative “cost” that counts how many minima occur at scale
steps. Minimizing this alternative cost alone would not be an appropriate cri-
terion because it only reacts to the existence of minima and not to their actual
value. But combining this with the original (constrained) cost encourages a
large number of minima to occur at scale steps and forces these minima to
have low dissonance.

The final revised and constrained optimization problem is as follows: With
the amplitudes fixed, select a set of n partials f1, f2, ..., fn lying in the region
1 Although not appealing, such a condition is virtually necessary. For instance,

suppose the ai for i = 1, ..., n − 1 were fixed while an was allowed to vary. Then
the cost could always be reduced by choosing an = 0. An alternative might be to
fix the sum of the ai, say,

∑
ai = a∗. Again, the cost could be reduced by setting

aj = v∗ and ai = 0 for all i �= j.
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of interest so as to minimize the cost

C = w1

(
sum of dissonances

of the m − 1 intervals

)
+ w2

(
number of minima

at scale steps

)

where the w1 and w2 are weighting factors. Minimizing this cost tends to
place the scale steps at local minima as well as to minimize the value of the
dissonance curve. Numerical experiments suggest that weightings for which
the ratio of w1 to w2 is about a 100 to 1 give reasonable answers.

12.3 Spectra for Equal Temperaments

For certain scales, such as the m-tone equal-tempered scales, properties of the
dissonance curve can be exploited to quickly and easily sculpt spectra for a
desired scale, thus bypassing the need to solve this complicated optimization
problem.

Recall that the ratio between successive scale steps in 12-tet is the twelfth
root of 2, 12

√
2, or about 1.0595. Similarly, m-tet has a ratio of s = m

√
2 between

successive scale steps. Consider spectra for which successive partials are ratios
of powers of s. Each partial of such a sound, when transposed into the same
octave as the fundamental, lies on a note of the scale. Such a spectrum is
induced by the m-tone equal-tempered scale.

Induced spectra are good candidate solutions to the optimization problem.
Recall from the principle of coinciding partials2 that minima of the dissonance
curve tend to be located at intervals r for which fi = rfj , where fi and fj are
partials of the spectrum of F . As the ratio between any pair of partials in an
induced spectrum is sk for some integer k, the dissonance curve will tend to
have minima at such ratios: these ratios occur precisely at steps of the scale.
Thus, such spectra will have low dissonance at scale steps, and many of the
scale steps will be minima: Both terms in the cost function are small, and so
the cost is small.

This insight can be exploited in two ways. First, it can be used to reduce
the search space of the optimization routine. Instead of searching over all
frequencies in a bounded region, the search need only be done over induced
spectra. More straightforwardly, the spectrum selection problem for equal-
tempered scales can be solved by careful choice of induced spectra.

12.3.1 10-Tone Equal Temperament

As an example, consider the problem of designing sounds to be played in
10-tone equal temperament. 10-tet is often considered one of the worst tem-
peraments for harmonic music, because the steps of the 10-tone scale are
significantly different from the (small) integer ratios, implying that harmonic
2 The fourth property of dissonance curves from p. 123.
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tones are very dissonant. These intervals will become more consonant if played
with specially designed spectra. Here are three spectra related to the 10-tet
scale

f, s10f, s17f, s20f, s25f, s28f, s30f,
f, s7f, s16f, s21f, s24f, s28f, s37f, and

f, s10f, s16f, s20f, s23f, s26f, s28f, s30f, s32f, s35f, s36f,

where s = 10
√

2. As expected, all three sound reasonably consonant when
played in the 10-tet scale, and very dissonant when played in standard 12-tet.
But each has its own idiosyncrasies.

 12-tet scale steps:          tritone                            octave 
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Fig. 12.1. Dissonance curves for spectra designed to be played in the 10-tone equal-
tempered scale. Minima of the curves coincide with steps of the 10-tet scale and not
with steps of 12-tet.

The dissonance curves of all three spectra are shown in Fig. 12.1, assuming
the amplitude of the ith partial is 0.9i. Observe that only the fifth scale step
in 10-tet closely corresponds to any scale step in 12-tet; it is identical to the
12-tet tritone.3 In all three spectra, the dissonance curve exhibits a minimum
at the tritone, but only the top curve has a deep minimum there. This is
caused by interaction of the partials at s20f , s25f , and s30f , which differ by
a tritone.
3 This is because ( 10

√
2)5 = ( 12

√
2)6. In fact, the tritone is a feature of every octave

based tuning with an even number of scale steps, because ( 2r
√

2)r =
√

2 for any
r.
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The dissonance curve for the middle spectrum has no minimum at the
octave. This might be predicted by looking at the partials, because none of
the pairs in this spectrum are separated by a factor of s10 = 2. On the other
hand, both the top and bottom spectra have partials at s10f , s20f , and s30f ,
which helps the octave retain its familiar status as the most consonant interval
other than the unison. The middle spectrum would be less suitable for octave-
based music than the others.

The top spectrum was chosen so that intervals 2, 3, 5, 7, 8, and 10 appear
as ratios of the partials

s30

s28 = s2,
s28

s25 = s3,
s25

s20 = s5,
s17

s10 = s7,
s28

s20 = s8,

and several pairs differ by s10. Consequently, these appear as minima of the
dissonance curve and hence define the related scale. Similarly, when specifying
the partials for the bottom spectrum, all 10 possible differences were included.
Consequently, almost all scale steps occur at minima of the dissonance curve,
except for the first scale step, which is formed by the ratio of the partials at
s36 and s35. This exception may occur because the interval s is close to one-
half of the critical band,4 or it may be because the amplitudes of the last two
partials are significantly smaller than the others, and hence have less effect
on the final dissonance.

Thus the three spectra have different sets of minima, and different related
scales, although all are subsets of the 10-tet steps. Each spectrum has its
own “music theory,” its own scales and chords. Each sound plays somewhat
differently, with the most consonant intervals unique to the sound: scale steps
3, 5, 8, and 10 for the top spectrum, but 3, 5, 7, and 9 for the middle. Moreover,
keeping in mind that scale steps tend to have minima when the partials are
specified so that their ratio is a scale step, it is fairly easy to specify induced
spectra for equal temperaments, and to sculpt the spectra and scales toward
a desired goal. Much of this discussion can be summarized by the observation
that dissonance curves for induced spectra often have minima at scale steps.
When the ratio of the partials is equal to a scale step, a partial from the
lower tone coincides with a partial from the upper tone, causing the dip in
the dissonance curve.

Of course, far more important than how the dissonance curves look is the
musical question of how the resulting spectra and scales sound. The piece
Ten Fingers on track [S: 102] of the accompanying CD uses the third 10-tet
spectrum, and it exploits a number of possible chords. The particular tone
quality used is much like a guitar, and the creation of such instrumental tones
is discussed in the “Spectral Mappings” chapter. A possible “music theory”
for such 10-tet sounds is presented in Chap. 14.

Observe that this sound has no problems with fusion as heard earlier with
the 2.1 stretched (and certain other) spectra. Indeed, isolated notes of the
4 Over a large range of fundamental f , s36 and s35 lie in the region where the

critical band is a bit larger than a 12-tet whole step. See Fig. 3.4 on p. 44.
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spectrum do not sound particularly unusual, despite their inharmonic nature.
This is because the difference between the partials of this spectrum and the
partials of a harmonic tone are not large. Looking closely at the locations of
the partials shows that each one is as close as possible to an integer. In essence,
it is as close to harmonic as a 10-tet-induced spectrum can be. Concretely:

s10 = 2, s16 ≈ 3, s20 = 4, s23 ≈ 5, s26 ≈ 6,

s28 ≈ 7, s30 = 8, s32 ≈ 9, s35 ≈ 10, and s36 ≈ 11.

The overall effect is of music from another culture (or perhaps another
planet). The chord patterns are clearly unusual, and yet they are smooth.
The xentonal motion of the piece is unmistakable—there is chordal movement,
resolution, and tensions, but it is not the familiar tonal language of Western
(or any other) extant music.

How important is the sculpting of the spectrum? Perhaps just any old
sound will be playable in 10-tet with such striking effect. To hear that it re-
ally does make a difference, track [S: 103] demonstrates the first few bars of
Ten Fingers when played with a standard harmonic tone. When Ten Fin-
gers is played with the related spectrum, many people are somewhat puzzled
by the curious xentonalities. Most are decidedly uncomfortable listening to
Ten Fingers played with a harmonic spectrum. The difference between tracks
[S: 102] and [S: 103] is not subtle. The qualitative effect is similar to the fa-
miliar sensation of being out-of-tune. But the tuning is a digitally exact ten
equal divisions of the octave, and so the effect might better be described as
out-of-spectrum.

12.3.2 12-Tone Equal Temperament

Recall that most musical instruments based on strings and tubes are harmonic;
their partials are closely approximated by the integer ratios of the harmonic
series. Such spectra are related to the just intonation scale, and yet are typi-
cally played (in the West, anyway) in 12-tet. Although this is now considered
normal, there was considerable controversy surrounding the introduction of
12-tet, especially because the thirds are so impure.5 In terms of the present
discussion, advocates of JI wish to play harmonic sounds in the appropriate
related scale. An alternative is to design spectra especially for play in 12-tet.

As the above example moved the partials from their harmonic series to an
induced 10-tet spectrum, the consonance of 12-tet can be increased by moving
the partials away from the harmonic series to a series based on s = 12

√
2. For

instance, the set of partials

f, s12f, s19f, s24f, s28f, s31f, s34f, s36f, s38f

5 For a discussion of this controversy, see [B: 198] or [B: 78]. This controversy has
recently been revived now that the technical means for realizing JI pieces in
multiple keys is available [B: 43].
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is “almost” harmonic, but each of the integer partials has been quantized to
its nearest 12-tet scale location. The effect on the dissonance curve is easy
to see. Figure 12.2 compares the dissonance curve for a harmonic tone with
nine partials to the 12-tet induced spectrum above (the amplitudes were the
same in both cases). The dissonance curve for the induced spectrum has the
same general contour as the harmonic dissonance curve but with two striking
differences. First, the minima have all shifted from the just ratios to steps of
the 12-tet scale: Minima occur at steps two through ten. Second, many of the
minima are deeper and more clearly defined.

 12-tet scale steps:                                 octave 

Specially designed 12-tet spectrum
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Fig. 12.2. Comparison of dissonance curve for harmonic spectrum with dissonance
curve for spectrum with specially designed “12-tet” partials. Both spectra have nine
partials, with amplitudes decreasing at the same exponential rate.

Thus, an alternative to playing in a just intonation scale using harmonic
tones is to manipulate the spectra of the sounds so as to increase their con-
sonance in 12-tet. To state this as an imprecise analogy: 12-tet with induced
sounds is to 12-tet with harmonic sounds as just intonation with harmonic
sounds is to 12-tet with harmonic sounds. Both approaches eliminate the dis-
parity between 12-tet and harmonic tones, one by changing to the related
scale, and the other by changing to related spectra.

Some electronic organs (the Hammond organ) produce induced 12-tet
spectra using a kind of additive synthesis. Sound begins in 12 high-frequency
oscillators. A circuit called a “frequency divider” transposes these 12 frequen-
cies down by octaves, and these are combined as partials of the final sound.
In effect, this quantizes the frequencies of the partials to steps of the 12-tet
scale. Such organs are the first electronic example of matching spectrum and
scale using induced timbres.

12.4 Solving the Optimization Problem

Minimizing the cost C of p. 247 is a n-dimensional optimization problem with
a highly complex error surface. Fortunately, such problems can often be solved
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adequately (although not necessarily optimally) using a variety of “random
search” methods such as “simulated annealing” [B: 87] or the “genetic algo-
rithm” [B: 65]. After briefly reviewing the general method, a technique for
reducing the search space is suggested.

12.4.1 Random Search

In the simplest kind of “global optimization” algorithm, a spectrum is guessed,
and its cost is evaluated. If the new cost is the best so far, then the spectrum
is saved. New guesses are made until the optimum is found, or until some pre-
determined number of iterations has passed. Although this can work well for
small n, it is inefficient when searching for complex spectra with many par-
tials. For such high-dimensional problems, even the fastest computers may not
be able to search through all possibilities. The algorithm can be improved by
biasing new guesses toward those that have previously shown improvements.

12.4.2 Genetic Algorithm

The genetic algorithm (GA) is modeled after theories of biological evolution,
and it often works reasonably well for the spectrum selection problem. Gold-
berg [B: 65] gives a general discussion of the algorithm and its many uses. The
GA requires that the problem be coded in a finite string called the “gene”
and that a “fitness” function be defined. Genes for the spectrum selection
problem are formed by concatenating binary representations of the fi. The
fitness function of the gene f1, f2, ..., fn is measured as the value of the cost,
and spectra are judged “more fit” if the cost is lower. The GA searches n-
dimensional space measuring the fitness of spectra. The most fit are combined
(via a “mating” procedure) into “child spectra” for the next generation. As
generations pass, the algorithm tends to converge, and the most fit spectrum
is a good candidate for the minimizer of the cost. Indeed, the GA tends to
return spectra that are well matched to the desired scale in the sense that
scale steps tend to occur at minima of the dissonance curve, and the total dis-
sonance at scale steps is low. For example, when the 12-tet scale is specified,
the GA often converges near induced spectra. This is a good indication that
the algorithm is functioning and that the free parameters have been chosen
sensibly.

12.4.3 An Arbitrary Scale

As an example of the application of the genetic algorithm to the spectrum
selection problem, a desired scale was chosen with scale steps at 1, 1.1875,
1.3125, 1.5, 1.8125, and 2. A set of amplitudes was chosen as 10, 8.8, 7.7, 6.8,
5.9, 5.2, 4.6, 4.0, and the GA was allowed to search for the most fit spectrum.
The frequencies were coded as 8-bit binary numbers with 4 bits for the integer
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part and 4 bits for the fractional part. The best three spectra out of ten trial
runs of the algorithm were

f, 1.8f, 4.9f, 14f, 9.87f, 14.81f, 6.4f, 12.9f,

f, 1.5f, 3.3f, 10.3f, 7.8f, 7.09f, 3.52f, 3.87f, and
f, 2.39f, 9.9275f, 7.56f, 11.4f, 4.99f, 6.37f, 10.6f.

The dissonance curve of the best spectrum is shown in Fig. 12.3. Clearly,
these spectra are closely related to the specified scale, because minima occur
at many of the scale steps. The cost function applies no penalty when there
are extra minima, and each curve has a few minima more than were specified.

 12-tet scale steps:                                                   octave 
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frequency ratio
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Fig. 12.3. Dissonance curve for the third spectrum has minima that align with
many of the specified scale steps. The extra minima occur because no penalty (cost)
is applied.

12.4.4 Reducing the Search Space

The algorithms suggested above conduct a structured random search for par-
tials over all frequencies in the region of interest, and they calculate the dis-
sonance of the intervals for each candidate spectrum. One way to simplify
the search is to exploit the principle of coinciding partials (property four of
dissonance curves6 by restricting the search space to spectra containing in-
tervals equal to the scale steps. For equal temperaments, this was as simple
as choosing partial locations at scale steps, but in general, it is necessary to
consider all possible intervals formed by all partials.

Let the candidate spectrum F have n partials at frequencies f1, f2, ..., fn

with fixed amplitudes. Since scale steps can occur at any of the ratios of the
fi, let r1,i = fi+1

fi
be all the ratios between successive partials, r2,i = fi+2

fi

be the ratios between partials twice removed, and rj,i = fi+j

fi
be the general

terms. Any of the rj,i may become minima of the dissonance curve, and the

6 Recall the discussion on p. 123.
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problem reduces to choosing the fi so that as many of the rj,i as possible lie
on scale steps.

The inverse problem is more interesting. Given a scale S with desired steps
s1, s2, ..., sm, select an rj,i to be equal to each of the sk. Solve backward to
find the candidate partial fi giving such rj,i. The cost C of this spectrum can
then be evaluated and used in the optimization algorithm. The advantage of
this approach is that it greatly reduces the space over which the algorithm
searches. Rather than searching over all real frequencies in a region, it searches
only over the possible ways that the rj,i can equal the sk.

To see how this might work in a simple case, suppose that a spectrum with
n = 5 partials is desired for a scale with m = 3 steps. The set of all possible
intervals formed by the partials f1, f2, ..., f5 is:

r1,2 = f2
f1

r2,3 = f3
f2

r3,4 = f4
f3

r4,5 = f5
f4

r1,3 = f3
f1

r2,4 = f4
f2

r3,5 = f5
f3

r1,4 = f4
f1

r2,5 = f5
f2

r1,5 = f5
f1

The desired scale steps are (1, s1, s2, s3). To choose a possible spectrum, pick
one of the ri,j from each column, and set it equal to one of the sk. For instance,
one choice is

r1,4 = s1, r2,4 = s2, r3,5 = s3, and r4,5 = s2,

which leads to the following set of equations:

s1 =
f4

f1
, s2 =

f4

f2
, s3 =

f5

f3
, and s2 =

f5

f4

These can be readily solved for the unknowns fi in terms of the known values
of sk. For this example, setting the first partial equal to some unspecified
fundamental f gives

f2 =
s1

s2
f, f3 =

s1s2

s3
f, f4 = s1f, and f5 = s1s2f.

Assuming that the scale is to be octave based (i.e., that s3 = 2), then the
actual frequencies of the partials may be moved freely among the octaves.
The cost of this spectrum is then evaluated, and the optimization proceeds as
before.

12.5 Spectra for Tetrachords

The problem of finding spectra for a specified scale has been stated in terms of
a constrained optimization problem that can sometimes be solved via iterative
techniques. Although these approaches are very general, the problem is high
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dimensional (on the order of the number of partials in the desired spectrum),
the algorithms run slowly (overnight, or worse), and they are not guaranteed
to find optimal solutions (except “asymptotically”). Moreover, even when a
good spectrum is found for a given scale, the techniques give no insight into
the solution of other closely related spectrum selection problems. There must
be a better way.

This section exploits the principle of coinciding partials to transform the
problem into algebraic form. A symbolic system is introduced along with a
method of constructing related spectra. Several examples are given in de-
tail, and related spectra are found for a Pythagorean scale and for a diatonic
tetrachordal scale. A simple pair of examples then shows that it is not always
possible to find such related spectra. The symbolic system is further investi-
gated in Appendix I, where several mathematical properties are revealed.

Earlier in this chapter, the principle of coinciding partials was used
to straightforwardly find spectra for 10-tet. Other equal temperaments are
equally straightforward. To see why spectrum selection is more difficult for
nonequal tunings, consider the Pythagorean diatonic scale, which was shown
in Fig. 4.2 on p. 53 mapped to the “key” of C. Recall that this scale is created
from a series of just 3/2 fifths (translated back into the original octave when-
ever necessary), and all seven of the fifths in the diatonic scale (the white keys)
are just. An interesting structural feature is that there are only two successive
intervals, a “whole step” of a = 9/8 and a “half step” of b = 256/243. This
whole step is 4 cents larger than the equal-tempered version, whereas the half
step is 10 cents smaller than in 12-tet.

In attempting to mimic the “induced spectrum” idea of the previous sec-
tions, it is natural to attempt to place the partials at scale steps. Unfortu-
nately, the intervals between scale steps are not necessarily scale steps. For
instance, if one partial occurred at the seventh (fi = 243/128) and the other
at the third (fj = 4/3), then a minimum of the dissonance curve might occur
at r = fi/fj = a3 = 729/512, which is not a scale step. Similarly, the ratio
between a partial at 4/3 and another at 81/64 is 256/243 = b, which again is
not a scale step. Almost any nonequal scale has similar problems.

12.5.1 A Symbolic System

This section presents a symbolic system that uses the desired scale to define an
operation that generates “strings” representing spectra, i.e., sets of partials.
Admissible strings have all ratios between all partials equal to some interval
in the scale, and thus they are likely to be related spectra, via the property
of coinciding partials.

Basic Definitions

A desired scale S can be specified either in terms of a set of intervals
s0, s1, s2, ..., sm with respect to some fundamental frequency f or by the suc-
cessive ratios ri = si/si−1.
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s0

↘ r1

s1

↗↘ r2

s2

↗↘ r3

s3

↗↘
...

...

sm−1

↗↘ rm

sm

↗

For instance, for the Pythagorean major scale of Fig. 4.2 of p. 53,

S = 1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2/1,

and ri is either a = 9/8 or b = 256/243 for all i. The intervals si in S are
called the scale intervals.

A spectrum F is defined by a set of partials with frequencies at f1, f2, ..., fn.
The property of coinciding partials suggests that related spectra can be con-
structed by ensuring that the ratios of the partials are equal to scale steps.
The following definitions distinguish the situation where all ratios of all par-
tials are equal to some scale step, from the situation where all scale steps
occur as a ratio of some pair of partials.

Complementarity: If for each i and j there is a k such that fi

fj
= sk, then the

spectrum is called complementary to the scale.

Completeness: If for each k there is at least one pair of i and j such that
sk = fi

fj
, then the spectrum is called complete with respect to the scale.

If a spectrum is both complete and complementary, then it is called perfect
with respect to the given scale. Of course, scales and spectra need not be per-
fect to sound good or to be playable, and many scales have no perfect spectra
at all. Nonetheless, when perfect spectra exist, they are ideal candidates.

An Example

The simplest nonequal scales are those with only a small number of different
successive ratios. For example, one scale generated by two intervals a and b
has scale intervals

s0 = 1, s1 = a, s2 = ab, s3 = a2b, s4 = a2b2,

s5 = a3b2, and s6 = a3b3 = 2,

where a and b are any two numbers such that a3b3 = 2. Call this the ab-cubed
scale. For the ab-cubed scale,

r1 = a, r2 = b, r3 = a, r4 = b, r5 = a, and r6 = b.

To see how it might be possible to build a perfect spectrum for this scale,
suppose that the first partial is selected arbitrarily at f1. Then f2 must be

af1, abf1, a2bf1, a2b2f1, a3b2f1, or 2f1
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because any other interval will cause f2
f1

to be outside the scale intervals.
Suppose, for instance, that f2 = a2bf1 is selected. Then f3 must be chosen
so that f3

f1
and f3

f2
are both scale intervals. The former condition implies that

f3 must be one of the intervals above, whereas the latter restricts f3 even
further. For instance, f3 = a3b2f1 is possible because a3b2f1

a2bf1
= ab is one of the

scale intervals. But f3 = a3b3f1 is not possible because a3b3f1
a2bf1

= ab2 is not one
of the scale intervals. Clearly, building complementary spectra for nonequal
scales requires more care than in the equal-tempered case where partials can
always be chosen to be scale steps. For some scales, no complementary spectra
may exist. For some, no complete spectra may exist.

Symbolic Computation of Spectra

This process of building spectra rapidly becomes complex. A symbolic ta-
ble called the ⊕-table (pronounced “oh-plus”) simplifies and organizes the
choices of possible partials at each step. The easiest way to introduce this is
to continue with the example of the previous section.

Let the scalar intervals in the ab-cubed scale be written (1, 0), (1, 1), (2, 1),
(2, 2), (3, 2), and (3, 3), where the first number is the exponent of a and the
second is the exponent of b. As the scale is generated by a repeating pattern,
i.e., it is assumed to repeat at each octave, (3, 3) is equated with (0, 0). Basing
the scale on the octave is not necessary, but it simplifies the discussion. The
⊕-table 12.1 represents the relationships between all scale intervals. The table
shows, for instance, that the interval a2b combined with the interval ab gives
the scale interval a3b2, which is notated (2, 1) ⊕ (1, 1) = (3, 2).

Table 12.1. ⊕-table for the ab-cubed scale.⊕
(0,0) (1,0) (1,1) (2,1) (2,2) (3,2)

(0,0) (0,0) (1,0) (1,1) (2,1) (2,2) (3,2)
(1,0) (1,0) * (2,1) * (3,2) *
(1,1) (1,1) (2,1) (2,2) (3,2) (0,0) (1,0)
(2,1) (2,1) * (3,2) * (1,0) *
(2,2) (2,2) (3,2) (0,0) (1,0) (1,1) (2,1)
(3,2) (3,2) * (1,0) * (2,1) *

The ∗ indicates that the given product is not permissible because it would
result in intervals that are not scalar intervals. Thus, a2b = (2, 1) cannot be
⊕-added to a = (1, 0) because together they form the interval a3b, which is
not an interval of the scale. Observe that the “octave” has been exploited
whenever the product is greater than 2. For instance, (1, 1) ⊕ (3, 2) = (4, 3).
When reduced back into the octave, (4, 3) becomes (1, 0) as indicated in the
table, expressing the fact that a4b3

a3b3 = a1b0. At first glance, this set of intervals
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and the ⊕ operator may appear to be some kind of algebraic structure such
as a group or a monad [B: 93]. However, common algebraic structures require
that the operation be closed, that is, that any two elements (intervals) in the
set can be combined using the operator to give another element (interval) in
the set. The presence of the ∗’s indicates that ⊕ is not a closed operator.

Construction of Spectra

The ⊕-table 12.1 was constructed from the scale steps given by the ab-cubed
scale; other scales S define analogous tables. This section shows how to use
such ⊕-tables to construct spectra related to a given scale.

Let S be a set of scale intervals with unit of repetition or “octave” s∗. Let
T = [S, s∗+S, 2s∗+S, 3s∗+S, ...] be a concatenation of S and all its octaves.
(The symbol “+” is used here in the normal sense of vector addition). Each
element of s in S represents an equivalence class s+ns∗ of elements in T . Said
another way, S does not distinguish steps that are one or more “octaves” s∗

apart.
Example: For the ab-cubed scale,

S = [(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2)]

with octave s∗ = (3, 3). Then

s∗ + S = [(3, 3), (4, 3), (4, 4), (5, 4), (5, 5), (6, 5)],

2s∗ + S = [(6, 6), (7, 6), (7, 7), (8, 7), (8, 8), (9, 8)],

and so on, and T is a concatenation of these.
The procedure for constructing spectra can now be stated.

Symbolic Spectrum Construction

(i) Choose t1 in T , and let s1 in S be the corresponding repre-
sentative of its equivalence class.

(ii) For i = 2, 3, ..., choose ti in T with corresponding si in S so
that there are ri,i−j with

si = sj ⊕ ri,i−j

for j = 1, 2, ..., i − 1.

The equation in the second step is called the ⊕-equation. The result of the
procedure is a string of ti, which defines a set of partials. By construction, the
spectrum built from these partials is complementary to the given scale. If, in
addition, all of the scale steps appear among either the s or the r, then the
spectrum is complete and, hence, perfect.



12.5 Spectra for Tetrachords 259

The ⊕-equation expresses the desire to have all of the intervals between all
of the partials fi

fj
be scale intervals. A set of sj are given (which are defined

by previous choices of the tj). Solving this requires finding a single si such
that the ⊕-equation holds for all j up to i − 1. This can be done by searching
all sj columns of the ⊕-table for an element si in common. If found, then
the corresponding value of ri,i−j is given in the leftmost column. Whether
this step is solvable for a particular i, j pair depends on the structure of the
table and on the particular choices already made for previous si. Solution
techniques for the ⊕-equation are discussed at length in Appendix I.

It is probably easiest to understand the procedure by working through an
example. One spectrum related to the the ab-cubed scale is given in Table 12.2.
This shows the choice of ti, the corresponding scale steps si (which are the
ti reduced back into the octave), and the ri,k that complete the ⊕-equation.
As all of the si and ri,k are scale steps, this spectrum is complementary. As
all scale steps can be found among the si or ri,k, the spectrum is complete.
Hence the spectrum of Table 12.2 is perfect for this scale. To translate the
table into frequencies for the partials, recall that the elements ti express the
powers of a and b times an unspecified fundamental f . Thus, the first partial
is f1 = a3b3f , the second is f2 = a5b5f , and so on.

Table 12.2. A spectrum perfect for the ab-cubed scale.

i 1 2 3 4 5 6 7 k
ti (3,3) (5,5) (6,6) (9,8) (10,9) (11,10) (13,12)
si (0,0) (2,2) (0,0) (3,2) (1,0) (2,1) (1,0)

ri,k (2,2) (1,1) (3,2) (1,1) (1,1) (2,2) 1
(0,0) (1,0) (1,0) (2,2) (0,0) 2

(3,2) (2,1) (2,1) (1,1) 3
(1,0) (3,2) (1,0) 4

(2,1) (2,1) 5
(1,0) 6

12.5.2 Perfect Pythagorean Spectra

The Pythagorean major scale of Fig. 4.2 on p. 53 is constructed from two
intervals a and b in the order a, a, b, a, a, a, b. Thus, the scale steps are given
by:

1
(0, 0)

a

(1, 0)
a2

(2, 0)
a2b

(2, 1)
a3b

(3, 1)
a4b

(4, 1)
a5b

(5, 1)
a5b2 = 2

(5, 2) = (0, 0)

Typically, a2b is a pure fourth. Along with the condition that a5b2 = 2, this
uniquely specifies a = 9/8 and b = 256/243, and so the scale contains two
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equal tetrachords separated by the standard interval 9/8. These exact values
are not necessary for the construction of the perfect spectra that follow, but
they are probably the most common. The ⊕-table for this Pythagorean scale
is shown in Table 12.3. It is not even necessary that (5, 2) be an exact octave;
any pseudo-octave or interval of repetition will do.

Table 12.3. ⊕-table for the Pythagorean scale.⊕
(0,0) (1,0) (2,0) (2,1) (3,1) (4,1) (5,1)

(0,0) (0,0) (1,0) (2,0) (2,1) (3,1) (4,1) (5,1)
(1,0) (1,0) (2,0) * (3,1) (4,1) (5,1) *
(2,0) (2,0) * * (4,1) (5,1) * *
(2,1) (2,1) (3,1) (4,1) * (0,0) (1,0) (2,0)
(3,1) (3,1) (4,1) (5,1) (0,0) (1,0) (2,0) *
(4,1) (4,1) (5,1) * (1,0) (2,0) * *
(5,1) (5,1) * * (2,0) * * *

Table 12.4. A spectrum perfect for the Pythagorean scale.

i 1 2 3 4 5 6 7 k
ti (5,2) (8,3) (10,4) (12,4) (14,5) (15,5) (17,6)
si (0,0) (3,1) (0,0) (2,0) (4,1) (5,1) (2,0)

ri,k (3,1) (2,1) (2,0) (2,1) (1,0) (2,1) 1
(0,0) (4,1) (4,1) (3,1) (3,1) 2

(2,0) (1,0) (5,1) (0,0) 3
(4,1) (2,0) (2,0) 4

(5,1) (4,1) 5
(2,0) 6

Spectra can be assembled by following the procedure for symbolic spec-
trum construction, and one such spectrum is given in Table 12.4. Observe that
all of the si and ri,k are scale steps, and that all seven scale steps are present
among the si and the ri,k. Hence, this spectrum is perfect for the Pythagorean
scale. Assuming the standard values for a and b, this spectrum has its partials
at

f, 2f, 3f, 4f,
81
16

f,
27
4

f,
243
32

f, and
81
8

f.

The first several partials are harmonic, and this is the “closest” perfect
Pythagorean spectrum to harmonicity. For example, there are no suitable
partials between (12, 4) ≈ 5 and (14, 5) = 6.75 and thus no way to closely
approximate the sixth harmonic partial 6f . It is easy to check that (13, 4)
and (14, 4) are not scale steps, and that (13, 5) = (3, 1) forms the interval ab
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with (12, 4). As ab is not a scale step, (13, 5) cannot occur in a complementary
spectrum.7

The dissonance curve for this Pythagorean spectrum is shown in Fig. 12.4,
under the assumption that the amplitude of the ith partial is 0.9i. As expected
from the principle of coinciding partials, this curve has minima that align
with the scale steps. Thus, there are significant minima at the just fourth
and fifths, and at the Pythagorean third 81/64 and the Pythagorean sixth
27/16, rather than at the just thirds and sixths as in the harmonic dissonance
curve. This spectrum will not exhibit rough beating when its thirds or sixths
are played in long sustained passages in the Pythagorean tuning. There are
also two extra minimum that are shallow and broad. These are not due to
coinciding partials. The exact location and depth of these minima changes
significantly as the amplitude of the partials are changed. As is usual for
such extra minima, they are only barely distinguishable from the surrounding
regions of the curve. Thus, perfect spectra, as constructed by the symbolic
procedure, do give dissonance curves with minima that correspond closely
with scale steps of the desired scale.

1/1       9/8     81/64 4/3        3/2      27/16  243/128 2/1
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Fig. 12.4. Dissonance curve for the spectrum specially designed for play in the
Pythagorean diatonic scale has minima at all of the specified scale steps. Two extra
“broad” minima marked by stars are not caused by coinciding partials.

12.5.3 Spectrum for a Diatonic Tetrachord

A more general diatonic tetrachordal scale is constructed from three intervals
a, b, and c in the order a, a, b, c, a, a, b. The scale steps are:

1
(0, 0, 0)

a

(1, 0, 0)
ab

(1, 1, 0)
a2b

(2, 1, 0)
a2bc

(2, 1, 1)
a3bc

(3, 1, 1)
a3b2c

(3, 2, 1)
a4b2c = 2

(4, 2, 1) = (0, 0, 0)

7 However, (13, 5) = 6 can be used if (12, 4) is replaced by (11, 4) = 9/2. This would
then sacrifice the accuracy of the fifth harmonic to increase the accuracy of the
sixth. Tradeoffs such as this are common.
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As before, a2b is a pure fourth that defines the tetrachord. The new interval c is
typically given by the interval remaining when two tetrachords are joined, and
so c = 9/8. There are no standard values for a and b. Rather, many different
combinations have been explored over the years. The ⊕-table for this diatonic
tetrachordal scale is given in Table 12.5. As before, it is not necessary that
(4, 2, 1) be an exact octave, although it must define the intervals at which the
scale repeats.

Table 12.5. ⊕-table for the specified tetrachordal scale.⊕
(0,0,0) (1,0,0) (1,1,0) (2,1,0) (2,1,1) (3,1,1) (3,2,1)

(0,0,0) (0,0,0) (1,0,0) (1,1,0) (2,1,0) (2,1,1) (3,1,1) (3,2,1)
(1,0,0) (1,0,0) * (2,1,0) * (3,1,1) * (0,0,0)
(1,1,0) (1,1,0) (2,1,0) * * (3,2,1) (0,0,0) *
(2,1,0) (2,1,0) * * * (0,0,0) (1,0,0) (1,1,0)
(2,1,1) (2,1,1) (3,1,1) (3,2,1) (0,0,0) * * *
(3,1,1) (3,1,1) * (0,0,0) (1,0,0) * * (2,1,1)
(3,2,1) (3,2,1) (0,0,0) * (1,1,0) * (2,1,1) *

Table 12.6. A perfect spectrum for the specified tetrachordal scale.

i 1 2 3 4 5 6 7 k
ti (4,2,1) (6,3,2) (8,4,2) (11,5,3) (12,6,3) (14,7,4) (16,8,4)
si (0,0,0) (2,1,1) (0,0,0) (3,1,1) (0,0,0) (2,1,1) (0,0,0)

ri,k (2,1,1) (2,1,0) (3,1,1) (1,1,0) (2,1,1) (2,1,0) 1
(0,0,0) (1,0,0) (0,0,0) (3,2,1) (0,0,0) 2

(3,1,1) (2,1,0) (2,1,1) (1,1,0) 3
(0,0,0) (0,0,0) (0,0,0) 4

(2,1,1) (2,1,0) 5
(0,0,0) 6

Spectra can be constructed by following the symbolic spectrum construc-
tion procedure, and one such spectrum is given in Table 12.6. Observe that
all of the si and ri,k are scale steps and that all seven scale steps are present
among the si or ri,k. Hence, this spectrum is perfect for the specified tetra-
chordal scale.

In order to draw the dissonance curve, it is necessary to pick particular
values for the parameters a, b, and c. As mentioned above, c = 9/8 is the usual
difference between two tetrachords and the octave. Somewhat arbitrarily, let
b = 10/9, which, combined with the condition that a2b = 4/3 (i.e., forms a
tetrachord), imply that a =

√
6/5. With these values, the spectrum defined

in Table 12.6 is
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f, 2f, 3f, 4f, 6.57f, 8f, 12f, and 16f,

and the resulting dissonance curve is given in Fig. 12.5 when the amplitude
of the ith partial is 0.9i. Minima occur at all scale steps except the first, the
interval a. Although this may seem like a flaw, it is normal for small intervals
(like the major second) to fail to be consonant; the Pythagorean spectrum
of the previous section was atypical in this respect. Again, although a few
broad minima occur, they are fairly undistinguished from the surrounding in-
tervals. Thus, the symbolic method of spectrum construction has again found
a spectrum that is well suited to the desired scale.
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Fig. 12.5. The dissonance curve for the spectrum related to the diatonic tetrachord
with a2 = 6

5 , b = 10
9 , and c = 9

8 , has minima at all scale steps except for the first.
The broad minima at the starred locations are not caused by coinciding partials.

12.5.4 When Perfection Is Impossible

The above examples may lull the unsuspecting into a belief that perfect spec-
tra are possible for any scale. Unfortunately, this is not so. Consider first
a simple scale built from three arbitrary intervals a, b, and c in the order
a, b, c, a. The scale steps are:

1
(0, 0, 0)

a

(1, 0, 0)
ab

(1, 1, 0)
abc

(1, 1, 1)
a2bc = 2

(2, 1, 1) = (0, 0, 0)

As suggested by the notation, (2, 1, 1) serves as the basic unit of repetition that
would likely be the octave. The ⊕-table for this scale is given in Table 12.7.

The difficulty with this scale is that the element (1, 1, 0) cannot be com-
bined with any other. The symbolic construction procedure requires at each
step that the si be expressible as a ⊕-sum of sj and some ri,k. But it is
clear that the operation does not allow (1, 1, 0) as a product with any ele-
ment (other than the identity) due to the column of ∗’s. In other words, if
the interval (1, 1, 0) ever appears as a partial in the spectrum or as one of the
ri,k, then the construction process must halt because no more complementary
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Table 12.7. ⊕-table for the scale defined by three intervals in the order a, b, c, a.⊕
(0,0,0) (1,0,0) (1,1,0) (1,1,1)

(0,0,0) (0,0,0) (1,0,0) (1,1,0) (1,1,1)
(1,0,0) (1,0,0) * * (0,0,0)
(1,1,0) (1,1,0) * * *
(1,1,1) (1,1,1) (0,0,0) * *

partials can be added. In this particular example, it is possible to create a
perfect spectrum by having the element (1, 1, 0) appear only as the very last
partial. However, such a strategy would not work if there were two columns
of ∗’s.

An extreme example for which no perfect spectrum is possible is a scale
defined by four different intervals a, b, c, and d taken in alphabetical order.
The scale steps are:

1
(0, 0, 0, 0)

a

(1, 0, 0, 0)
ab

(1, 1, 0, 0)
abc

(1, 1, 1, 0)
abcd = 2

(1, 1, 1, 1) = (0, 0, 0, 0)

As suggested by the notation, (1, 1, 1, 1) serves as the basic unit of repetition
that would typically be the octave. The ⊕-table for this scale is given in
Table 12.8.

Table 12.8. ⊕-table for a simple scale defined by four different intervals.⊕
(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)

(0,0,0,0) (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
(1,0,0,0) (1,0,0,0) * * *
(1,1,0,0) (1,1,0,0) * * *
(1,1,1,0) (1,1,1,0) * * *

Partials of a complementary spectrum for this scale can only have inter-
vals that are multiples of the octave (1, 1, 1, 1) due to the preponderance of
disallowed ∗ entries in the ⊕-table. The only possible complementary spec-
trum is (0, 0, 0, 0)f , (1, 1, 1, 1)f , (2, 2, 2, 2)f , and so on, which is clearly not
complete, and hence not perfect. Thus, a given scale may or may not have
perfect spectra, depending on the number and placement of the ∗ entries in
the table.

12.5.5 Discussion

Do not confuse the idea of a spectrum related to a given scale with the notion
of a perfect (complete and complementary) spectrum for the scale. The former
is based directly on a psychoacoustic measure of the sensory dissonance of the



12.5 Spectra for Tetrachords 265

sound, and the latter is a construction based on the coincidence of partials
within the spectrum. The latter is best viewed as an approximation and sim-
plification of the former, in the sense that it leads to a tractable system for
determining spectra via the principle of coinciding partials. But they are not
identical.

Some scale intervals that appear in the spectrum (i.e., among the si or the
ri,k of Tables 12.2, 12.4, or 12.6) may not be minima of the dissonance curve.
For instance, the tetrachordal spectrum does not have a minimum at the first
scale step even though it is complete. Alternatively, some minima may occur
in the dissonance curve that are not explicitly ratios of partials. Three such
minima occur in Fig. 12.5; they are the broad kind of minima that are due to
wide spacing between certain pairs of partials.

The notion of a perfect spectrum shows starkly that the most important
feature of related spectra and scales is the coincidence of partials of a tone—a
result that would not have surprised Helmholtz. Perhaps the crucial difference
is that related spectra take explicit account of the amplitudes of the partials,
whereas perfect spectra do not. In fact, by manipulating the amplitudes of
the partials, it is possible to make various minima appear or disappear. For
instance, it is possible to “fix” the problem that the tetrachordal spectrum is
missing its first scale step a by increasing the amplitudes of the partials that
are separated by the ratio a. Alternatively, it is often possible to remove a
minimum from the dissonance curve of a perfect spectrum by decreasing the
amplitudes of the partials separated by that interval. Moreover, although a
minimum due to coinciding partials may be extinguished by manipulating the
amplitudes, its location (the interval it forms) remains essentially fixed. In
contrast, the broad type minima that are not due to coinciding partials move
continuously as the amplitudes vary; they are not a fixed feature of a perfect
spectrum.

As the number of different intervals in a desired scale increases, it becomes
more difficult to find perfect spectra; the ⊕-tables become less full (i.e., have
more disallowed ∗ entries) and fewer solutions to the ⊕-equation exist. There
are several simple modifications to the procedure that may result in spectra
that are well matched to the given scale, even when perfection is impossible.
One simple modification is to allow the spectrum to be incomplete. As very
small intervals are unlikely to be consonant with any reasonable amplitudes
of the partials, they may be safely removed from consideration. A second sim-
plifying strategy is to relax the requirement of complementarity—although
it is certainly important that prominent scale steps occur at minima, it is
not obviously harmful if some extra minima exist. Indeed, if an extra mini-
mum occurs in the dissonance curve but is never played in the piece, then its
existence will be transparent to the listener.

A third method of relaxing the procedure can be applied whenever the
scale is specified only over an octave (or over some pseudo-octave), in which
case the completeness and complementarity need only hold over each octave.
For instance, a partial ti might be chosen even though it forms a disallowed
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interval with a previous partial tj , providing the two are more than an octave
apart. Thus, judicious relaxation of various elements of the procedure may
allow specification of useful spectra even when perfect spectra are not possible.

Perfect spectra raise a number of issues. For instance, a given nonequal
scale sounds different in each key because the set of intervals is slightly dif-
ferent. How would the use of perfect spectra influence the ability to modulate
through various keys? Certain chords will become more or less consonant
when played with perfect spectra than when played with harmonic tones.
What patterns of (non)harmonic motion are best suited to perfect spectra
and their chords? Will perfect spectra be useful for some part of the stan-
dard repertoire, or will they be only useful for new compositions that directly
exploit their strengths (and avoid their weaknesses)?

12.6 Summary

Given a spectrum, what is the related scale? was answered completely in pre-
vious chapters; draw the dissonance curve and gather the intervals at which
its minima occur into a scale. This chapter wrestled with the more difficult
inverse question: Given a scale, what is the related spectrum? One approach
posed the question as a constrained optimization problem that can sometimes
be solved using iterative search techniques. Reducing the size of the search
space increases the likelihood that a good spectrum is found. The second
approach exploits the principle of coinciding partials and reformulates the
question in algebraic form.

Neither approach completely specifies a “best” spectrum for the given
scale. Both stipulate the frequencies of the partials, but the optimization
method assumes a set of amplitudes a priori, whereas the algebraic proce-
dure leaves the amplitudes free. Thus, each answer gives a whole class of
related spectra that may sound as different from each other as a trumpet
from a violin or a flute from a guitar. Neither method gives any indication
of how such sounds might be generated or created. One obvious way is via
additive synthesis, but unless great care is taken, additive synthesis can result
in static and lifeless sounds. An alternative is to begin with sampled sounds
and to manipulate the partials so that they coincide with the desired perfect
spectrum. This technique, called “spectral mapping,” is discussed at length in
the next chapter. A much more difficult question is how acoustic instruments
might be given the kinds of deviations from harmonicity that are specified by
perfect and related spectra.
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Spectral Mappings

A spectral mapping is a transformation from a “source”
spectrum to a “destination” spectrum. One application
is to transform inharmonic sounds into harmonic
equivalents. More interestingly, it can be used to create
inharmonic instruments that retain much of the tonal
quality of familiar (harmonic) instruments. Musical
uses of such timbres are discussed, and forms of
(inharmonic) modulation are presented. Several sound
examples demonstrate both the breadth and limitations
of the method.

13.1 The Goal: Life-like Inharmonic Sounds

A large number of different timbres can be created using only sounds with
a harmonic spectrum. It should be possible to get at least as large a variety
using inharmonic sounds. This chapter shows one way to make imitative in-
harmonic sounds, ones that seem to come from real instruments. This is how
an inharmonic trumpet or guitar might sound.

Suppose a composer desires to play in some specified scale, say, in 11-tet.
As familiar harmonic sounds are dissonant when played in 11-tet, it may be
advantageous to create a new set of sounds, with spectra that cause minima
of the dissonance curve to occur at the appropriate 11-tet scale steps. Figure
13.1, for example, shows the dissonance curve for a spectrum that has major
dips at many of the locations of the 11-tet scale steps. This spectrum was
designed using the techniques of the previous chapter, which specifies only
a desired set of partials. But a complete spectrum consisting of magnitudes
and phases must be chosen to draw the dissonance curve and to transform
the sound into a time waveform for playback. In the figure, all partials are
assumed equal, giving the sound a rich organish quality.

The most straightforward approach to the problem of sound synthesis
from a specified set of partials is additive synthesis, such as described in Ris-
set [B: 150], in which a family of sine waves of desired amplitude and phase
are summed. Although computationally expensive, additive synthesis is con-
ceptually straightforward. A major problem is that it is often a monumental
task to specify all of the parameters (frequencies, magnitudes, and phases)
required for the synthesis procedure, and there is no obvious or intuitive path
to follow when generating new sounds. When attempting to create sounds for
new scales, such as the 11-tet timbre above, it is equally challenging to choose
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Fig. 13.1. Dissonance curve for the spectrum with equal amplitude partials at [1 a11

a17 a22 a26 a28 a31 a33 a35 a37 a38], where a = 11√2. The minima of this dissonance
curve occur at many of the 11-tet scale steps (bottom axis) and not at the 12-tet
scale steps (top axis).

these parameters in a musical way. Making arbitrary choices often leads to or-
gan or bell-like sonorities, depending on the envelope and other aspects of the
sound. Although these can be striking, they can also be limiting from a com-
positional perspective. Is there a way to create a full range of tonal qualities
that are all related to the specified scale? For instance, how can “flute-like” or
“guitar-like” timbres be built that are consonant when played in this 11-tet
tuning?

A common way to deal with the vast amount of information required by
additive synthesis is to analyze a desired sound via a Fourier (or other) trans-
form, and then use the parameters of the transform in the additive synthesis.
In such analysis/synthesis schemes, the original sound is transformed into a
family of sine waves, each with specified amplitude and phase. The parame-
ters are stored in memory and are used to reconstruct the sound on demand.
In principle, the methods of analysis/synthesis allow exact replication of any
waveform. Of course, the sound to be resynthesized must already exist for this
procedure to be feasible. Unfortunately, 11-tet flutes and guitars do not exist.

Once a sound is parameterized, it is possible to manipulate the param-
eters. For example, the technique of Grey and Moorer [B: 64] interpolates
the envelopes of harmonics to gradually transform one instrumental tone into
another. Strong and Clark [B: 186] exchange the spectral and temporal en-
velopes among a number of instruments of the wind family and conduct tests
to evaluate their relative significance. Probably the first parameter-based anal-
ysis/synthesis methods were the vocoder of Dudley [B: 45] and its modern
descendant the phase vocoder of Flanagan and Golden[B: 55], which were
designed for the efficient encoding of transmitted speech signals.

The consonance-based spectral mappings of this chapter are a kind of anal-
ysis/synthesis method in which the amplitudes and phases of the spectrum of
the “source” sound are grafted onto the partials of a specified “destination”
spectrum, which is chosen so as to maximize a measure of consonance (or more
properly, to minimize a measure of dissonance). The goal is to relocate the
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partials of the original sound for compatibility with the destination spectrum,
while leaving the tonal quality of the sound intact. Musically, the goal is to
modify the spectrum of a sound while preserving its richness and character.
This provides a way to simulate the sound of nonexistent instruments such as
the 11-tet flute and guitar. Figure 13.2 shows the spectral mapping scheme
in block diagram form. The input signal is transformed into its spectral pa-
rameters, the mapping block manipulates these parameters, and the inverse
transform returns the signal to a time-based waveform for output to a D/A
converter and subsequent playback.

Transform Spectral
Mapping

Inverse
Transform

input signal

time
f  f   ... f1 2       m
frequency frequency

d d   ..d1  2 m

output signal

time

source spectrum destination spectrum

m
ag
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tu

de

m
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de
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de

Fig. 13.2. Block Diagram of a transform-based analysis-synthesis spectral mapping.
If the mapping is chosen to be the identity, then the input and output signals are
identical.

13.2 Mappings between Spectra

A spectral mapping is defined to be a transformation from a set of n partials
s1, s2, ..., sn (called the “source spectrum”) to the partials d1, d2, ..., dn

of the “destination spectrum” for which T (si) = di for all i. Suppose that
an N -point DFT (or FFT) is used to compute the spectrum of the original
sound, resulting in a complex-valued vector X. The mapping T is applied to
X (which presumably has partials at or near the si), and the result is a vector
T (X), which represents a spectrum with partials at or near the di. This is
shown schematically in Fig. 13.3 for an “arbitrary” destination spectrum.

The simplest T is a “straight-line” transformation

T (s) =
(

di+1 − di

si+1 − si

)
s +

(
disi+1 − di+1si

si+1 − si

)
si ≤ s ≤ si+1.

Smoother curves such as parabolic or spline interpolations can be readily used,
but problems occur with such direct implementations due to the quantization
of the frequency axis inherent in any digital representation of the spectrum.
For instance, if the slope of T is significantly greater than unity, then certain
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Fig. 13.3. Schematic representation of a spectral mapping. The first nine par-
tials of a harmonic “source spectrum” are mapped into an inharmonic “destination
spectrum” with partials at f , 2.1f , 2.9f , 3.8f , 5.4f , 5.8f , 7f , 8.4f , and 8.9f . The
spectrum of the original sound (from the G string of a guitar with fundamental at
194 Hz) is transformed by the spectral mapping for compatibility with the destina-
tion spectrum. The mapping changes the frequencies of the partials while preserving
both magnitudes (shown) and phases (not shown).

elements of T (X) will be empty. More seriously, if the slope of T is significantly
less than unity, then more than one element of X will be mapped into the
same element of T (X), causing an irretrievable loss of information. It is not
obvious how to sensibly combine the relevant terms.

A better way to think of the spectral mapping procedure is as a kind of
“resampling” in which the information contained between the frequencies si

and si+1 is resampled1 to occupy the frequencies di to di+1. Resampling is a
standard digital signal processing technique with a long history and a large
literature. It generally consists of two parts, decimation and interpolation,
which together attempt to represent the “same” information with a different
number of samples.
1 One implementation uses a polyphase algorithm with an anti-aliasing low-pass

FIR filter incorporating a Kaiser window. The examples in this chapter filter ten
terms on either side of xi and use β = 5 as the window design parameter. These
are the defaults of Matlab’s built in “resample” function. An alternative is to use
sinc(·) interpolation as discussed in [W: 29].
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One presumption underlying spectral mappings is that the most impor-
tant information (the partials of the sound) is located at or near the si, and
it is to be relocated as ‘intact’ as possible near the di. Figure 13.4 shows
an exaggerated view of what occurs to a single partial when performing a
straightforward resampling with a nonunity spectral map T . In essence, the
“left half” of the spectrum becomes asymmetric from the “right half,” and the
transformed spectrum no longer represents a single sinusoid. This is a kind of
nonlinear distortion that can produce audible artifacts.

si si+1si-1

di di+1di-1

source

destination

(si-1,si) is 
resampled
to (di-1,di)

(si,si+1) is 
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Fig. 13.4. Resampling causes asymmetries in the transformed spectrum that may
cause audible anomalies.

One way to reduce this distortion is to chose a window of width 2w about
the si that is mapped identically to a window of the same width about di.
The remaining regions, between si + w and si+1 − w, can then be resampled
to fit between di +w and di+1 −w. This is shown (again in exaggerated form)
in Fig. 13.5. In this method of Resampling with Identity Window (RIW),
the bulk of the most significant information is transferred to the destination
intact. Changes occur only in the less important (and relatively empty) regions
between the partials. We have found that window widths of about 1/3 to 1/5
of the minimum distance between partials to be most effective in reducing the
audibility of the distortion.

Spectral mappings are most easily implemented in software (or in hardware
to emulate such software) in a program:

input spectrum = FFT(input signal)
mapped spectrum = T(input spectrum)
output signal = IFFT(mapped spectrum)
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Fig. 13.5. Resampling with identity windows reduces the asymmetry of the trans-
formed spectrum.

where the function FFT () is the Discrete Fourier Transform or its fast equiv-
alent, IFFT () is the inverse, and the RIW spectral mapping is represented
by T . Other transforms such as the wavelet or constant-Q transform [B: 19]
might also be useful. Spectral mappings can be viewed as linear (but time-
varying) transformations of the original signal. Let the signal be x, and let
F be the matrix that transforms x into its DFT. Then the complete spectral
mapping gives the output signal

x̂ = F−1TF (x)

where T is a matrix representation of the resampling procedure. This is clearly
linear, and it is time varying because the frequencies of signals are not pre-
served. Often T fails to be invertible, and the original signal x cannot be
reconstructed from its spectrally mapped version x̂.

There are many possible variations of T . For instance, many instrumental
sounds can be characterized using formants, fixed linear filters through which
variable excitation passes. If the original samples are of this kind, then it is
sensible to modify the amplitudes of the resulting spectra accordingly. Simi-
larly, an “energy” envelope can be abstracted from the original sample, and
in some situations, it might be desirable to preserve this energy during the
transformation. In addition, there are many kinds of resampling (interpola-
tion and decimation), and there are free parameters (and filters) within each
kind. Trying to choose these parameters optimally is a daunting task.
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It may be more efficient computationally to implement spectral mappings
as a filter bank rather than as a transform (a good modern approach to filter
banks may be found in [B: 185]), especially when processing a continuous
audio signal. This is diagrammed in Fig. 13.6, which shows a bank of filters
carrying out the analysis portion of the procedure, a spectral mapping to
manipulate the parameters of the spectrum, and a bank of oscillators to carry
out the synthesis portion. This does not change the motivation or goals of the
mappings, but it does suggest an alternative hardware (or software) approach.
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Fig. 13.6. A filter-bank implementation of spectral mapping. The input is band-
pass filtered, and the signal is parameterized into n amplitude, phase, and frequency
parameters. These are transformed by the spectral mapping, and the modified pa-
rameters drive n oscillators, which are summed to form the output.

13.2.1 Maintaining Amplitudes and Phases

The tonal quality of a harmonic sound is determined largely by the ampli-
tudes of its sinusoidal frequency components. In contrast, the phases of these
sinusoids tend to play a small role, except in the transient (or attack) portion
of the sound, where they contribute to the envelope. The transformation T
is specified so as to keep each frequency component (roughly) matched with
its original amplitude and phase. This tends to maintain the shape of the
waveform in the attack portion. For example, Fig. 13.7 shows a square wave
and its transformation into the 11-tet timbre specified in Fig. 13.1. The first
few pulses are clearly discernible in the mapped waveform. As the first few
milliseconds of a sound are important in terms of the overall sound qual-
ity, maintaining the initial shape of the waveform contributes to the goal of
retaining the integrity of the sound.
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Fig. 13.7. A square wave and its transfor-
mation into a 11-tet version. Maintaining the
phase relationships among the partials helps
the attack portion retain its integrity.

13.2.2 Looping

A common practice in sample-based synthesizers is to “loop” sounds, to re-
peat certain portions of the waveform under user control. Periodic portions of
the waveform are ideal candidates for looping. Strictly speaking, inharmonic
sounds such as result from transformations like the 11-tet spectral mappings
have aperiodic waveforms. Apparently, looping becomes impossible. On the
other hand, the FFT induces a quantization of the frequency axis in which
all frequency components are integer multiples of the frequency of the first
FFT bin (for instance, about 1.3 Hz for a 32K FFT at a 44.1 KHz sampling
rate). Thus, true aperiodicity is impossible in a transform-based system. In
practice, it is often possible to loop the sounds effectively using the standard
assortment of looping strategies and cross fades, although it is not uncommon
for the loops to be somewhat longer in the modified waveform than in the
original.

To be concrete, suppose that the original waveform contains a looped por-
tion. A sensible strategy is to append the loop onto the end of the waveform
several times, as shown in Fig. 13.8. This tends to make a longer portion of
the modified waveform suitable for looping. It is also a sensible way of filling
or padding the signal until the length of the wave is an integer power of two
(so that the more efficient FFT can be computed in place of the DFT). The
familiar strategy of padding with zeroes is inappropriate in this application.
Figure 13.9, for instance, shows the results of three different mappings of the
4500 sample trumpet waveform of Fig. 13.8. Calculating the DFT and apply-
ing the 11-tet spectral mapping of Fig. 13.1 gives the waveform in Fig. 13.9(a).
This version consists primarily of the attack portion of the waveform, and is
it virtually impossible to loop without noticeable artifacts. An alternative is
to extend the waveform to 8K samples by filling with zeroes. This allows use
of the FFT for faster computation, but the resulting stretched waveform of
Fig. 13.9(b) is no easier to loop than the signal in 13.9(a). A third alterna-
tive is to repeatedly concatenate the original looped portion until the wave-
form reaches the desired 8K length. The resulting stretched version contains
a longer sustain portion, and it is correspondingly easier to loop.
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Fig. 13.8. (a) A 4500 sample trum-
pet waveform with looped region
indicated. (b) The same waveform
using a “fill with loop” rather than
a “fill with zeroes” strategy to in-
crease the length of the wave to 8K
samples.

13.2.3 Separating Attack from Loop

The attack portion of a sound is often quite different from the looped portion.
The puff of air as the flute chiffs, the blat of the trumpets attack, or the
scrape of the violins bow are different from the steady-state sounds of the
same instruments. Indeed, Strong and Clark [B: 186] have shown that it can
often be difficult to recognize instrumental sounds when the attack has been
removed.

Naive application of a spectral mapping would transform the complete
sampled waveform simultaneously. Because the Fourier transform has poor
time localization properties, this can cause a “smearing” of the attack portion
over the whole sample, with noticeable side effects. First, the smearing can
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Fig. 13.9. Spectrally mapped versions of
the trumpet waveform in Fig. 13.8. (a) Us-
ing a DFT of the original wave. (b) Using
an FFT and the “fill with zeroes” strategy.
(c) Using an FFT and the “fill with loop”
strategy. Version (c) gives a longer, steadier
waveform with more opportunity to achieve
a successful loop.
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sometimes be perceived directly as artifacts: a high tingly sound, or a noisy
grating that repeats irregularly throughout the looped portion of the sound.
Second, because the artifacts are nonuniform, they make creating a good loop
of the mapped sound more difficult.2

Thus, a good idea when spectrally mapping sampled sounds (for instance,
those with predefined attack and loop segments) is to map the attack and the
loop portions separately, as shown in Fig. 13.10. The resulting pieces can then
be pasted back together using a simple crossfade. This tends to maintain the
integrity of the attack portion (it is shorter and less likely to suffer from phase
and smearing problems), and to reduce artifacts occurring in the steady state.

loop

copies of loop

attack

new loop
new attack

Spectral
Mapping

Transform

  Inverse
Transform

Spectral
Mapping

Transform

  Inverse
Transform

loop

Fig. 13.10. Transforming the at-
tack and steady-state (looped) por-
tions separately helps to maintain
the tonal integrity of the sound.

Often, a complete sampled “instrument” contains several different wave-
forms sampled in different pitch ranges and at different dynamic ranges. The
creation of a spectrally mapped version should map each of these samples and
then assign them to the appropriate pitch or dynamic performance level. In
addition, it is reasonable to impose the same envelopes and other performance
parameters such as reverb, vibrato, and so on, as were placed on the origi-
nal samples, because these will often have a significant impact on the overall
perception of the quality of the sound.
2 Even the looping of familiar instrumental sounds can be tricky.
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13.3 Examples

This section presents examples of spectral maps in which the integrity of
the original sounds is maintained, and others in which the perceptual iden-
tity of sounds is lost. Examples include instruments mapped into a spectrum
consonant with 11-tet and with 88-cet, a cymbal sound mapped so as to be
consonant with harmonic sounds, and instruments mapped into (and out of)
the spectrum of a drum. Spectrally mapped sounds can be useful in musical
compositions, and Table 13.1 lists all of the pieces on the CD that feature
sounds mapped into the specified scales.

Table 13.1. Musical compositions on the CD-ROM using sounds that are spectrally
mapped into the specified scale.

Name of Scale File For More
Piece Detail
88 Vibes 88-cet vibes88.mp3 [S: 16]
Anima 10-tet anima.mp3 [S: 106]
Circle of Thirds 10-tet circlethirds.mp3 [S: 104]
Glass Lake tom-tom glasslake.mp3 [S: 91]
Haroun in 88 88-cet haroun88.mp3 [S: 15]
Hexavamp 16-tet hexavamp.mp3 [S: 97]
Isochronism 10-tet isochronism.mp3 [S: 105]
March of the Wheel 7-tet marwheel.mp3 [S: 115]
Nothing Broken in Seven 7-tet broken.mp3 [S: 117]
Pagan’s Revenge 7-tet pagan.mp3 [S: 116]
Phase Seven 7-tet phase7.mp3 [S: 118]
Seventeen Strings 17-tet 17strings.mp3 [S: 98]
Sonork harmonic sonork.mp3 [S: 93]
Sympathetic Metaphor 19-tet sympathetic.mp3 [S: 101]
Ten Fingers 10-tet tenfingers.mp3 [S: 102]
The Turquoise Dabo Girl 11-tet dabogirl.mp3 [S: 88]
Truth on a Bus 19-tet truthbus.mp3 [S: 100]
Unlucky Flutes 13-tet 13flutes.mp3 [S: 99]

13.3.1 Timbres for 11-tone Equal Temperament

Familiar harmonic sounds may be dissonant when played in 11-tet because
minima of the dissonance curve occur far from the desired scale steps. By
using an appropriate spectral mapping, harmonic instrumental timbres can
be transformed into 11-tet versions with minima at many of the 11-tet scale
steps, as shown in Fig. 13.1. These can be used to play consonantly in a 11-tet
setting. The mapping used to generate the tones in the sound example maps
a set of harmonic partials at
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f, 2f, 3f, 4f, 5f, 6f, 7f, 8f, 9f, 10f, 11f

to
f, r11f, r17f, r22f, r26f, r28f, r31f, r33f, r35f, r37f, r38f

where r = 11
√

2 and f is the fundamental of the harmonic tone. All frequencies
between these values are mapped using the RIW method.

Sound example [S: 86] (and video example [V: 11]) contain several different
instrumental sounds that alternate with their 11-tet versions.3

(i) Harmonic trumpet compared with 11-tet trumpet
(ii) Harmonic bass compared with 11-tet bass
(iii) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” synth
(vii) Harmonic “phase” synth compared with 11-tet “phase” synth

The instruments are clearly recognizable after mapping into their 11-tet
counterparts. There is almost no pitch change caused by this spectral map-
ping, probably because some partials are mapped higher, whereas others are
mapped lower. Indeed, the third partial is mapped lower than its harmonic
counterpart (2.92 vs. 3), but the fifth is higher (5.14 vs. 5). Similarly, the sixth
is lower (5.84 vs. 6), but the seventh is higher (7.05 vs. 7).

Perhaps the clearest change is that some of the samples have acquired a
soft high-pitched inharmonicity. It is hard to put words to this, but we try. In
(i) it may almost be called a “whine.” (ii) has a slight lowering of the pitch,
as well as a feeling that “something else” is attached. (iii) has acquired a high
“jangle” in the transition. It is hard to pinpoint any changes in (iv) and (vi).
In (v), it becomes easier to “hear out” one of the partials in the mapped
sound, giving it an almost minorish feel. The natural vibrato of (vii) appears
to have changed slightly, but it is otherwise intact.

Despite the fact that all sounds were subjected to the same mapping, the
perceived changes differ somewhat from sample to sample. This is likely an
inherent aspect of spectral mappings. For instance, the bass has a strong third
partial and a weak fifth partial compared with the other sounds. As the third
partial is mapped down in frequency, it is reasonable to hypothesize that
this causes the lowering in pitch. Because the fifth partial is relatively weak,
3 The waveforms were taken from commercially available sample CD-ROMs and

transferred to a computer running a Matlab program that performed the spec-
tral mappings. After looping (which was done manually, with the help of Infinity
looping software), the modified waveforms were sent to an Ensoniq ASR-10 sam-
pler. The performances were sequenced and recorded to digital audiotape. In all
cases, the same performance parameters (filters, envelopes, velocity sensitivity,
reverberation, etc.) were applied to the spectrally mapped sounds as were used
in the original samples.
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it cannot compensate, as might occur in other sounds. Similarly, differing
amplitudes of partials may cause the varying effects perceivable in (i)-(vii).

Such perceptual changes may be due to the way that inharmonicities are
perceived. For instance, Moore [B: 115] examines the question of how much
detuning is needed before an inharmonic partial causes a sound to break into
two sounds rather than remain fused into a single percept. Alternatively, the
changes may be due to artifacts created by the spectral mapping procedure.
For instance, other choices of filters, windows widths, and so on, may generate
different kinds of artifacts. Poorly implemented spectral mappings can intro-
duce strange effects. For example, in some of the earliest experiments with
spectral mappings, many sounds acquired a high-pitched jangling effect. The
piece Seventeen Strings [S: 98] features these sounds, and the jangling provides
an interesting high pitched background to the foreground harp. Although this
may be acceptable in a single piece as a special effect, it is undesirable overall.
This was the major impetus for separating the attack and looped portion of
the sounds in the mapping procedure—separation reduces the artifacts signif-
icantly.

Isolated sounds do not paint a very good picture of their behavior in
more complex settings. A short sequence of major chords are played in sound
example [S: 87]4:

(viii) Harmonic oboe in 12-tet
(ix) Spectrally mapped 11-tet oboe in 12-tet

As before, the individual sounds have only a small pitch shift. The striking
difference between (viii) and (ix) shows that the “out-of-tune” percept may
be caused by the structure of the partials of a sound, as well as by pitch or
interval relationships. Sound example [S: 87](ix) is not literally “out-of-tune”
because its fundamental is tuned to the accuracy of the equipment, which is
about 1.5 cents. Rather, (ix) is “out-of-spectrum” or “out-of-timbre,” in the
sense that the partials of the sound interfere when played at certain intervals
(in this case the 12-tet major third and fifth).

The next segments contain 11-tet dyads formed from scale steps 0-6 and
0-7, and culminate in a chord composed of scale steps 0-4-6.

(x) Harmonic oboe in 11-tet
(xi) Spectrally mapped 11-tet oboe in 11-tet

Examples (x) and (xi) reverse the situation from (viii) and (ix). Because
of the extreme unfamiliarity of the intervals (observe that 11-tet scale steps
4 and 6 do not lie close to any 12-tet intervals), the situation is perhaps less
clear, but there is a readily perceivable roughness of the 0-4-6 chord in (x)
that is absent from (xi). Thus, after acclimation to the intervals, (xi) appears
arguably less out-of-spectrum than (x).

4 And presented in video format [V: 12].
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Isolated chords do not show clearly what happens in genuine musical con-
texts. The piece, the Turquoise Dabo Girl, is played two ways:

Sound example [S: 88] in 11-tet with all sounds spectrally mapped.

Sound Example [S: 89] in 11-tet with the original harmonic sounds
(first 16 bars only).

The “out-of-spectrum” effect of [S: 89] is far more dramatic than the equiva-
lent isolated chord effect of (x), illustrating that the more musical the context,
the more important (rather than the less important) a proper matching of the
tuning with the spectrum of the sound becomes.

Hopefully, the Turquoise Dabo Girl also demonstrates that many of the
kinds of effects normally associated with (harmonic) tonal music can occur,
even in strange settings such as 11-tet, which is often considered among the
hardest keys in which to play tonal music. Consider, for instance, the har-
monization of the 11-tet pan flute melody that occurs in the “chorus.” Does
this have the feeling of some kind of (perhaps unfamiliar) “cadence” as the
melody resolves back to its “tonic?” Does it not sound “in-tune” even though
there is only one truly familiar interval (the octave) in the whole piece?

Observe that many of the subtle oddities in the mapped timbres (as noted
in (i)-(vii) of sound example [S: 86]) seem to disappear when contextualized.
Even with careful listening, it is difficult (impossible?) to hear the inhar-
monicities and artifacts that were so clear when presented in isolation. All the
timbres used in the Turquoise Dabo Girl (except the percussion) appear in
(i)-(vii). This may be due to a simple masking of the artifacts. It may also be
due to a kind of “capture” effect, in which the artifact/inharmonicity of one
note is captured by (or streamed with) other notes, and thus it becomes part
of the musical flow. In either case, the lessening of tonalness (due to the in-
harmonicity) does not appear to play a large role in the Turquoise Dabo Girl,
whereas the dissonance predictions of the sensory theory are readily upheld.

13.3.2 Spectrum of a Drum

The spectral mapping of the previous example changes the partials only mod-
erately. In contrast, mapping from harmonic tones into the spectrum of a
drum such as a tom tom changes the partials dramatically. The extreme in-
harmonicity of the sample is illustrated in Fig. 13.11, and the severe mapping
is readily heard as drastic changes in the tonal quality and pitch of the trans-
formed instruments. A harmonic spectrum at g, 2g, 3g, 4g, 5g is mapped to
d, 1.67d, 2.46d, 3.2d, 3.8d (which is precisely 245, 410, 603, 786, 934 for d = 245)
using the RIW spectral mapping. Of the guitar, bass, trumpet, and flute, only
the flute is recognizable, and even this is not without drastic audible changes.
One listener remarked that the transformed sounds were “glassy—like a fin-
ger nail scratching across a glass surface.” This description makes a certain
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Fig. 13.11. A harmonic spectrum
with fundamental g is mapped into
the tom tom spectrum.

amount of physical sense, because glass surfaces and drums heads are both
two-dimensional vibrating surfaces.

Sound example [S: 90] and video example [V: 13] contain several different
instruments and their transformation into the spectrum of the tom tom shown
in Fig. 13.11.

(i) Harmonic flute compared with tom tom flute
(ii) Harmonic trumpet compared with tom tom trumpet
(iii) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar

Clearly, this spectral mapping causes a large change in the character of
the sounds. As before, it is unclear what aspects of the resulting changes
are due to the way inharmonic sounds are perceived, and what may be due
to the details of the spectral mapping procedure. For instance, each of the
sounds undergoes a pitch change, but the pitch change is different for each
sound. Presumably this is because the partials of the mapped sounds inherit
the amplitudes of the original sounds. This is consistent with virtual pitch
theory where the ear picks out different “harmonic templates” (see Sect. 2.4.2
on p. 34) for each arrangement of amplitudes.

Again, it is hard to describe in words the kind of effects perceived. (i)
has a noticeable pitch change, but it still sounds something like a flute. The
trumpet undergoes a huge pitch change, and it gains a kind of glassy texture.
The single note of the bass becomes a minorish chord, and the guitar pluck
also gains a chord-like sound along with jangly artifacts.

Although the transformed timbres do not sound like the instruments from
which they were derived, they are not necessarily useless. Sound example
[S: 91], the Glass Lake, illustrates the transformed instruments (i)-(iv) played
in the related scale, with steps defined by the dissonance curve of Fig. 13.12.
This scale supports perceptible “chords,” although they are not necessarily
composed of familiar intervals. The piece is thoroughly xentonal.
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Fig. 13.12. The dissonance curve for the tom tom spectrum has an 11-note related
scale that covers a little less than two octaves.

13.3.3 Timbres for 88-cet

Gary Morrison [B: 113] proposed a scale in which the interval between adja-
cent notes is 88 cents rather than 100 cents as in 12-tet. As 1200 is not divisible
by 88, this scale has no real octaves. It can be interpreted as 14 equal divisions
of a stretched pseudo-octave with 1232 cents, which corresponds to a ratio of
p = 2.0373 to 1. One way to specify timbres for this scale is to map from a
set of harmonic partials to a set of “88-cet” partials using the mapping

f
↓
f

2f
↓

r14f

3f
↓

r22f

4f
↓

r28f

5f
↓

r33f

6f
↓

r36f

7f
↓

r39f

8f
↓

r42f

9f
↓

r44f

10f
↓

r47f

where r = 14
√

2.0373 and f is the fundamental of the harmonic tone. The
locations of the destination spectrum are taken from Table 13.2, although here
the r is based on the pseudo-octave rather than the real octave. The dissonance
curve for this timbre is shown in Fig. 13.13; observe that the curve has many
minima at 88-cet scale steps (as expected) and no obvious relationship to the
12-tet scale steps shown above. The most consonant intervals occur at scale
steps 1, 4, 6, 7, 9, 12, and 14. This is a good place to begin exploration of this
unusual scale.

Two pieces demonstrate this timbre-scale combination in action. Haroun
in 88 [S: 15] is fully orchestrated with 88-cet flute, bass, trumpets, and synths.
88 Vibes [S: 16] is performed on a spectrally mapped vibraphone.

13.3.4 A Harmonic Cymbal

The previous examples transformed familiar harmonic timbres into unfamiliar
timbres and scales. This example uses spectral mappings to transform familiar
inharmonic sounds into sounds maximally consonant with harmonic spectra.
The spectrum of a cymbal contains many peaks spread irregularly through
the whole audible range. For the chosen cymbal sample, the N = 35 largest
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Fig. 13.13. The dissonance curve for the 88-cet spectrum has minima at many of
the 88-cet scale steps, which are 14 equal divisions of the 2.0373 pseudo-octave.

peaks (labeled pi, i = 1, 2, ...N) were fit to a “nearby” harmonic template
ti = if by finding the fundamental f that minimizes

N∑
i=1

(pi − ti)2.

The solution is f =
∑

ipi∑
i2

, and the pi (source) and ti (destination) define the

spectral mapping. The transformed sound retains some of the noisy character
of the original cymbal strike, but it has become noticeably more harmonic
and has inherited the pitch associated with the fundamental f . The two brief
segments in sound example [S: 92] are mirrored in video example [V: 14]:

(i) The original sample contrasted with the spectrally mapped version
(ii) A simple “chord” pattern played with the original sample, and

then with the spectrally mapped version

The transformed instrument supports both chord progressions and melodies
even though the original cymbal strike does not.

Sonork [S: 93] explores harmonic cymbals in a “prog-rock” setting. Except
for the drums, all of the instruments in Sonork were created from spectrally
mapped cymbals. The origin of the bass, synth, and lead lines is completely
disguised. Some sounds in the quieter sections retain recognizable character-
istics of the cymbals from which they derive, and some have gained a kind of
fluttery underwater ambience from the spectral mapping.

Another example of the mapping of inharmonic instruments into tonal
counterparts is presented in sound examples [S: 94] through [S: 96]. The first
presents the original drum sound, which is clearly incapable of supporting
melody or harmony. The second plays the spectrally mapped version of the
drum into a harmonic sound; it has attained a character similar to a xylo-
phone, and it readily supports both melody and harmony. The third example
plays both simultaneously and is the most musical of the three.
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13.4 Discussion

The discussion begins with a consideration of various aspects of timbral
change, and then it suggests additional perceptual tests that might further
validate (or falsify) the use of spectral mappings in inharmonic musical ap-
plications. Several types of inharmonic musical modulations are discussed.

13.4.1 Robustness of Sounds under Spectral Mappings

How far can partials be mapped before the sound loses cohesion or otherwise
changes beyond recognition? It is clear from even a cursory listen that small
perturbations in the locations of the partials (i.e., mappings that are not
too distant from the identity) have little effect on the overall tonal quality
of the sound. Flutes and guitars in 11-tet timbres retain their identity as
flutes and guitars. The consistency of such sounds through various spectral
mappings argues that perceptions of tonal quality are not primarily dependent
on the precise frequency ratios of the partials. Rather, there is a band in which
the partials may lie without affecting the “fluteness” or “guitarness” of the
sound. Equivalently, the partials of such a sound can undergo a wide variety
of mappings without significantly affecting its inherent tonal gestalt.

Besides the sounds demonstrated here, the author has spectrally mapped
a large variety (over 100) of sounds into several different destination spectra,
including stretched timbres with stretch factors from 1.5 to 3.0 (see [B: 176]
and [B: 100] for a detailed discussion of stretched timbres), spectra designed to
be consonant with n-tet for n = 8, ..., 19, and a variety of destination spectra
derived from objects such as a tom tom, a bell, a metal wind chime, and a rock.
Many of these are used in the compositions and studies described in Table 13.1.
Overall, there is a wide variation in the robustness of individual sounds. For
instance, the sound of a tom tom or cymbal survives translation through
numerous mappings, some of them drastic. Only the flute still retains any part
of its tonal identity when mapped into the tom tom spectrum of Fig. 13.11.
Sounds like the guitar and clarinet can be changed somewhat without losing
their tonal quality, surviving the transformation into the n-tet spectra but not
into the more drastic tom tom spectrum. Other sounds, like the violin, are
fragile, unable to survive even modest transformations. Thus, not all mappings
preserve the perceptual wholeness of the original instruments, and not all
instruments are equally robust to spectral mappings.

Using the RIW spectral mapping technique of the previous sections, the
attack portion is mapped separately from the looped portion, which tends to
maintain the character of the attack. As the envelope and other performance
parameters are also maintained, changes in the timbral quality are likely due
primarily to changes in the spectrum of the steady-state (looped) portion of
the sound.
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As a general rule, the change in timbral quality of instruments with com-
plex spectra tends to be greater than instruments with relatively simple spec-
tra. The flute and tom tom have fairly simple spectra (only four or five spec-
tral peaks) and are the most robust of the sounds examined, retaining their
integrity even under extreme spectral maps. Sounds with an intermediate
number of significant spectral peaks, such as the guitar, bass, and trumpet,
survive transformation through modest spectral mappings. In contrast, sounds
like the violin and oboe, which have very complex spectra, are the most frag-
ile sounds encountered, because they were changed significantly by a large
variety of spectral mappings.

Perhaps the most familiar ‘spectral mapping’ is transposition, which mod-
ulates all partials up or down by a specified amount. As is well known, pitch
transposition over a large interval leads to distortions in tonal quality. For
instance, voices raised too far in pitch undergo “munchkinization.” It should
not be surprising that other spectral maps have other perceptual side effects.

13.4.2 Timbral Change

Is there a way to quantify the perceived change in a tone?
Even a pure sine wave can change timbre. Low-frequency sine waves are

“soft” or “round,” and high-frequency sine waves are “shrill” or “piercing.”
Thus, one aspect of timbral change is frequency dependent, which may be
responsible for timbral changes caused by transposition. A second element of
timbral change is the familiar notion that tonal quality changes as the ampli-
tudes of the (harmonically related) partials change. This is likely responsible
for the timbral differences between (say) a clarinet and a flute playing the
same pitch. Spectral mappings suggest a third aspect of timbral change, that
modification of the internal structure of a sound (i.e., a change in the intervals
between the partials) causes perceptual changes in the sound. Depending on
the spectral mapping (and the partials of the sound that is mapped), this may
involve the introduction of (or removal of) inharmonicity.

Clearly, any measure of timbral change must account for all three mecha-
nisms. It is reasonable to hypothesize that perceptions of change are:

(i) Proportional to the amount of transposition
(ii) Proportional to the change in amplitudes of the partials
(iii) Proportional to the change in the frequencies of the partials
(iv) Proportional to the decrease (or increase) in harmonicity (i.e.,

proportional to the change in tonalness)

Some general trends are suggested. Frequency shifts in a uniform direction
(such as those of a stretched map, or in a transposition mapping) may not be
as damaging to timbral integrity as those that shift some partials higher and
others lower (like the 11-tet mapping). Sounds with greater spectral complex-
ity (like the oboe) seem to undergo larger perceptual changes than simpler
sounds like the flute.
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To minimize the amount of perceptual change, the mapping T should be
defined so that all slopes are as close to unity as possible, that is, so that
the mapping is as near to the identity as possible, still consistent with the
desire to minimize dissonance. For instance, when specifying timbres for n-
tone octave-based equal temperaments, it is reasonable to place the partials
at frequencies that are multiples of r = n

√
2 to ensure that local minima of the

dissonance curve occur at the appropriate scale steps. A good rule of thumb
is to define the mapping by transforming partials to the nearest power of r.
Thus, an 11-tet timbre may be specified by mapping the first harmonic to r11

(= 2), the second harmonic to r17 (≈ 3), the third harmonic to r22 (= 4),
and so on, as given in Fig. 13.1. Analogous definitions of timbres for scales
between 5 and 23 are given in Table 13.2. The spectrum defined by

f 2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

frp1 frp2 frp3 frp4 frp5 frp6 frp7 frp8 frp9 frp10 frp11 frp12

is an induced spectrum5 for n-tet, where f is the fundamental, r = n
√

2, and
the exponents pi take on values from the nth row of Table 13.2.

Table 13.2. Definitions of the “nearest” induced spectra consonant with n-tone
equal-tempered scales.

Steps per Partials
Octave p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

5 0 5 8 10 12 13 14 15 16 17 17 18
6 0 6 10 12 14 16 17 18 19 20 21 22
7 0 7 11 14 16 18 20 21 22 23 24 25
8 0 8 13 16 19 21 22 24 25 27 28 29
9 0 9 14 18 21 23 25 27 29 30 31 32
10 0 10 16 20 23 26 28 30 32 33 35 36
11 0 11 17 22 26 28 31 33 35 37 38 39
12 0 12 19 24 28 31 34 36 38 40 42 43
13 0 13 21 26 30 34 36 39 41 43 45 47
14 0 14 22 28 33 36 39 42 44 47 48 50
15 0 15 24 30 35 39 42 45 48 50 52 54
16 0 16 25 32 37 41 45 48 51 53 55 57
17 0 17 27 34 39 44 48 51 54 56 59 61
18 0 18 29 36 42 47 51 54 57 60 62 65
19 0 19 30 38 44 49 53 57 60 63 66 68
20 0 20 32 40 46 52 56 60 63 66 69 72
21 0 21 33 42 49 54 59 63 67 70 73 75
22 0 22 35 44 51 57 62 66 70 73 76 79
23 0 23 36 46 53 59 65 69 73 76 80 82

5 The n-tet spectrum that lies closest to a harmonic spectrum.
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13.4.3 Related Perceptual Tests

One way to investigate timbral change is to gather data from listener tests
and apply a multidimensional scaling technique as in [B: 139]. For instance,
Grey and Gordon [B: 63] swapped the temporal envelopes of the harmonics of
instrumental tones and tested listeners to determine how different the mod-
ified sounds were from the originals. Such a study could be conducted for
sounds formed from various spectral mappings, giving a quantitative way to
speak about the degree to which sounds retain their integrity under spectral
mappings. The clustering technique used by Grey and Gordon found three
dimensions to the sounds, which were interpreted as a spectral dimension,
a dimension that represents the amount of change in the spectrum over the
duration of the tone, and a dimension determined primarily by the “explo-
siveness” or abruptness of the attack. Sounds that undergo modest spectral
mappings are likely to change in the first dimension and to remain more or
less fixed in the latter two. Instrumental sounds that are mapped so as to
be consonant with 11-tet (say) sound far more like the original instrumental
samples than they sound like each other. An interesting question is whether
the spectrally mapped sounds might cluster into a “new” dimension.

The sound examples of this chapter suggest caution in the interpretation
of results (such as the above), which rely on listening tests that lack musical
context. Taken in isolation, 11-tet mapped trumpet sounds are very similar
to harmonic trumpet sounds and thus should cluster nicely with harmonic
trumpet timbres. But in a 12-tet musical context, the 11-tet trumpet will
sound out of tune, for instance, when it is played in concert with harmonic
instruments. Similarly, the harmonic trumpet will sound out of tune when
played in 11-tet in an ensemble of 11-tet instruments. In this contextual sense,
similarly mapped instruments should tend to cluster separately from harmonic
instruments.

13.4.4 Increasing Consonance

Much of the current xenharmonic music is written in just intonations and other
scales that are closely related to harmonic timbres. Many of the most popular
equal temperaments (7, 17, 19, 21, and 31, for example) contain intervals
that closely approximate the intervals of scales related to harmonic timbres.
There is, of course, a body of work in tunings like 11-tet that are unrelated to
harmonic timbres. Some of these pieces revel in their dissonance, emphasizing
just how strange xenharmonic music can be.

Other composers have sought to minimize the dissonance. Bregman [B: 18]
reports that the dissonance between a pair of sounds can be reduced by placing
them in separate perceptual streams. This implies that musical parts that
would normally be dissonant can sometimes be played without dissonance if
the listener can be encouraged to hear the lines in separate perceptual streams.
Skilled composers can coax sounds into streaming or fusing in several ways,
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including large contrasts in pitch, tone color, envelope, and modulation. These
techniques have not gone unexploited in xenharmonic music, and they can be
viewed as a clever way of finessing the problem of dissonance. They are a
solution at the compositional level.

Spectral mappings provide an alternative answer at the timbral level. It is
possible to compose consonant music in virtually any tuning by redesigning
the spectra of the instruments so that their timbre is related to the desired
scale. Of course, it is not always desirable to maximize consonance. Rather,
the techniques suggested here are a way to achieve increased contrast in the
consonance and dissonance of inharmonic sounds when played in nonstandard
tunings. Using spectra that have dissonance curves with minima at the scale
steps allows these intervals to be as consonant as possible, thus giving the
composer greater control over the perceived consonance.6 That this is possible
even for notorious scales such as 11-tet expands the range of possible moods
or feelings in these scales.

13.4.5 Consonance-Based Modulations

Morphing from one set of related scales and timbres to another is a new
kind of musical modulation. This might consist of a series of passages, each
with a different tuning and timbre. For instance, a piece might begin with
harmonic timbres in 12-tet, move successively through 2.01, 2.02, ... , 2.1
stretched octaves, and then return to harmonic sounds for the finale. Such
consonance-based modulation can be extremely subtle, as in the modulation
from 2.01 to 2.02 stretched. It can also be extremely dramatic, because it
involves the complete timbre of the notes as well as the scale on which the
notes are played. Alternatively, such modulations might move between various
n-tet structures. By carefully choosing the timbres, the “same” instruments
can play in different tunings and the dissonance can be tightly controlled.

It is also possible to morph from one spectrum to another in the evolution
of a single sustained sound. This can be done by partitioning the waveform
into a series of overlapping segments, calculating a Fourier transform for each
segment, applying a different spectral mapping to each segment, and then
rejoining the segments. Such consonance-based morphing of individual tones
can be used to smooth transitions from one tuning/timbre pair to another, or
it can be used directly as way to control timbral evolution.

At a point when the mapping becomes too severe, individual notes can
lose cohesion and fission into a cluster of individually perceptible partials.
Bregman [B: 18] suggests several methods of tonal manipulation that can
be used to control the degree to which inharmonic tones fuse. Simultaneous
onset times and common fluctuations in amplitude or frequency contribute
6 It is easy to increase the dissonance by playing more notes or more tightly clus-

tered chordal structures; the hard part is to decrease the dissonance without
removing notes or simplifying the spectra.
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to fusing, whereas independent fluctuations tend to promote fissioning. These
can be readily used as compositional tools to achieve a desired amount of tonal
coherence. For instance, a sound can be “modulated” from perceptual unity
into a tonal cluster and then back again by judicious choice of such tools.7 As
spectral maps directly affect the amount of inharmonicity of a tone, a series
of spectral maps can be used to approach or cross the boundaries of tonal
fusion in a controlled manner.

Another form of modulation involves the boundary between melody and
rhythm. For instance, when the cymbal of sound example [S: 92] is played
using the original sample, it is primarily useful as a rhythm instrument. When
the same sound is transformed into a harmonic spectrum, it can support
melodies and harmonies. Consider a series of spectral mappings that smoothly
interpolate between these two. At some point, the melodic character must
disappear and the rhythmic character predominate. Careful choice of spectral
mapping allows the composer to deliberately control whether the sound is
perceived as primarily unpitched and rhythmic or as primarily pitched and
harmonic, and to modulate smoothly between the two extremes.

13.5 Summary

Most of the sounds of the orchestra (minus certain members of the percussion
family) and most of the common sounds of electronic synthesizers have har-
monic spectra. As the tonal quality of sounds is not destroyed under many
kinds of spectral mappings, whole orchestras of sounds can be created from in-
harmonic spectra. These sounds can retain much of the character of the sound
from which they were derived, although they are not perceptually identical.
For example, 11-tet sounds were created that clearly reflect their origin as gui-
tar and flute samples. These are clearly perceived as instrumental in nature,
and they can be played consonantly in 11-tet.

It is not necessary to abandon the familiar sound qualities of conventional
musical instruments to play in unusual scales. The spectral mappings of this
chapter provide a way to convert a large family of well-established, musically
useful sounds into timbres that can be played consonantly in a large variety
of scales. Musical tastes change slowly, and it can be difficult for audiences
to appreciate music in which everything is new. The creation of “familiar”
sounds that can be played in unusual scales may help to ease the transition
to music not based on 12-tet.

Alternatively, extreme spectral mappings can be used to generate gen-
uinely new sounds using familiar instrumental tones as raw material. When
played in the related scales, these tend to retain familiar musical features
such as consonance even though the timbres and intervals of the scale are
unfamiliar.
7 Inharmonique by Risset [D: 36] explores this type of modulation using an additive

synthesis approach.
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Spectral mappings can also be used to transform inharmonic sounds (such
as certain cymbals and drums) into harmonic equivalents. Using these sounds,
it is possible to play familiar chord patterns and melodies using this new
class of harmonic percussion instruments. Consonance-based spectral map-
pings make it possible to explore a full range of tonal possibilities for many
different spectra.
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A “Music Theory” for 10-tet

Dissonance curves provide a starting point for the
exploration of inharmonic sounds when played in
unusual tunings by suggesting suitable intervals, chords,
and scales. This chapter makes a first step toward a
description of 10-tet, using dissonance curves to help
define an appropriate “music theory.” Most previous
studies explore equal temperaments by comparing them
with the just intervals or with the harmonic series. In
contrast, this new music theory is based on properties of
the 10-tet scale and related 10-tet spectra. Possibilities
for modulations between 10-tet “keys” are evident, and
simple progressions of chords are available. Together,
these show that this xentonal 10-tet system is rich and
varied. The theoretical ideas are demonstrated in several
compositions, showing that the claimed consonances
exist, and that the xentonal motions are perceptible to
the ear.

14.1 What Is 10-tet?

In the familiar 12-tet, the octave is divided into 12 equal-sounding semitones,
which are in turn divided into 100 barely perceptible cents. Instead, 10-tet
divides the octave into ten equal sounding pieces. Each scale step contains
120 cents, which is noticeably larger than a normal semitone. Figure 14.1
shows how 12-tet and 10-tet relate.

Because the 10-tet intervals are unusual, it does not make sense to give
them the familiar sharp and flat names: Instead we adopt an “alphabetical”
notation in which each successive tone is labeled with a successive letter of
the alphabet.1 Thus, the scale begins with an A note, continues with B, and
proceeds alphabetically through the J note.

The 10-tet tuning has no fifth, no third, no major seconds, and no dom-
inant sevenths. The only interval common to both 10-tet and 12-tet (other
than the octave) is the 600-cent interval normally called the tritone, aug-
mented fourth, or diminished fifth. This is due to the numerical coincidence
that:
1 Although not an ideal solution to the notation problem, the alphabetical approach

has the advantage that it can be readily applied to any tuning system that repeats
at regular intervals.
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Fig. 14.1. The 10-tet and 12-tet scales have only the octave and tritone in common.
When the scale steps of the 10-tet tuning are mapped consecutively along a standard
keyboard, the octaves precess (as shown by the blackened keys). The black and gray
keys combine to outline the E-neutral scale.

6 steps ∗ 100 cents = 5 steps ∗ 120 cents = 600 cents

Although there are no major, minor, or seventh chords in 10-tet, there are new
“chords” that do not have “real” thirds or fifths. All of the comforting scales
and intervals have vanished, replaced by weird-sounding melodic intervals and
even stranger xenharmonies. Nothing you learned in music class is true!

14.2 10-tet Keyboard

How shall the 10-tet scale be laid out across the keyboard? Unfortunately, the
familiar 12-key-per-octave design is poorly suited to tunings like 10-tet. One
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option is to choose a subset of the 12 keys, and to map the 10-tet pitches to
only this subset, leaving two extra keys “empty.” The primary advantage of
this method is that each “octave” of keys still plays an octave. The disadvan-
tage is that the normal flow of 10-tet steps is artificially interrupted by the
silent keys.

The keyboard layout I prefer is one that assigns successive notes of the
10-tet scale to successive keys. With this 10-tet keyboard, a 10-tet chromatic
scale encompasses only ten steps. If the scale starts at middle C, then it
ends at the B� key ten steps up or at the D key ten steps down. Thus, each
interval normally fingered as a dominant seventh is actually an octave. Figure
14.1 shows how this nonoctave repetition plays out across the keyboard by
blackening all E notes. Observe how the sounding octaves precess through the
key-octaves at a rate of two keys per octave. This pattern can be exploited
without great difficulty, given a bit of practice.

14.3 Spectra for 10-tet

If 10-tet is so cool, why don’t more people already use it? The facile answer is
that there are no 10-tet guitars, flutes, or pianos, hence no musicians versed
to play in 10-tet, and no repertoire for them to perform. But there may be
an underlying reason for this lack—that harmonic tones sound out-of-tune
(or dissonant) when played in 10-tet. For instance, as shown in Fig. 14.1, the
10-tet interval from E to A is 720 cents. In contrast, a perfect 12-tet fifth is
700 cents. Hence, the 10-tet interval from E to A is likely to be heard as a
sharp, out-of-tune 12-tet fifth. The full E neutral chord is even worse.

The problem is not simply that harmonic sounds are dissonant in 10-tet.
As we know, the motion from consonance to dissonance (and back again) plays
an important role in most music. The problem is that most of the intervals
in 10-tet are dissonant, assuming harmonic sounds. It is thus very difficult to
achieve the kinds of contrasts needed for tonal motion.

Using the ideas of the previous chapters, it is easy to design spectra for
sounds that will appear consonant in the 10-tet intervals.2 For instance, the
dissonance curve for the mapping from a harmonic spectrum

f 2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
f r10f r16f r20f r23f r26f r28f r30f r32f r33f r35f r36f

into a “10-tet spectrum” defined with r = 10
√

2, is shown in Fig. 14.2. The
minima of this curve are aligned with many of the 10-tet scale steps. Inter-
vals such as the 720-cent “sharp fifth” and the 480-cent “flat fourth” need
not sound dissonant and out-of-tune when played with sounds that have this
spectrum, even though they appear very out-of-tune when played with normal
harmonic sounds.
2 Figure 12.1 on p. 248 contains three such spectra.
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Fig. 14.2. The dissonance curve for a spectrum designed to be played in 10-tet.
Minima coincide with many of the steps of the 10-tet scale and not with steps of
12-tet. The notes of the scale are named using the “alphabetical” notation, starting
on E.

The above spectral mapping was applied to a sampled guitar, to create
the “virtual 10-tet guitar” that is featured in the piece Ten Fingers in sound
example [S: 102]. The overall impression of Ten Fingers is of a strange plucked
instrument, like a sitar or a pipa, played in a musical style from an unknown
musical tradition.

Close observation reveals that much of this piece centers around the 10-tet
interval E to B (seven scale steps) and its inverse from B to E (three scale
steps). These intervals are 360 and 840 cents, which are distinct from anything
available in 12-tet, and dissonant when played with harmonic sounds. As often
occurs, this dissonance is perceived primarily as an eerie out-of-tuneness, as
demonstrated in sound example [S: 103], which plays the first few measures of
Ten Fingers but with the original harmonic sampled guitar rather than with
the spectrally mapped 10-tet version. More properly, this should be called
“out-of-timbre” or “out-of-spectrum,” because the actual tuning is precisely
10-tet. The contrast between examples [S: 102] and [S: 103] is not subtle.

14.4 10-tet Chords

Of course, 10-tet does not have major and minor chords. It does not have real
I-IV-V progressions. It does not have a circle of fifths, because it does not
really have “fifths.” But there are chords, and these chords can be played in
sensible musical progressions. These 10-tet sound patterns are just new kinds
of progressions.

Dissonance curves suggest where to begin. Figure 14.2 shows that 10-
tet scale steps 0, 3, 4, 6, 7, 9, and 10 occur at the narrow minima caused
by coinciding partials. These are the most consonant intervals in this 10-tet
setting. The most consonant chords are found by drawing the 3-D dissonance
curve, which is shown in Fig. 14.3. As usual with such curves, the very highest
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peaks (and the deepest valleys) occur near unisons. These create the two
irregular far walls. The long bumpy strip along the diagonal is similarly caused
by the (near) coincidence of the second and third notes. The most musically
interesting areas of the terrain are the three smaller mountainous regions
marked A, B, and C.
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Fig. 14.3. Dissonance curve for three note chords using the spectrum designed for
10-tet has minima that define the most important 10-tet chords. Three regions of
interest are indicated.

To get a closer look, the contour plot is drawn in Fig. 14.4, and the axes
are labeled in increments of the steps of the 10-tet scale. The left edge and
the bottom strip correspond to the two far walls of the 3-D version, whereas
the jeweled stripe across the diagonal represents the second and third notes
merging together. The three regions of interest are again labeled A, B, and C,
and it is apparent that each of these regions actually contains three distinct
minima. The intervals in these chords can be read directly from the figure. The
chord featured in Ten Fingers appears in region C, containing the intervals 1,
r7, and 2. Its complement (the chord containing 1, r3, and 2) is in region B.

The chords in region A are the most like standard triads. As r6 is the closest
10-tet interval to a 12-tet fifth, the chord 1, r3, r6 is an obvious candidate.

14.4.1 Neutral Chords

Play middle C, the E� above, and the F� above that. In the alphabetical
notation for 10-tet, these are the E, H, and A notes.
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Fig. 14.4. Dissonance curve for three-note chords using the spectrum designed for
10-tet has minima that define the most important 10-tet chords. Three regions of
interest are indicated.

F H A C E H
D E G I J B D F G

↑
“middle C”

Assuming that the timbre is built from the 10-tet spectrum given in the above
spectral mapping, this will likely sound smooth, but a bit strange. The chord
is completed by closing the octave with the B� key above (but not below).
This B� key is the E an octave above the first E, because it is ten steps up.
The complete chord

F H A C E H
D E G I J B D F G

is called the E neutral chord.
Recall that a normal major chord begins on its root (say C), adds the

third (the note E four semitones above the root) and then the fifth (the note
G three semitones higher) to complete the C major chord C-E-G. In 10-tet,
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the neutral chord begins on its root (say E), adds the note that is three 10-tet
scale steps higher (the H note), and then the note that is three more 10-tet
scale steps higher (completing the E neutral chord E-H-A). Of course, any
note can be used as the root. As there are ten different notes, there are ten
possible neutral chords.

In 12-tet, chords are called major or minor depending on whether the first
interval in the chord is a major third (four semitones = 400 cents) or a minor
third (three semitones = 300 cents). The interval used to build the neutral
chord in 10-tet is three 10-tet scale steps, which is 360 cents. As 360 is about
halfway between the major and minor thirds, it is neither major nor minor:
hence the term “neutral.”

Refer back to Fig. 14.4. There are three chords in region A that correspond
to minima of the dissonance curve that are approximately equally deep. Per-
haps there are other interesting chords or theoretical structures that can be
built up around the 1, r4, r7 chord or the 1, r3, r7 chord. Unfortunately, this
is not so, because all three are intimately related. For instance, suppose the
root of the neutral chord was transposed an octave up, while leaving the other
two tones fixed. Then the three tones would be in the relationship r3, r6, r10,
which is just a relabeling of 1, r3, and r7. Similarly, if the upper tone was
transposed down an octave, the three tones would be in the relationship 1, r4,
r7. Thus, all three chords in region A are different inversions of the “same”
neutral chord.

14.4.2 Circle of Thirds

There is a very interesting and beautiful chord pattern in 10-tet that is anal-
ogous to (but very different from) the traditional circle of fifths.

Observe that by changing only one note, it is possible to modulate from
the E neutral chord (containing E-H-A) to a B neutral chord (containing B-
E-H). One way to finger this is to simply move the A to a B while holding
the E and H constant. Thus, it is possible to move from the E chord

F H A C E H
D E G I J B D F G

to the B chord

F H A C E H
D E G I J B D F G

by moving only one finger. But now it is possible to modulate to an I chord
(I-B-E) by raising the H note one step.

F H A C E H
D E G I J B D F G
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Raising E to F

F H A C E H
D E G I J B D F G

gives the F neutral chord, and raising B to C

F H A C E H
D E G I J B D F G

gives the C neutral chord... and so on. After 10 chord changes, the progression
has moved

E → B → I → F → C → J → G → D → A → H → E

completely around the circle of thirds and back to its starting point. Because
the root of each chord in this progression is a neutral third below the previous
root, the complete cycle is called the circle of thirds. The song Circle of Thirds
(sound example [S: 104]) plays around and around this circle of thirds: first
fast, then slow, and then fast again.

14.4.3 “I-IV-V”

In 10-tet, the nearest interval to a fourth is 480 cents (instead of the familiar
500 cents) and the nearest interval to a fifth is 720 cents (instead of the normal
700 cents.) Thus, a I-IV-V progression is not really possible. But, using the flat
fourth and sharp fifth in place of the familiar intervals does lead to musically
sensible results. For instance, moving from E to I is as easy as playing

F H A C E H
D E G I J B D F G

followed by
F H A C E H

D E G I J B D F G

The A chord, which is only a few keys away, can be fingered either as

F H A C E H
D E G I J B D F G

or as
F H A C E H

D E G I J B D F G

These three chords form the basis of Isochronism [S: 105].
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14.4.4 The Tritone Chord

The tritone, also called the augmented fourth and the diminished fifth, is an
interval of 600 cents. It plays a very special role in conventional harmony
when it appears in dominant seventh chords: It helps to define the finality of
cadences, and it is often used as an “engine” that drives modulation from one
key to another. For instance, the typical V 7 → I progression

tritone
{

F → E
B → C

}
major third

G → G
D → C

contains a tritone that resolves to a major third. Is there a 10-tet analog?
The tritone is the only interval (other than the octave) that is common to

both the 10-tet and 12-tet systems. In fact, the tritone can function in much
the same ways in the 10-tet system as it does in traditional harmony: It helps
to define the finality of cadences and can be used to modulate between keys.

The chord that does this, called the tritone chord, is built from a root (say
G), the note 5 steps above (B), and the note 3 steps above that (E).3

F H A C E H
D E G I J B D F G

This G tritone chord feels as if it wants to resolve. The most natural resolution
is to move the lower note of the tritone up one step, the upper note of the
tritone down one step, and to leave the third note fixed.

E → E

tritone
{

B → A
G → H

}
neutral third

Thus, the G tritone chord resolves to a E neutral chord.

F H A C E H
D E G I J B D F G

So far, the tritone chord has made a nice analogy with the dominant seventh
chord of traditional harmony. But there is another kind of tritone chord that
is built from a root (say D), the note 5 scale steps above (I) and the note 2
scale steps above (A).

F H A C E H
D E G I J B D F G

3 Observe that this 5+3 construction leaves only two steps until the octave. Thus,
the note does have something of the character of a dominant seventh.
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This tritone chord also wants to resolve. The bottom note of the tritone pulls
upwards, the middle note of the tritone pushes down, and the third note
remains fixed.

A → A

tritone
{

I → H
D → E

}
neutral third

so the (second kind of) D tritone also wants to resolve to the E neutral chord.

F H A C E H
D E G I J B D F G

Thus, in the 10-tet system, there are two different tritone chords, both
of which function analogously to the dominant seventh chord of traditional
harmony. There are two different ways to approach any given neutral chord,
there are two different cadences resolving to any neutral chord, and there are
consequently a far greater number of ways to modulate from one 10-tet key to
another. So, although the 10-tet system lacks the dichotomy between minor
and major chords,4 it contains richer possibilities of modulation due to the
greater number of tritone xentonalities.

14.5 10-tet Scales

The traditional major scale is intimately related to major chords. For instance,
the C, F , and G chords contain exactly the notes of the C major scale.
Similarly, one can think of building 10-tet scales from the notes of certain
10-tet chords.

One approach is to choose a neutral chord (say E with notes E-H-A) and
the two tritone chords that lead to it (G with G-B-E, and D with D-I-A).
Collecting all of these notes together gives the 7-note E neutral scale

F H A C E H
D E G I J B D F G

which is shown spread out across the keyboard in Fig. 14.1 on p. 291. Alter-
natively, one could begin with the analogs of I-IV-V (for instance, the E, I,
and A neutral chords) and define the scale from these notes. This leads to the
exact same 7-note scale. Finally, this scale is also the same as the minima of
the dissonance curve (Fig. 14.2) with the addition of the G note.

14.6 A Progression

There are many ways to play in 10-tet. The use of 10-tet is not limited to
any particular style of music—it is no more for jazz than it is for rock or
4 Having only neutral chords.
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any other style. Think of it as an expansion of tonality. The 10-tet xentonal
musical language is not intended to replace the familiar harmonic 12-tet, but
to complement it. Lilies are not intended to replace roses, and the world would
be a poorer place without either.

This section ends with a simple 10-tet chord pattern that I have grown
fond of. It begins by moving back and forth between E and I. Then there is
a short D tritone, followed by a G tritone, and finally a resolution back to E.
Then repeat. It is simple, and maybe even a little catchy.

Begin by alternating the E chord

F H A C E H
D E G I J B D F G

with the I chord.

F H A C E H
D E G I J B D F G

Then, the resolution begins with a D tritone chord (the second kind),

F H A C E H
D E G I J B D F G

moves through the G tritone chord (the first kind)

F H A C E H
D E G I J B D F G

and finally resolves back to E.

F H A C E H
D E G I J B D F G

This chord pattern is used throughout Anima [S: 106], which also demon-
strates that it is possible to sing in 10-tet.

14.7 Summary

Dissonance curves for a 10-tet spectrum were helpful in pinpointing useful
intervals, chords, and scales. These can be combined in numerous ways into
coherent patterns that, although unfamiliar, are perceivable as sensible xen-
tonal progressions. “Neutral” chords occupy a place in 10-tet somewhat anal-
ogous to major chords in 12-tet, and two kinds of “tritone” chords can be used
as engines of modulation and resolution, analogous to the familiar dominant
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seventh chord. These are just a start; it would be impossible to exhaust an
intricate system like 10-tet in a single chapter.

There is nothing magic about 10-tet, nor about this particular spectrum
for 10-tet. Each of the n-tet tunings has its own kinds of related spectra, its
own intervals and scales, its own chords and chord progressions, and its own
character and moods.5 There are new patterns of sound that can subtly (and
not so subtly) entice and entrance, repel, and repulse. Unlike 12-tet, where it
is virtually impossible to create a genuinely new chord pattern or scale, almost
nothing is known about these n-tet worlds. Similarly, other divisions of the
octave (and divisions of non-octaves as well) have their own timing, intervals,
consonances, dissonances, and their own music theories. Each tuning has its
own song to sing.

5 Darreg [B: 36] was the first to point out the existence of these moods.
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Classical Music of Thailand and 7-tet

Thai classical music is played on a variety of indigenous
instruments (such as the xylophone-like renat and pong
lang) in a scale containing seven equally spaced tones
per octave. This chapter shows how the timbres of these
instruments (in combination with a harmonic sound)
are related to the 7-tet scale, and then explores a variety
of interesting sounds and techniques useful in 7-tet.

15.1 Introduction to Thai Classical Music

Thai culture has been in contact with other civilizations for centuries. Thai
music and instruments reflect influences from China, Indonesia, and India,
as well as influences from the indigenous Khmer, who were conquered when
the Thai invaded from southern China. The primary ensembles in Thai court
music are a kind of percussion orchestra containing wooden xylophones (the
renat ek, the lower pitched renat thum, the pong lang), gong-circles reminis-
cent of Javanese bonangs, melody instruments such as the pi, a multiple reed
aerophone, the zither-like jakeh, and a variety of drums and cymbals.

Morton [B: 119] describes the music with evocative mixed metaphors:

The sound of traditional Thai ensemble music might be likened to a
stream... here and there little eddies and swirls come suddenly to the
surface to be seen momentarily, then to disappear as suddenly... the
various threads of seemingly independent melodies of the instruments
bound together in a long never-ending wreath.

Morton is describing the technique of polyphonic stratification or heterophonic
layering of parts in which variations of a single melody are played simulta-
neously on a number of different instruments. Some play faster, some slower,
some syncopated, and some with elaborate ornamentation.

One striking aspect of traditional Thai music is that it is played in a scale
that is very close to 7-tet. In the liner notes to [D: 12], Sorrell comments:

Theoretically, the Thai scale has seven equidistant notes, which means
that the intervals are “in the cracks” between our semitone and whole
tone, and are equal, though in practice some are more equal than
others!

A number of recordings of Thai music are currently available. Instrumen-
tal Music of Northeast Thailand [D: 45], Classical Instrumental Traditions:
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Thailand [D: 9], and Thailand-Ceremonial and Court Music [D: 39] give an
overview of the instrumental techniques, whereas Sleeping Angel [D: 12] and
the Nang Hong Suite [D: 13] mix traditional music with modern music in both
traditional and nontraditional styles.

This chapter explores the relationship between the 7-tet scale of Thai
classical music and the timbres of the traditional instruments. As will be
shown, two different timbres (that of an ideal bar like the renat and a harmonic
sound) combine to create a dissonance curve that has minima at many of the 7-
tet scale steps. Later sections show how to create “new” instrumental timbres
with analogous spectra, and explore some compositional techniques for 7-tet.

15.2 Tuning of Thai Instruments

How close is the actual tuning of Thai instruments to the theoretical 7-tet
scale? Many traditional Thai pieces begin with a musical figure played by
the renats alone. This isolates the sound of the renat and makes it possible to
measure the tuning with reasonable accuracy directly from musical recordings.
The xylophone-like renat is ideal for this because it is a fixed pitch instrument
unlike the aerophones and stringed instruments, whose pitches may vary each
time a note is played.

The somewhat tedious is illustrated in sound example [S: 108], which be-
gins with the first ten seconds of Sudsaboun from [D: 39], up to the point
where the pi enters. Each of the seven notes present in this introduction are
then separated (by a kind of audio cut-and-paste) and played individually.
The pitch is determined by finding the sine wave that has the same pitch as
the individual notes (recall that, for inharmonic instruments, this is how pitch
is defined). The sound example alternates each struck note of the renat with
the appropriate sine wave, and the frequencies for each are recorded in Ta-
ble 15.1. These are then translated into cents (equating the lowest note with
0 cents) for comparison with the theoretical 7-tet scale.

Table 15.1. Tuning of the renats in Sudsaboun from [D: 39].

Note Frequency (Hz) Cents 7-tet
1 307 0 0
2 337 161 171
3 375 346 343
4 416 526 514
5 456 686 686
6 505 862 857
- - - 1028
7 614 1200 1200
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By listening carefully to sound example [S: 108], it becomes clear that each
of the renat strikes is not really a single note; rather, it is two notes being
struck at an octave interval.

15.3 Timbre of Thai Instruments

The pong lang is a wooden xylophone-like instrument from Northeast Thai-
land. Like the boat-shaped renat, it is tuned to (approximately) 7-tet. The
modes of vibration of keys of the pang lang and renat, like those of the Ja-
vanese gambang (recall Fig. 10.9), are very close to those of an ideal bar.1

Figure 15.1 shows the spectrum of the pong lang taken from the introduction
to Lam Sithandon on [D: 45].
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Fig. 15.1. The spectrum of a typical lower register strike of a pong lang has four
partials close to those of an ideal bar.

The four largest partials compare closely to those of the ideal bar:

frequency Hz: 436 642 1246 2393 3873
ratio: f 1.47f 2.85f 5.48f 8.88f
ideal bar: f − 2.76f 5.4f 8.9f

The spectra of higher pitched notes have less prominent higher partials: The
partial near 8.9f disappears completely, and the partial near 5.4f is often
greatly attenuated. The partial at 642 Hz (near 1.47f) is somewhat anomalous.
It occurs in several (but not most) of the spectral measurements of the pong
lang but none of the renat spectra.

Section 6.7 shows how dissonance curves can be drawn when two sounds
with nonidentical spectra are played. Combining the spectrum of an ideal bar
(an idealized renat) with a harmonic sound G containing six partials (such
as might result from the pi or jakeh) gives the dissonance curve shown in
Fig. 15.2.
1 The spectrum of the ideal bar is discussed in Chap. 2 (see p. 23 and Fig. 2.7),

and scales for the ideal bar are shown in Fig. 6.11 on p. 115.
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Fig. 15.2. An ideal bar and a harmonic sound with six partials generate a dissonance
curve with many minima close to the steps of 7-tet, which is shown for comparison.

This dissonance curve has minima at or near all of the steps of the 7-tet
scale, except for the fifth step (the nearest minimum to 1.64 is at 1.62, but it
is one of the broad flat minima):

minima s 1.0 1.09 1.21 1.35 1.49 1.80
minima r 1.0 1.11 1.81 2.0
7-tet ratio 1.0 1.10 1.22 1.35 1.49 1.64 1.81 2.0
7-tet cents 0 171 343 514 686 857 1028 1200

Hence this dissonance curve provides a concrete correlation between the spec-
trum of the traditional xylophone-like instruments and the 7-tet Thai scale.

As is obvious from even casual listening, Thai classical music is stylis-
tically very different from Western music. It does not contain “harmonies”
or “chords” in the Western sense. Rather, it is built linearly by juxtaposing
a number of melody lines simultaneously. Often there is a single underlying
melodic pattern that no single musician actually plays; the melody is stated
(and restated with many kinds of variations) in a collective performance. Mor-
ton [B: 119] comments about the use of consonance and dissonance in Thai
music:

The motor power driving this type of music forward is the alterna-
tion of relative consonance at structural points of unison (or octaves)
with relative dissonances between those points, through the idiomatic
treatment of the lines.

How are these variations in consonance and dissonance achieved without
harmony or chords? The various melodic lines overlap each other in very
complex ways, and thus many different notes occur simultaneously. These
clusters of notes clearly have different amounts of sensory dissonance, and
this may be one source of the driving power Morton perceives in the music.

As the dissonance curve in Fig. 15.2 shows, the instruments can provide
a range of consonances and dissonances as they combine the spectrum of an
idealized xylophone with a harmonic spectrum. As more notes are added, the
differences can be even more dramatic. To investigate this, Figs. 15.3 and
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15.4 draw contour plots of the dissonance surfaces for three simultaneously
sounding notes. These are analogous to the contour plots of Fig. 6.21 on p. 129.

7-tet scale steps
2                                         1                                          2r                                               s

7-tet scale steps
2                                1                                 2

r                                        s

interval between first and second notes
interval betw

een the first and third notes

Fig. 15.3. This contour plot of a dissonance surface assumes three notes. The fixed
note has a harmonic spectrum, the second has the spectrum of the ideal bar, and
the third is harmonic. Minima of the dissonance curve occur at many of the scales
steps of 7-tet, which is shown for reference on both axes. The x’s represent locations
where minima occur.

Dissonance surfaces are drawn assuming three notes, each with known
spectrum. One note is held fixed, and the other two vary over a range of two
octaves, from an octave below the fixed note to an octave above. As there
are two different timbres to consider (that of the ideal bar and a harmonic
spectrum), there are four possible surfaces depending on which spectra are
assigned to which notes. In Fig. 15.3, for instance, the fixed note is harmonic,
the second has the spectrum of the bar, and the third is harmonic. In Fig. 15.4,
the fixed note is again harmonic, whereas the second and third both have the
spectrum of the bar.2

The prominent horizontal stripe in Fig. 15.3 reflects the degenerate case
where the first and third notes are tuned the same (in an interval of a uni-
2 There are two other possibilities, and the corresponding figures are in pdf form

on the CD in the folder pdf/. In the figure in 1bar2harm3bar.pdf, the fixed
note has the spectrum of the bar, the second note is harmonic, and the third
has the spectrum of the bar. In the file 1bar2harm3harm.pdf, the fixed note has
the spectrum of the bar, whereas the other two are harmonic. These figures are
qualitatively like Figs. 15.3 and 15.4, showing minima at many “chords” with
intervals drawn from 7-tet.
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son), and this gives (to close approximation) a copy of the one-dimensional
dissonance curve in Fig. 15.2. Similarly, the horizontal stripes at r = 2 and
s = 2 depict the situation where the two harmonic tones form octave inter-
vals, again replicating the one-dimensional dissonance curve. In Fig. 15.4, the
prominent diagonal stripe represents the degenerate case where the second
and third notes (with identical spectra) are tuned the same and the stripe
again repeats the one-dimensional dissonance curve.

7-tet scale steps
2                                         1                                          2r                                               s

7-tet scale steps
2                                1                                 2

r                                        s

interval between first and second notes

interval betw
een the first and third notes

Fig. 15.4. This contour plot of a dissonance surface assumes three notes. The fixed
note has a harmonic spectrum, and the two varying notes have the spectrum of the
ideal bar. Minima of the dissonance curve occur at many of the scales steps of 7-tet,
which is shown for reference on both axes. The x’s represent locations where minima
occur.

Far more interesting are the deep isolated minima that occur throughout
the figures. For example, on Fig. 15.3, locate the fourth scale step between the
first and second notes (the tick mark just below the letter r on the horizontal
lattice). Looking down the graph reveals minima (marked by x’s) at or near
more than two-thirds of the scale steps. Similarly, many other columns (and
rows) in both figures show a large number of highly consonant chords (more
properly, three-note clusters) that use intervals in the 7-tet scale.

Let’s oversimplify. Figures 15.3 and 15.4 show that, to a first approxima-
tion, almost any three-note cluster in 7-tet is reasonably consonant. So the
contrast between consonance and dissonance that drives Thai music is unlikely
to be caused by differences in the chordal structure. For example, numbering
the notes of the 7-tet scale numerically, the dissonance of note clusters such
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as

⎛
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⎞
⎠,

⎛
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⎞
⎠, and

⎛
⎝5

4
1

⎞
⎠ does not differ greatly. Reinforcing this, there is

no notion in Thai music theory that specific combinations of notes perform

specific functions; thus,

⎛
⎝5

3
1

⎞
⎠ does not necessarily play a different role than

⎛
⎝6

4
1

⎞
⎠. This is very different from music of the common practice period where,

for example, the tonic, dominant and subdominant serve highly prescribed and
conventionalized roles.

This suggests that the contrast driving Thai music must arise in some other
way. One possibility grows out of the layering of melodic lines (the polyphonic
stratification). Consider a simplified example of a melody that repeats four
notes 1 2 3 1 at three levels separated by a factor of two in tempo. The slowest
layer performs the melody once during the time the middle layer plays it twice.
Meanwhile, the fastest layer repeats the same melody four times. This can be
represented schematically as

fastest level: 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1
1 − 2 − 3 − 1 − 1 − 2 − 3 − 1 −

slowest level: 1 − − − 2 − − − 3 − − − 1 − − −
(15.1)

where time proceeds horizontally. The initial three notes in unison are highly
consonant. Similarly, the final stroke is consonant because it contains the last
stroke of the fastest layer plus whatever sound remains from the 1’s in the
slower layers. In between is a rising and falling dissonance proportional (more
or less) to the number of different notes sounding simultaneously. For this
particular pattern, the greatest dissonance would occur at the second stroke
(of the slowest layer) where all three different notes occur simultaneously.
Thus, even in this highly idealized setting, there is a journey from consonance
into dissonance and back again. This is dictated, not by chord placement or
differences in dissonance between clusters, but by the temporal layering of the
melodic lines.

To investigate this more concretely, the dissonance score3 in Fig. 15.5
shows the first two minutes of Lam Sithandon [D: 45], which uses the “happy
sounding san mode type” according to the liner notes. The introductory solo,
played on the pong lang, is evident in the first large hump in the dissonance
that culminates at about 14 seconds. The bulk of the analysis shows a large
number of small peaks of varying heights that coincide with the phrase length.
Each phrase is performed slightly differently: with different instruments, with
different ornamentation, and with different density of orchestration. The drop
in the dissonance at 80 seconds coincides with the end of the first major section
3 Drawn using the method of Sect. 11.1.
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and a return to the main theme. As Morton [B: 119] suggests, the relative
consonance occurs at points of structural unison, and dissonance increases
between.
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Fig. 15.5. Dissonance score for the first two minutes of Lam Sithandon. The dark
line averages the raw dissonance calculations over 1 second.

15.4 Exploring 7-tet

Inspired by traditional Thai music, this section explores compositional tech-
niques and sound design strategies for 7-tet. The first section discusses a
variation on the spectral mapping techniques of Chap. 13 for the sculpting of
a variety of instrumental sounds that have the same spectrum as an ideal bar.
Succeeding sections discuss variations on the technique of polyphonic stratifi-
cation that are applied to several musical compositions that can be heard on
the accompanying CD.

15.4.1 Sounds for 7-tet

As the previous sections showed, two kinds of sounds combine to form disso-
nance curves with minima at steps of the 7-tet scale: harmonic sounds and
bar sounds (those with the spectrum of an ideal bar). There is no shortage of
interesting harmonic sounds, but there is no obvious source of timbres with
the spectrum of a bar other than the bar instruments themselves (xylophone,
glockenspiel, renat, gambang, and so on).

In principle, the spectral mapping approach of Sect. 13.2 (refer back to
Fig. 13.3 on p. 270) can transform one spectrum into another by choosing
a mapping from the source spectrum into the destination spectrum. This
implicitly requires that there be the same number of partials in the destination
as in the source. But the spectrum of a bar is sparse compared with (say)
harmonic sounds; the first four partials of the bar (f , 2.76f , 5.4f , and 8.9f)
span the same range of frequencies as the first nine partials of a harmonic
sound. A naive mapping like
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harmonic spectrum: f 2f 3f 4f . . .
↓ ↓ ↓ ↓

spectrum of bar: f 2.76f 5.4f 8.9f . . .

can cause significant oddities in the resulting mapped sounds, more akin to
the transformation from a harmonic sound into the spectrum of a tom-tom
(sound example [S: 90]) than to the milder transformation into the nearby
11-tet spectrum (as in sound example [S: 86]).

One variation is to transform from the harmonic spectrum to the bar
spectrum by mapping only the harmonic partials nearest the desired partial
of the bar spectrum:

harmonic spectrum: f 3f 5f 9f
↓ ↓ ↓ ↓

spectrum of bar: f 2.76f 5.4f 8.9f

But what happens to 2f , 4f , 6f , 7f , 8f , and 10f and above? If they are left
unchanged, then the sound is very likely to retain a large part of its harmonic
character and it is no longer the kind of sound that is related to the 7-tet
scale. Figure 15.6 suggests the simplest approach: to “simplify” the spectrum
by removing the extra partials.
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Fig. 15.6. Mapping rich harmonic
sounds (such as this spectrum of a gui-
tar pluck) into the spectrum of a bar can
be done by simplifying the spectrum to
contain only those partials nearest the
destination. The resulting sound has (in
this case) a bell-like ring.

For example, sound example [S: 109] plays several harmonic sounds and
their mapped versions under the transformation of Fig. 15.6. Partials 1, 3, 5,
and 9 are mapped using the resampling with identity window (RIW) method
of Fig. 13.5, and the remaining partials are attenuated. Three instruments
are demonstrated: three different notes of a bouzouki, three different notes of
a harp, and a pan flute. Each harmonic tone is followed immediately by the
7-tet spectrally mapped tone, and it is easy to hear the differences. Overall
there is some shift of the pitch and the sounds become simpler and cleaner,
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more like the strike of a bell than the pluck of a guitar. The next sections
place these sounds in their intended 7-tet musical context.

15.4.2 A Naive Approach to 7-tet

The seven equidistant tones of the 7-tet scale (which are compared with 12-
tet in Fig. 15.7) lie outside the conventional tonal system. Indeed, with the
exception of the octave, there are no familiar intervals. But as there are seven
tones in the diatonic scale, perhaps 7-tet can be viewed as a regularization of
the major (or minor) scale in which the alternating whole and half steps are
equalized. Essentially this suggests a naive mapping

diatonic scale: C D E F G A B C
� � � � � � � �

7-tet scale: 1 2 3 4 5 6 7 1
(15.2)

which equates the seven equal steps of the 7-tet scale to the seven unequal
steps of the diatonic scale.

C         0 cents
C#   100 cents

D     200 cents

D#   300 cents

E     400 cents

F     500 cents

F#   600 cents

G     700 cents

G#   800 cents

A     900 cents

A#  1000 cents

B    1100 cents
C    1200 cents

 0 cents        1

171 cents     2

373 cents     3

514 cents     4

686 cents     5

857 cents     6

1028 cents   7

1200 cents   1

7-tet12-tet Fig. 15.7. The only interval that appears in both 7-
tet and 12-tet is the octave. There is no easy way to
exploit diatonic musical intuitions in the 7-tet tuning.

This idea is explored in several sound examples. The “simple theme” of
[S: 2] is repeated in [S: 110]; first in 12-tet and then in 7-tet using the identi-
fication of notes in (15.2). It is played with harmonic timbres in [S: 110] and
with bar timbres in [S: 111]. Scarlatti’s K380 sonata (which has already been
presented in a variety of historical tunings in sound examples [S: 17] through
[S: 22]) is performed in 7-tet in [S: 112]. Both pieces sound flat (in literal
and figurative senses) when transformed into 7-tet. Besides the uneasy out-
of-tuneness is the problem of uniformity of dissonance: What begins in 12-tet
as structural elements (for instance, the motion from I-IV-V-I in [S: 110]) is
transformed into a series of tonal clusters with no distinguishable points of
rest. Similarly, the melodic motions in [S: 112] appear aimless in 7-tet because
they no longer end at a sensible place of repose. Whether the 7-tet version
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of K380 is played with harmonic timbres (as in [S: 112]) or with spectrally
mapped bar timbres (as in [S: 113]), it regains neither the normality nor the
flow of the original. The idea of equating 7-tet to some subset of 12-tet is
probably a mistake.

15.4.3 Composing in 7-tet

A wiser direction is to follow those with experience. Thai traditional mu-
sic does not distinguish the functionality of different 7-tet chords, as [S: 110]
through [S: 114] attempt. Rather, it exploits the possibilities of consonance
and dissonance in 7-tet by rhythmic means, by superimposing various melodic
lines. Denser lines give greater dissonance; sparser lines give greater conso-
nance. Of course, this oversimplifies considerably, but it may be useful in the
spirit of finding a reasonable rule of thumb.

Sound examples [S: 115] through [S: 118] explore this rule of thumb for 7-
tet in a variety of ways. Inspired by the idea that there is not a large distinction
in the dissonance of the various 7-tet chords,4 March of the Wheels [S: 115]
begins with a MIDI drum pattern, like the one shown in the piano role notation
of Fig. 15.8. In this representation, time moves along the horizontal axis. Each
row represents a different instrument (in the general MIDI drum definition,
for instance, the row corresponding to C1 is the bass drum, D1 is the snare,
and F�1, C�2, and D�2 are various kinds of cymbals). These are labeled.
The relevant idea is to exploit the feature that such MIDI data can represent
any kind of sound. In particular, the right-hand side of Fig. 15.8 shows one
possible mapping from the MIDI data into a 7-tet scale. Thus, the (original)
performance of a drum set is replaced event by event with a 7-tet instrument
such as those of [S: 109].

If an interesting drum track is chosen, then there is a good chance that
the resulting 7-tet performance will be rhythmically interesting. More variety
can be added by changing the notes. Editing by hand is easy (although te-
dious), and many MIDI sequencers5 have advanced editing capabilities that
can manipulate the data in sophisticated ways. For example, Fig. 15.9 shows
a selective randomization of the track in Fig. 15.8 in which the pitch of each
note is randomized by a small amount. This preserves the register of the
notes; the rhythmic pattern of the bass drum and snare becomes a bass line,
and the cymbals are randomized within the more active upper registers. Such
formal manipulations are ideal for generating segments or phrases that can
be combined to create larger scale pieces. March of the Wheels [S: 115] is
one such composition. By selective editing, it is easy to create denser and/or
sparser sections that reliably increase or decrease the dissonance. Using cut-
and-paste methods, whole sections can be constructed. By orchestrating with
various timbres, repetitions can be disguised and differences can be unified.
The wheel is repetitive, and yet has a clear sense of forward motion.
4 In 7-tet, all chords are created equal!
5 Such as Cakewalk for PC and Digital Performer for Mac.
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Fig. 15.8. A standard MIDI drum track is shown in piano roll notation. The track
need not trigger drum sounds; the right margin suggests a possible mapping of the
MIDI events into the seven tones of the 7-tet scale.

There is no need to begin the compositional process with a percussive
track. Pagan’s Revenge [S: 116] starts with a standard MIDI file of one of
Niccolò Paganini’s (1782–1840) Caprices (No. 24 as performed by D. Lovell)
from the Classical MIDI archives [W: 4]. The translation from the original
12-tet file to 7-tet was the same as in Figs. 15.8 and 15.9: each 12-tet half
step is mapped to a step of the 7-tet scale. Thus, the 7-tet version covers
several more octaves than the original because each fifth (seven half steps) is
converted into an octave. Even before editing and orchestration, the Caprice
is utterly unrecognizable.
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Fig. 15.9. The notes of the standard MIDI drum track in Fig. 15.8 are selectively
randomized, creating more interesting “melodic” and “chordal” patterns.
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The first half of the standard MIDI file worked well in 7-tet. After deleting
the second half, I created “new” material by time-reversing the first half.
This process is demonstrated in Fig. 15.10, which takes the first half of the
drum sequence in Fig. 15.8, reverses it in time, and concatenates it to the
end. This creates a point of rhythmic symmetry (the axis of time symmetry
in Fig. 15.10). In Pagan’s Revenge, the point of symmetry occurs midway
through the piece at 1:58, forming a kind of musical palindrome in which the
theme proceeds forward and then backward; eventually ending on the first
note. The piece is lavishly orchestrated with a variety of sounds with spectra
derived from both the bar and the harmonic series. Globally, there is a tension
between the frenetic pace and the solemn, near ritual quality and depth of
the timbres.

bass
snare

hat

ride
crash

time

1
23

4 56
71

2 34 56
71

2 34 56
7 1
2

7-tet pitches
standard MIDI
drum assignment axis of time symmetry

Fig. 15.10. The notes of the first half of the standard MIDI drum track in Fig. 15.8
are reversed in time, creating related but distinct rhythms.

The technique of polyphonic stratification interlocks melodic lines at dif-
ferent tempos, usually separated by a factor of two as schematized in (15.1).
A modern technique pioneered by Steve Reich [D: 35] plays a single melodic
line simultaneously at slightly different tempos. At first, the two lines are in-
phase and the attacks are simultaneous. The faster version soon pulls ahead
and anticipates the slower in a sequence of rapid double attacks. Later, the
two break apart into a galloping rhythm. At the midpoint, the two are evenly
spaced and are perceived as a hocketed melody moving twice as fast as the
original tempo. As time proceeds, the same set of perceptions are repeated
(although in reverse order) until they eventually resynchronize. This is shown
schematically in Fig. 15.11, which indicates several regimes of rhythmic per-
ception.

Nothing Broken in Seven [S: 117] applies this phasing idea in the 7-tet
setting by playing the same isorhythmic six note melody throughout. Phase
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time

unison unison
double
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rhythm

double
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double
attacks

Fig. 15.11. Two rhythms performed at near identical tempos are perceived differ-
ently depending on their relative phase.

Seven [S: 118] uses an eight note melody. In both examples, the melody line
is played against itself at five different tempos, two of which are speeded
up (by 1% and 2%) and two of which are slowed down (also by 1% and
2%). This creates raw material that repeats fully only after several days. In
order to create more manageable pieces, selected bits are culled, orchestrated
using various 7-tet sounds, and then rejoined. In both cases, although the
original pattern is monotonously simple, the result increases and decreases
in complexity as the melodies phase against themselves. When there are five
phasing lines, a very large number of “different” rhythms are perceptible.

15.5 Summary

The 7-tet tuning of Thai traditional music is related to the sounds of certain
Thai instruments (those with the spectrum of an ideal bar and a harmonic
spectrum) in much the same way that the tuning of the gamelan orchestras
of Indonesia are related to the spectra of the traditional metallophones. The
7-tet musical universe is rich, although it is based on different principles than
12-tet. Chords do not have specified harmonic meanings or functions; rather,
clusters of notes create dissonances that are proportional to the density of the
sound. The technique of polyphonic stratification, in which different instru-
ments perform various levels of rhythmic diminution over a structural melodic
pattern, is the traditional way to create motion from consonance to dissonance
(and back again) in the 7-tet system. But there are other ways, some of which
are explored and illustrated in the compositions (especially [S: 115] through
[S: 118]) of the previous section.
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Speculation, Correlation, Interpretation,
Conclusion

Tuning, Timbre, Spectrum, Scale began with a review
of basic psychoacoustic principles and the related notion
of sensory dissonance, introduced the dissonance curve,
and then applied it across a range of disciplines. Most of
the book stays fairly close to “the facts,” without undue
speculation. This final chapter ventures further.

16.1 The Zen of Xentonality

Max Mathews says in an interview in [B: 153]:

It’s clear that inharmonic timbres are one of the richest sources of new
sounds. At the same time they are a veritable jungle of possibilities
so that some order has to be brought out of this rich chaos before it
is to be musically useful.

The organizing principle of this book, the relatedness of spectra and scales
expressed in dissonance curves, brings order to this rich chaos by giving the
composer control over the amount of sensory consonance or dissonance in a
passage. By playing sounds in their related scales, it is possible to realize the
entire range from unusual consonances to startling dissonances.

Risset [B: 149] comments:

the interaction of the components of two (or more) such [inharmonic]
tones can give rise to privileged “consonant” intervals that are not
the octave and fifth... an intriguing relation exists between the inner
structure of inharmonic sounds–which can be arbitrarily composed–
and the melodic and harmonic relation between such sounds.

Dissonance curves give concrete form to this “intriguing relation.” The spec-
trum/scale connection provides the same kind of xentonal framework for in-
harmonic sounds that tonality provides for harmonic sounds. These xentonal
systems vary immensely. Some have few partials, few scale steps, and a simple
music theory. Others have complex sounds and amazingly complex internal
structures.

Although timbres with harmonic spectra are only one kind of sound, they
thoroughly dominate the Western musical idiom. Modern electronic musical
instruments are now capable of playing inharmonic sounds, and many include
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some form of tuning table that allows the user to specify the pitch of the note
played by each key. This makes it easy for the musician or composer to retune
in any desired way.1 It is now possible to play “any possible sound in any
possible tuning.”2

When working in an unfamiliar system, the composer cannot rely on mu-
sical intuition developed in the context of 12-tet. In 10-tet, for instance, there
are no intervals near the familiar fifths or thirds, and it is not obvious what
intervals and chords make musical sense. The deepest minima of the disso-
nance curve (or the dissonance surface) suggest intervals and chords, many of
which can be used fruitfully in compositions.

Dissonance curves suggest that the formation of scales and the web of har-
mony is a collaboration between artistic invention and the timbre (or spec-
trum) of musical sounds. As the palette of accessible tones expands, the at-
tractiveness of alternative musical scales and tunings increases. Most likely,
they will slowly seep into public awareness along with the new timbral palettes
afforded by computers, audio signal processing devices, and electronic musical
instruments. Composers and musicians will slowly become more adept at mov-
ing between xentonal systems, just as they became more adept at modulation
through keys when equal temperament first appeared.

Adaptive tunings constantly adjust the pitches of notes to minimize sen-
sory dissonance, freeing music from any fixed scale: tonics wander, chords
slither up and down, intervals compress and stretch in a patterned and fasci-
nating way. No doubt there is an undiscovered art to composing with adaptive
tunings just as there is an art to composing fugues or canons. As with many
of the kinds of manipulations of spectrum and tunings in this book, this tech-
nology could be readily built into electronic keyboards, making the annoying
calculations transparent to the musician.

16.2 Coevolution of Tunings and Instruments

The harmonic series is related to the just scales; the familiar 12-tet system
can be viewed as a practical approximation to these just scales. Similarly, the
spectrum of a Javanese bonang in combination with a harmonic tone generates
a dissonance curve with minima near the steps of an idealized slendro scale.
Pelog scales can be viewed as a result of the spectrum of a saron in combination
with a harmonic sound. The 7-tet scale of Thai classical music can be derived
by combining the spectrum of an ideal bar (an approximation to the spectrum
of the renat) with a harmonic sound, as shown in Chap. 15. In each case, the
scales are related to the spectra of the instruments used by the culture.

This leads to a musical chicken-and-egg paradox. Which came first, the
tuning or the instruments?
1 For a practical introduction to synthesizer retuning, see Aiken [B: 3].
2 From the liner notes of Carlos’ Beauty in the Beast [D: 5].
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In biology, the process by which two interdependent species continuously
adapt to changes in each other is called coevolution. For example, suppose that
in order to more effectively catch flies, a species of frog evolves sticky tongues.
Then, in order to avoid sticky tongues, a species of flies evolve slippery feet.
The spectra of instruments and their tunings may have similarly coevolved.
It is easy to imagine a scenario in which the spectrum of a sound influences
the tuning of an instrument, which impacts the design of newer instruments,
which in turn effects the tuning of the ensemble.

As any group of instruments that are played together must be tuned in
some coherent way, once a tuning is established, only compatible new instru-
ments are viable. The Western method of pitch standardization is one possi-
ble approach, and the Javanese method of tuning each gamelan ensemble as
a distinct musical unit3 is another. Perhaps this explains why the gamelan
tradition has survived and thrived while other equally vibrant forms of music
have been absorbed or co-opted. Because gamelan scales and timbres are so
different from those of the West, they cannot be effectively combined in the
same ensemble.

Perlman [B: 131] calls the belief that there is a natural, biological, or
physical reason underlying the use of certain intervals and scales “intonational
naturalism,” and traces it though history:

The seventeenth century scientist Christian Huygens conjectured that,
since “the Laws of [Western] Musick are unchangeably fix’d by Na-
ture,” they should hold not only for the entire earth, but for the
inhabitants of other planets as well.

Almost 300 years later, Bernstein [B: 14] echoes this, claiming that the laws
of music apply not only pangalactically, but pantemporally as well:

All music–whether folk, pop, symphonic, modal, tonal, atonal, poly-
tonal, microtonal, well-tempered or ill-tempered, music from the dis-
tant past or imminent future–all of it has a common origin in the
universal phenomenon of the harmonic series.

As we have seen, the harmonic series is by no means “universal.” Harmonic
sounds are only one kind of common sound; there are as many kinds of sounds
as there are distinct kinds of vibrating objects. Musical systems have been
built on many of these, and many others are undoubtedly possible.

The counter claim to intonational naturalism, that intervals and scales are
purely a cultural construct, might be called “intonational relativism.” After
demonstrating the foolishness of discussing the gamelan in terms of just in-
tonation and the harmonic series, Perlman [B: 131] examines the Javanese
concept of embat, which refers to “any particular realization of a tuning sys-
tem,” although it can also refer to the intonational preferences and practices
of individuals. Perlman summarizes:
3 Gamelan instruments are not used separately, and the ensembles are not “mix-

and-match.”
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embat is a matter of feeling (rasa), not number; its source is the human
voice, not necessary laws of nature; and it is individual,

echoing the beliefs of gamelan tuners who consider intonation to be a matter
“of the heart.”4

The naturalist vs. relativist debate in intonation resembles the “nature
vs. nurture” controversy. The naturalist view claims that there is a physical,
biological, acoustical, or psychoacoustical explanation for intervals and scales,
whereas the relativist view denies that such an explanation exists. The analysis
in Tuning, Timbre, Spectrum, Scale does not fit neatly into this classification,
because it is neither fully naturalist nor fully relativist. To the extent that (sine
wave) dissonance curves are universal across cultures, and to the extent that
music exploits the contrast between sensory consonance and dissonance, the
analysis is naturalistic. To the extent that particular instruments and tunings
have coevolved along distinct paths in different cultures, it is relativistic.

Throughout history, many Eurocentric writers have described the music of
other cultures as slowly evolving toward the “higher” Western forms, which are
supposedly based on immutable laws of nature and the harmonic series. The
fact that related spectra and scales apply cross culturally belies this, because
the traditional musical instruments and scales of Indonesia and Thailand can
be described in terms of the same “underlying laws” as Western instruments
and scales. In fact, because the Asian forms use two spectra (rather than a
single one as in the Western tradition), it is tempting to reverse the direction
of the evolutionary arrow. As Western music evolves to include more than
one “kind” of sound, it may well take on more of the characteristics of the
Asian traditions.

16.3 To Boldly Listen

Are there limits to the kinds of sounds humans can appreciate as music?
There are obvious limits to perception. A “piece of music” that is never

louder than −200 dB is inaudible.5 The same piece played at 200 dB is not
perceived as music, but as pain. A melody that always stays within a single
JND of pitch is heard as a single tone. A symphony performed exclusively
at megahertz frequencies is indistinguishable from silence. But assuming that
such perceptual limits are not exceeded, are there limits to the human ability
to appreciate sounds as music? Are there limits to possible musical styles?

The amazing diversity of musical cultures and styles to be found through-
out the world shows that any such limits are very broad. The history of mu-
sical styles suggests constantly changing sensibilities of rhythmic, melodic,
harmonic, tonal, and timbral materials, and it seems undeniable that there
are musical styles, undreamed of today, that will develop in the future.
4 Recall Purwardjito’s comments on p. 215.
5 Although John Cage did not perceive this as a limitation.
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The only truly universal aspects of music are those based on biological or
perceptual facts. By understanding the human auditory system, it should be
possible to differentiate those aspects of music inherent in our nature from
those that are learned. There are clear cultural biases toward certain kinds of
sounds, certain kinds of rhythmic patterns, particular kinds of scales, but any
true limits to appreciation must transcend cultural differences.

A simple analogy may help bring this into perspective. The “ear” (the
ear canal, eardrum, oval window, basilar membrane, etc.) is like “hardware”
that is relatively invariant from person to person and culture to culture. The
“brain” (higher levels of auditory processing) is like programmable “software”
that implements cultural conditioning. Those aspects dictated by the hard-
ware are universal, whereas the software is rewritten with each new person in
each new generation in each new culture. Thus, aspects of musical style that
violate my software are unacceptable to me, but they may well be acceptable
to someone from another time, place, or with a different background. On the
other hand, aspects that violate the hardware are unacceptable to everyone.

In reviewing the sound examples presented here, there are two kinds of
passages that may approach limits: those where the partials will not fuse
together, and those where the spectrum is sufficiently mismatched from the
tuning.

In the first, the notes have lost their perceptual integrity, each being per-
ceived as two or more separate sounds. “Notes” have become “chords.” Some
compositions6 in modern music have begun to exploit the boundary where
notes fission and tonal clusters fuse, and it may be possible to learn to ap-
preciate unfused sound masses, although they are not currently used in any
common musical style.

In Plastic City (audio track [S: 38]), the same theme is played in 2.0, 2.2,
1.9, and 2.1 stretched and compressed tunings, each with related timbres.
Although it is difficult for me to listen to the piece with naive ears, many
people feel that 2.2 is stretched too far, and that 1.9 is compressed too much.
After taking such torturous excursions, many first-time listeners hear the 2.1
stretched section and comment, “now we’re back to normal, right?” although
of course 2.1 stretched is far from “normal.” After repeated exposure, however,
the 2.2 and 1.9 sections become less strange, more capable of supporting
perceptions analogous to chordal motion, yet each retains its own timbral
character.

While recording these sections, a process that requires many listenings,
I “heard” the passages as more tonally coherent than I typically do now.
Moreover, I have learned to switch between perceptual modes (where I hear
the piece as either a sound mass or as notes in a chord), although I have no
way of knowing if either of these corresponds to a naive listener’s perceptions.
This argues against (lack of) fusion being a true limit to appreciation. In a
musical culture that used various stretched timbres and tunings, members
6 For instance, [D: 36] and [D: 8].
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might develop such a switching strategy as part of normal listening. That I
was able to overcome this aspect of my musical conditioning suggests that
certain aspects of the fusion mechanism are part of the software of the brain.

The second candidate for a limit to appreciation is the mismatch between
tuning and spectrum. In audio tracks [S: 2] to [S: 5], the same brief passage
is played in standard and stretched 2.1 tunings, each with both standard and
stretched timbres. When matched (i.e., 2.0 timbres with 2.0 tunings or 2.1
timbres with 2.1 tunings), the passage is inoffensive, if somewhat bland. The
two mismatched segments, however, are more strident than inoffensive, more
irritating than bland. Most likely this is because they are uniformly dissonant.
The driving force behind many styles of music is the motion from consonance
to dissonance and back again. In the mismatched versions, no such motion
occurs, and so the piece appears static.

Similarly, the 10-tet piece Ten Fingers is a fine, if somewhat unusual sound-
ing piece when played with related timbres. Most first-time listeners (in the
United States) feel that it must be foreign, maybe “Indian.” But when played
with standard harmonic sounds, it takes on an out-of-tune character, which is
more properly called out-of-spectrum. Even after numerous performances and
listenings, it still sounds out-of-kilter, suggesting that the perceptual mech-
anism responsible for the essential wrongness of the mismatched tuning and
spectra (i.e., sensory consonance and dissonance) is at least partially in the
hardware of the brain.7

Whatever part of such perceptions that are in the hardware of the ear may
provide limits to the human ability to appreciate sound passages, pointing
toward aesthetic principles that may be directly correlated with a perceptual
mechanism.

16.4 New Musical Instruments?

Tuning, Timbre, Spectrum, Scale has shown how several kinds of instruments
in several different cultures follow a simple pattern; The instruments play
pitches that correspond to minima of an appropriate dissonance curve. When
designing and tuning new kinds of musical instruments, it may be advanta-
geous to exploit this idea.

In the simplest case, the instrument will sound with a particular spectrum.
The dissonance curve of this spectrum will have certain minima, and the in-
strument can be tuned to play these pitches. An orchestra of such instruments
will then be able to play as consonantly as possible. If there are large inter-
vals in the dissonance curve with no minima, then it may be advantageous
to augment the scale with some intermediate pitches so that melodies can be
more cogent.
7 Indeed, recall that the binaural presentation of the original dissonance curve

(audio track [S: 12]) can also be interpreted this way.
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A slightly more complex scenario is when a new instrument (i.e., one with
a “new” spectrum) is to be added to an existing orchestra. In this case, the
dissonance curve can be drawn for the two spectra. The new instrument can
be tuned to the appropriate minima, but the old instruments may also need
to be adjusted for compatibility. This is the coevolutionary process in action.

The inverse problem is trickier. Given a desired spectrum, how can acoustic
instruments be designed (or redesigned) so as to have that spectrum?

Strings: Uniform strings have harmonic partials as in a guitar or a pi-
ano. However, if the contour of the string is changed, or if the density
of the string is not uniform, or if the string is weighted at strategic
points, then the partials can deviate significantly from harmonicity.
Devising a method for readily specifying the kinds of physical manip-
ulations that correspond to useful spectral deviations is an important
first step.

Air Columns: Instruments with a uniform air column make harmonic
sounds and play in scales that are essentially overtones of a single
fundamental (such as the unfingered scale of a cornet). When the col-
umn deviates from uniformity (for example, varying widths or flares
or the addition of small air chambers), then the scale will change, but
the spectrum remains primarily harmonic. On the other hand, many
wind instruments like the saxophone can be played inharmonically us-
ing extended techniques such as multiphonics. How to (re)design such
an instrument to encourage particular kinds of multiphonics is not ob-
vious. Finding patterned ways to relate physical and spectral changes
is an important area for the design of such inharmonic instruments.

Bars and Beams: Whether the bars are fixed at an end, or whether
they are free to vibrate at both, bars and beams already have inhar-
monic partials. The exact placement of these partials is an interesting
issue. Answers are available for only a handful of simple geometries.

Others: There are many kinds of oscillators and many kinds of res-
onators that can be used to create audible vibrations. Finding shapes
and topologies that will generate a specific spectrum is no trivial task.

In some cases, modal frequencies can be determined from first principles.
Perturbation methods can sometimes be applied. Finite element methods can
almost always be applied, but they are not generalizable, because solving one
problem does not usually give any insight into the solution of related problems.
In short, the design of fine musical instruments is no easier now than it was
in ancient times.
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16.5 Silence Hath No Beats

Consonance and dissonance are only part of the musical landscape. Even in
the realm of harmony (and ignoring musically essential aspects such as melody
and rhythm), sensory consonance and dissonance do not tell the whole story.
Indeed, progressions that are uniformly consonant tend to be uniformly dull.
The distinction between sensory and functional consonance and dissonance
is not insignificant. Although they often coincide (the minima of dissonance
curves for harmonic timbres agrees with just scales, the dissonance score for
the Scarlatti sonata correlates reasonably well with more standard analyses),
they often do not. For instance, the functional consonance of a silent phrase
is not meaningfully defined; yet silence has the greatest sensory consonance.
Such extreme cases highlight limitations of the model.

Any model is based on abstractions that limit the scope of its conclu-
sions. When relating an imprecise understanding of the human organism to
a complex cultural activity, when relating an imperfect understanding of the
auditory system to the complex behavior called music, limitations are mani-
fest. Even at the simplest levels, much is unknown. For instance, when dealing
with inharmonic sounds, the partials may fuse into one perceptual entity, or
they may fission into many. Understanding this perceptual dichotomy is not
trivial, and our ignorance is not for lack of effort. It underscores the gross
nature of the additivity assumption in dissonance calculations; by clustering
sounds differently, it is possible to change their apparent dissonance. Unfor-
tunately, quantification of this phenomenon is well beyond the current state
of psychoacoustic knowledge.

The model used throughout Tuning, Timbre, Spectrum, Scale uses linear
combinations of the psychoacoustic data of Plomp and Levelt [B: 141]. Re-
finements such as the inclusion of masking effects or of amplitude effects8

would enhance the model. In any case, the conclusions of the model (disso-
nance curves, surfaces, and scores) are qualitative rather than quantitative.
It would be a mistake to place too much trust in small details and little dips
in the curves: Only the major features that are readily audible need be taken
seriously.

16.6 Coda

In retrospect, a connection between the way musical instruments sound and
the way they are tuned seems obvious. Almost 100 years ago, Helmholtz rec-
ognized the connection between harmonic sounds and the just intervals of the
diatonic scale. Because most Western instruments have primarily harmonic
partials, theorists and composers tended to limit their theorizing and com-
posing to musical structures based on this one “kind” of sound. But there are
many “kinds” of sounds.
8 For instance, the Fletcher–Munson curves.
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It was not until the advent of electronic musical instruments that it became
easy to create a variety of inharmonic sounds and to play them in a variety of
scales and tunings. One conclusion is inescapable: Certain scales sound good
with some timbres and not with others, and certain timbres sound good in
some scales and not in others. Tuning, Timbre, Spectrum, Scale proposes a
way to understand this relationship: to interpret “timbre” as “spectrum,” and
to interpret “sounds good” in terms of a measure of “sensory consonance.” In
this framework, dissonance curves codify those intervals that have the great-
est (sensory) consonance as a function of the spectrum of the sound. It is
now possible to systematically choose a tuning related to a given sound, or to
choose a sound that is related to a given tuning. In both cases, the intervals
are in-tune and in-spectrum. Compositions in nonstandard scales can easily
enjoy contrasts in consonance and dissonance by proper sculpting of the spec-
tra. Nonstandard sounds can be played consonantly or dissonantly by proper
choice of interval.

Many nonwestern musical cultures use inharmonic instruments. In at least
two cases (the Indonesian gamelan and the percussion orchestras of Thailand),
the same kind of reasoning that relates harmonic sounds to just intonations
can be used to relate the tone quality of the instruments to the nonwestern
scales. Thus, the sensory dissonance approach enjoys a cultural independence
that is rare in musical theories.



Appendices

The appendices contain information that does not fit
well within the normal flow of the text.

A. Mathematics of Beats: trigonometric formulas describe how beats occur
physically, in contrast to how they are perceived.

B. Ratios Make Cents: formulas (and computer programs) describe how to
convert between two of the most common kinds of representations of mu-
sical intervals.

C. Speaking of Spectra: subtleties in the calculation of spectra and applica-
tion of the FFT (Fast Fourier Transform program).

D. Additive Synthesis: a brief overview (and Matlab program.)
E. How to Draw Dissonance Curves: a theoretical presentation of how to

parameterize dissonance curves and a description of Matlab programs that
carry out the needed calculations.

F. Properties of Dissonance Curves: formal statements and demonstrations
of the various results from Chap. 7 “Related Spectra and Scales.”

G. Analysis of the time-domain sensory dissonance model of Sect. 3.6.
H. Behavior of Adaptation: details on the results presented in Chap. 8.
I. Symbolic Properties of ⊕-Tables: a method of solving the timbre selection

problem, of finding a related timbre for a given tuning.
J. Harmonic Entropy: a measure of harmonicity.
K. Lyrics to Fourier’s Song.
L. Tables of Scales: details several historical and gamelan tunings.
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Mathematics of Beats

A basic trigonometric identity relates the sum of two sine waves to the product
of a sine and cosine:

sin(x) + sin(y) = 2 cos(
x − y

2
) sin(

x + y

2
). (A.1)

Suppose that two sine waves of the same frequency ω have a constant phase
difference φ. Then the above identity implies that the sum of the two waves
is expressible as

sin(ωt) + sin(ωt + φ) = 2 cos(
φ

2
) sin(ω t +

φ

2
), (A.2)

which is a sine wave of frequency ω, amplitude 2 cos(φ
2 ), and phase φ

2 . When φ
is near 0, the waves are in phase and the interference is constructive, because
the amplitude of the sum is near its maximum at cos(0) = 1. As φ increases,
the amplitude decreases until at φ = π, the amplitude has shrunk to zero.
This is called destructive interference.

When the frequencies differ by an amount ∆ω, their sum is

sin(ωt) + sin((ω + ∆ω)t) = 2 cos(
∆ω

2
t) sin((ω +

∆ω

2
)t). (A.3)

When ∆ω is small, the cosine term is slowly varying compared with the sine
term, and the resulting signal can be viewed as a sine of frequency ω + ∆ω

2
with a slowly varying envelope of frequency ∆ω.
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Ratios Make Cents

This appendix presents formulas for conversion between
ratios and cents. Matlab functions are available on the
CD to carry out the calculations.

Cents were first introduced by Ellis (see his annotations to Helmholtz’s On
the Sensations of Tone) as a way of simplifying comparisons between various
scales and temperaments. As perceptions of musical pitch are approximately
proportional to the logarithm of the frequency (rather than the frequency
itself), it is sensible to use a log-based measuring system. Ellis chose to define
the octave as equal to 1200 cents,1 and so it is necessary to scale by a factor
of 1200

log(2) when converting to cents.

ratio 1 : 1 r : 1 2 : 1
log ratio 0 log(r) log(2)
cents 0

(
1200
log(2)

)
log(r) 1200

Said more simply, a cent is 1/100 of a semitone, and there are 100 cents in a
semitone and 1200 cents in an octave.2

There are two reasons to prefer cents to ratios: Where cents are added,
ratios are multiplied; and it is always obvious which of two intervals is larger
when both are expressed in cents. For instance, an interval of a just fifth, fol-
lowed by a just third is (3/2) (5/4) = 15/8, a just seventh. In cents, this
is 702+386=1088. Is this larger or smaller than the Pythagorean seventh
243/128? Knowing that the latter is 1110 cents makes the comparison ob-
vious.

Because ratios and cents ultimately contain the same information, it is
possible to convert from one to the other. Given a ratio r, the number of
cents is

c =
(

1200
log10(2)

)
log10(r) ≈ 3986.314 log10(r),

1 Others have chosen different conventions. For instance, 1000 steps per octave
gives the “millioctave” system.

2 In other words, one cent is equal to an interval of 1200
√

2 ≈ 1.00057779 to 1.
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where log10 is the logarithm3 base 10.
To convert from cents back into ratios, let c be the number of cents. Then

the ratio r is4

r = 10
(

c log10(2)
1200

)
≈ 100.00025086c.

These formulas are the heart of the two Matlab functions cent2rat.m5

and rat2cent.m,6 which can be found on the CD in the software folder. As
suggested by their names, these convert from ratios to cents and back again.
Both are general enough to accept a vector of inputs. For instance, to find the
cent equivalent of the JI major scale, enter the desired ratios as a vector

r = [1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8, 2],

and then call the routine rat2cent by c=rat2cent(r). The program should
reply

c = [0, 203.9, 386.3, 498, 702, 884.4, 1088.3, 1200].

As the two functions are inverses, entering r=cent2rat(c) gives back the JI
major scale, although in decimal form.

3 Any logarithm base can be used. For instance, with the natural log (often abbre-
viated “ln”), the formula becomes c = 1200

ln(2) ln(r) ≈ 1731.234 ln(r).
4 Using natural logs, this is r ≈ e0.000577623c.
5 The Matlab function cent2rat.m converts from cents into (the decimal equivalent

of) ratios:

function ratio=cent2rat(cents)
ratio=10.ˆ((log10(2)/1200)*cents);

6 The Matlab function rat2cent.m converts from ratios into cents:

function cents=rat2cent(ratio)
cents=1200/log10(2)*log10(ratio);
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Speaking of Spectra

Beware thy methods of musical analysis. Their power
to blind is proportional to their power to enlighten. – B.
McLaren in Tuning Digest 120.

In the early part of the nineteenth Century, Jean Baptiste Joseph Fourier
showed how any periodic signal (for instance, a sound with a steady tone) can
be decomposed into (and rebuilt from)1 a sum of sine wave partials. Such a
decomposition is called the spectrum of the sound, and it is usually graphed
with the frequency of each sine wave partial on one axis and the magnitude on
the other. Although this is useful in many fields, it is particularly appropriate
to analyze sounds in this way because the ear acts as a kind of “biological”
spectrum analyzer.2 When listening “analytically,” so as to “hear out” the
partials of a sound,3 the ear carries out a similar decomposition, and the
tonal quality of the sound can often be correlated with measurable features
of the spectrum.

This is not the place for a technical discussion4 of the mathematics of
spectra, of Fourier transforms, nor of the details of how they are calculated
using the FFT.5 Rather, this appendix supposes the availability of a software
routine or command to calculate the FFT and discusses the tradeoffs and
compromises that are inherent when evaluating the spectrum of a sound. In
other words, the focus is on how to use and interpret the FFT, rather than
on worrying about how it works or the underlying mathematics.
1 Appendix D details how to implement this rebuilding procedure.
2 Different portions of the basilar membrane respond to different frequencies. Recall

Fig. 2.4 on p. 16.
3 Recall the discussion of analytic vs. holistic listening on p. 25.
4 There are already many books in the engineering literature such as [B: 60] that do

this quite well. The Elements of Computer Music by Moore [B: 117] has an exten-
sive discussion of FFTs from a musical perspective and includes program listings
in the C language. The Digital Signal Processing Primer of Steiglitz [B: 182] is
less complete but equally compelling.

5 The “Fast Fourier Transform” is the name of an efficient algorithm or computer
program that carries out the necessary calculations to find the spectrum. Chapter
7 of [B: 76] has a comprehensive set of worked out examples and Matlab routines
for spectral analysis.
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A digitized sound is a string of real numbers (or samples) that represent
the amplitude of the sound at each instant. Suppose that one period of a
waveform contains N samples. The spectrum is found by applying the FFT,
and the output of the FFT is a string of N complex numbers that are usually
written as a magnitude and a phase.6 The magnitude spectrum is important
to the ear because it specifies the size of the sine wave partials of the sound.
The phase spectrum is relatively unimportant in many applications because
it is often impossible to hear the difference between two sounds that have the
same magnitude spectrum, even if the phase spectra differ.

The FFT has two remarkable properties. First, it is invertible. This means
that it is possible to calculate the spectrum from the waveform, or to calculate
the waveform from the spectrum.7 Said another way, the waveform and the
spectrum contain the same information. Certain aspects of the sound are
more clearly viewed in one form or the other. For instance, the envelope of
the sound is clearer from the waveform, whereas the partials are clearer from
the spectrum.

Second, the FFT is linear, implying that the FFT of the sum of two signals
is the same as the sum of the FFT of the two signals separately. In symbols,

FFT (w + v) = FFT (w) + FFT (v),

where w and v are two signals. More generally, if a sound consists of a number
of partials, then the FFT of the complete sound is equal to the sums of the
FFTs of all partials. Thus, many of the subtleties of using and understanding
the FFT occur even in the simplest setting when taking the FFT of a single
sine wave.

C.1 Spectrum of a Sine Wave

When there is only a single partial in the sound, then the spectrum contains
only this one partial. In an ideal setting, the spectrum of a pure sine wave is
zero everywhere except at the frequency of the sine wave. But the actual FFT
of a real sine wave is not exactly zero, and there are two different kinds of
errors, roundoff (numerical) errors and artifacts (“edge effects”), that cause
the representation of a sine wave to “leak” or “smear out” to other frequencies.
Figure C.1 shows a portion of a sine wave in part (a) and its spectrum, as
calculated by the FFT8 in part (b). The frequency of the wave is given by the
location of the peak in (b), and the balance of the spectrum, with magnitude
about 10−15, is due to numerical roundoff errors in the computations.
6 The magnitude vector is symmetric about the midpoint, and the phase is an-

tisymmetric about the midpoint. Thus, half of each vector is redundant and is
typically discarded.

7 This latter operation is often called the Inverse FFT, and it is abbreviated IFFT.
8 The Matlab code used to generate (a) and (b) is:
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Fig. C.1. Figures (b) and
(d) show the spectra of
the sinusoidal segments
in (a) and (c). Observe
the wildly different scales
of the two spectra; (b) is
very close to zero except
at the frequency of the
sine wave, whereas (d)
never sinks below 10. (e)
shows several copies of (c)
pasted together.

Contrast this with the sine wave shown in part (c) and its spectrum9 in
(d). The peak defining the frequency of the wave is again clearly visible, but
the remainder of the spectrum only falls below 10 at high frequencies.

The sine waves (a) and (c) differ only slightly in frequency. What causes
the dramatic difference in their spectra? As mentioned before, the FFT al-
ways assumes that the N samples represent exactly one period of a periodic
waveform. Concatenating several copies of (a) does indeed give a longer sine
wave. But concatenating several copies of (c) gives the waveform shown in
(e), which is not at all sinusoidal. Thus, the spectrum (d) really shows how to
decompose one period of the (nonsinusoidal) signal (e) into sine waves. It is
unlikely that this is what was really intended when thinking of the frequency
content of (c). Thus, there is a complex interplay between the periodicity of
the waveform and the length of the FFT.

Given this, it might seem like a good idea to choose the length of the
FFT to match the period of the partials. Unfortunately, this is almost never
possible when analyzing real sounds, because choosing this length requires
knowing the frequencies of the partials, and finding these frequencies is the
reason for taking the FFT in the first place.

Think of it another way. The problem (the large magnitude at frequencies
different from the “obvious” frequency of the sine wave) occurs because the
“ends” do not line up; abrupt changes in the waveform cause the spectrum
to smear. One way to force the ends to line up is to preprocess the data so

c=(2*pi)/128; % c defines the frequency of the sine wave.
wave=sin(c*(0:1023)); % the sine wave is 1024 samples long.
plot(wave) % generates the plot in part (a).
magspec=abs(fft(wave)); % ‘‘FFT’’ returns the FFT in complex form.

% ‘‘abs’’ takes the magnitude of the FFT.
semilogy(magspec(1:50)) % plots (b) with logarithmic vertical axis.

9 Parts (c) and (d) were generated by identical code, except that the parameter
c was changed slightly so that an integer number of periods do not fit into the
sample length.
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that it dies away to zero at both ends. Then, no matter what the underlying
periodicity, there will be no abrupt changes in the waveshape.

One popular approach is to use a Hamming window,10 which is shown in
part (a) of Fig. C.2. Multiplying this window point by point times part (b)
(which is the same waveform as in Fig. C.1(c)) gives the windowed version in
part (c). The spectrum of (c) is shown in (d).

x

=

(a)

(b)

(c)

10
-1

10
0

10
1

10
2

10
3

frequency

(d)

Fig. C.2. A hamming window
(a) is multiplied point by point
times a segment of a sinusoid (b),
resulting in (c). The spectrum,
shown in (d), has significantly
lower sidelobes than in the unwin-
dowed version, although the peak
is somewhat wider.

Compare the spectrum of this windowed version with the spectrum of the
unwindowed version in Fig. C.1(d). In both, the frequency of the sinusoid is
given by the location of the peak. The windowed version has attenuated the
smearing by a factor of almost 10, although the peak is about twice as wide.
This is fairly typical of the windowing process.

When should a window be used? Windowing is unnecessary when dealing
with a short isolated sound whose start and end are known. In a typical
musical synthesizer or sampler, each sound has a well-defined start (attack)
and a definite steady-state looped portion. As the loop is periodic, it is an ideal
place to apply the FFT without windowing.11 In many other circumstances,
when a continuously changing signal is analyzed, windows are used to reduce
end effects.12 Figure C.3 shows this schematically. A series of offset windows in
(a) are multiplied point by point times the waveform (b), giving the smaller
segments (c). The segments can then be readily analyzed, giving spectral
“snapshots” of the evolution of the partials of the sound.

End effects are a consequence of the fact that Fourier’s theorem (and
hence all techniques based on the Fourier transform) apply only to periodic

10 Named after Richard Hamming, this is a single cycle of a scaled and shifted cosine
wave. The formula is h(t) = 0.54 − 0.46 cos(2πt/(N − 1)) for 0 ≤ t < N . The
Hamming window has been enshrined in a Matlab function called “hamming,” but
is only one of many possible windowing functions. Steiglitz [B: 182] and Moore
[B: 117] discuss several alternatives, each with their own properties.

11 The innards of a typical musical synthesizer are discussed on p. 31.
12 Although it is true that windows help to reduce artifacts, it is worth remembering

that this is, in effect, lying about the data.
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Fig. C.3. Overlapping windows
applied to a continuos waveform
give smaller segments that can be
analyzed easily.

signals. To calculate the FFT of a “real” signal requires “pretending” that
it is periodic with period equal to the length of the sample. Although this
can often be done without gross distortion, careful choice of sample lengths
and windowing techniques are needed to reduce the likelihood of misleading
results.

C.2 Steady State Analysis

You somehow shake a waveform, and the partials come tumbling out.13

Consider a spectral analysis of the sound of a vibrating string that has a
fundamental pitch of 100 Hz, approximately the G an octave below middle
C. Assume the standard CD sampling rate of 44.1K samples per second, and
that the sound of the string lasts about three seconds. This gives about 128K
samples, and it is impractical to calculate an FFT of this length. The data
should be broken up into chunks that can be analyzed separately. For example,
32K chunks representing 3/4 second of sound are reasonable.14

First, consider the simple case when the sample is very close to periodic, as
occurs during the sustained steady-state portion of the sound. Because strings
vibrate harmonically, there would ideally be a peak at 100 Hz, another at 200
Hz, another at 300 Hz, and so on, each with an appropriate amplitude. But
the output of the FFT program does not look like this, not exactly. The FFT
algorithm outputs a 32K magnitude vector and a 32K phase vector. As only
half of each vector is meaningful, the remainder is discarded.

Each element in the (nonredundant) 16K magnitude vector represents the
magnitude of a sine wave at some frequency. In this case, the first number
represents the magnitude of the DC (zero frequency, or bias term). The second
element represents the magnitude of the sine wave at

sample rate
sample length

=
44100
32768

= 1.346 Hz.

The next number is the magnitude of the sine wave at frequency 2.69 Hz.
Thus, the output of the FFT cannot represent the sine wave at 100 Hz exactly,
13 Paraphrased from Marion M. in Tuning Digest 314.
14 For sounds that change more rapidly, smaller chunks should be used.
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because there is no slot in this representation for 100 Hz. In fact, the 74th bin
represents 99.59 Hz and the 75th slot represents 100.94 Hz, so the energy that
should be at 100 Hz is spread out near the 74th and 75th slots. Similarly, none
of the other “real” frequencies are exactly represented. This quantization of
frequency is a direct result of the assumption that the signal is periodic, that
it repeats every 32K. Of course, this is just a convenient fiction, because the
signal from the string continues to die away for more than 128K samples.

Thus, there are two notions of “period,” and this can be a source of con-
fusion. First is the notion of the period of the fundamental and its harmonics.
As the fundamental of the string is 100 Hz, there will also typically be string
vibrations at 200 Hz, 300 Hz, 400 Hz, 500 Hz, and so on. The second notion of
“period” that enters into the FFT analysis is that all frequencies of the ana-
lyzed signal appear to be multiples of 1.346 Hz, which is a direct result of the
choice of a 32K FFT. Had the analysis used 8K FFTs, everything would have
been a multiple of 5.38 Hz, and the representation of the 100 Hz fundamental
would have been even worse. Thus, the resolution of the spectral analysis is
directly proportional to the “width” of frequency bins, which determines how
accurately the sine wave components can be represented. This is similar to the
“smearing” observed when analyzing single sine waves in the previous section.

These two ideas of period suggest two interpretations of the spectral anal-
ysis. One is literally correct (but useless), and the other is an approximation
(that is often useful). A literal interpretation of this FFT data suggests that
the fundamental of the string is vibrating at 1.346 Hz, and that the 74th,
75th, 148th, 149th (and so on) harmonics are large. While literally true, this
is not a particularly useful way to think of the vibrating string. Observe that
using an 8K FFT, the same signal would be interpreted as a fundamental at
5.38 Hz along with some large harmonics: the 18th, 19th, 37th, 38th, and so
on. Clearly, a true interpretation of the strings motion should not depend on
the size of the FFT used in the analysis.

A better interpretation of the string data is as a fundamental between
99.59 Hz and 100.96 Hz, with a second partial near 200 Hz, and so on. But
this does require that a judgment be made, because the location of the peaks
must be determined. Although the peaks are obvious in some situations, in
others there is ambiguity between peaks caused by the instrument (the string)
and those due to noises, disturbances, and artifacts. A later section discusses
an algorithm for automatic peak detection.

C.3 Analysis of the Attack

The previous section showed that Fourier analysis of a nearly periodic sound
(such as the steady-state portion of the string vibrations) is feasible. Learning
about the attack portion of a sound using Fourier analysis is trickier due to
a kind of auditory uncertainty principle. The more accurately the frequency
content of a sound is known, the harder it is to tell exactly when it occurs.
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The more accurately specified an event is in time, the less can be said about
the actual frequencies.

To see this in a simple setting, consider a sound that consists of a one-half
second sinusoid with frequency 100 Hz followed by a one-half second sinusoid
with frequency 200 Hz. Taking a single FFT over the complete wave shows
two large peaks at 100 Hz and 200 Hz, along with smearing due to end effects
and to the transition between the two halves. An FFT of the first half shows
just the peak near 100 Hz (plus the inevitable artifacts), whereas an FFT of
the second half shows just the peak at 200 Hz, again with artifacts. This is
called the “averaging” property of the FFT and is inevitable when analyzing a
sound that changes over time. Larger windows give more accurate locations for
the partials,15 but it becomes impossible to resolve when the various partials
actually occur.

Because of this, a sensible strategy is to use several different FFTs on
the same data. The larger FFTs help to resolve the actual frequencies, and
the shorter FFTs help to locate when the partials occur. Such techniques
are detailed in several places in Chap. 7 “A Bell, A Rock, A Crystal” in the
context of analyzing the spectra of inharmonic musical sounds. The auditory
uncertainty principle is also “discussed” in the last verse of Appendix K.

C.4 Pads and Windows

This section briefly describes a number of techniques for preprocessing the
data before applying the FFT. None of these should be applied indiscrimi-
nately, but they may prove useful, especially when trying to analyze a single
sound as accurately as possible.

Padding with Zeroes

The FFT requires that the number of samples be a power of two (or some
highly composite number). One common technique is to “pad” the data with
zeroes until the length reaches the next highest power of two. This can also
increase the accuracy of the representation of the frequencies of the partials,
because a longer FFT is used.

Reverse the Waveform

Another way to sensibly lengthen the waveform is to reverse and concatenate.
Instead of taking the FFT of s1, s2, ..., sk, the data can be augmented to

s1, s2, ..., sk−1, sk, sk−1, sk−2, ..., s2, s1.

15 For instance, to the nearest 1.346 Hz for a 32K FFT instead of to the nearest
5.38 Hz for an 8K FFT.
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The rationale for this is that the forward and reversed data have the same
(magnitude) spectrum. If the “splice point” is chosen carefully so that the
data varies smoothly near sk, then the artifacts can be reduced.

One-Sided Window

When analyzing a sound (such as from a musical synthesizer or sampler) that
has explicit attack and looped portions, no window should be applied to the
loop. (Indeed, this is the one place where Fourier techniques shine—the loop
genuinely is periodic.) The attack portion has a definite beginning, but its end
mingles with the start of the loop. Applying a standard Hamming (or other
symmetric) window to the attack portion will destroy much of the desired
information at the start of the sound. Yet applying no window may encourage
artifacts due to the abrupt change where the loop begins. A convenient com-
promise is to apply a one-sided window, that is, only the decaying (second)
half of the window.16 This leaves the initial portion unaltered, yet discourages
artifacts caused by interface between the loop and attack portions.

C.5 Finding Spectral Peaks

Humans are very good at recognizing patterns. For instance, when looking at
spectral plots such as Fig. 7.6 on p. 141, it is easy to visually “pick out” the
most significant peaks, and in most cases, these peaks are indeed the most au-
ditorily significant aspects of the sound. Machines are notoriously bad at this
kind of task, for instance, reading text is a similar kind of pattern recognition
problem that has not been completely solved, despite intense effort.

A naive approach to the “peak picking” problem is to find the largest
term in the magnitude vector and call it the first peak, find the second largest
element and call it the second peak, and so on. Unfortunately, few peaks are
isolated outliers; they usually look like small mountains, with foothills and
subpeaks. For example, the naive approach would find the highest peak in
the middle spectrum of Fig. 7.6 on p. 141, at 5066 Hz, but it would then find
the second highest element at 5063 Hz, and the third at 5069 Hz. A slightly
more sophisticated approach would require that candidate peaks be larger
than their immediate neighbors. But consider the complex of peaks near 5553
Hz on Fig. 7.1 of p. 134. Even a combination of the size and neighbor criteria
would declare there to be many peaks here, even though only one (or maybe
two) is sensible. Clearly, a more sophisticated approach is required.

The defining aspect of a peak is that it must be larger than the surround-
ing regions. The “competitive filtering” ideas of [B: 122] suggest dividing the
search for peaks into three regions: to the left of the candidate peak, to the
16 This can be analyzed as a zero (pre)padding, followed by application of a complete

Hamming window, but it is simpler to implement directly as a half window.
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right, and the value of the candidate peak itself. If the candidate is larger
than (a constant times) the sum of the average to the left plus the average
to the right, then a peak is successfully found. This simple algorithm can
be effective, but there are two parameters that must be chosen. First is the
constant, which is typically near one. This parameter is roughly proportional
to the steepness of the peak, with larger values requiring steeper peaks. The
second parameter is the length of the averages. This must be chosen based on
the size of the FFT and using any a priori knowledge of how close together
two peaks can be. For instance, if the frequencies of the FFT differ by 1.34 Hz
(as in a 32K FFT) and the closest expected peaks are 50 Hz apart, then the
averages should be taken over no more than 20 values to the left and right.
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Additive Synthesis

A brief discussion of some Matlab programs that
implement additive synthesis and resynthesis.

Additive synthesis is the process of summing a collection of sine wave partials
so as to make a complex, and hopefully interesting, sound. For example, sup-
pose we wish to generate sounds with the same partials (the same spectrum)
as the Chaco rock of Fig. 7.6 on p. 141. The most important partials of the
sound can be read directly from the figure or from the composite spectrum of
Fig. 7.7 on p. 142. These are

1351, 2040, 2167, 4068, 5066, and 7666.

Letting these be the frequencies of the m partials and labeling them w1
through wm, a new sound can be built as

w(t) =
m∑

i=1

aienvi(t) cos(wit + pi),

where the ai define the amplitudes associated with each partial and the pi are
some (usually arbitrarily specified) phases. The function envi(t) represents the
envelope of partial i, and it can be chosen to help define the character of the
sound. For instance, if all envelopes are constant, envi(t) = 1, then the sound
will be steady like an organ tone. Envelopes that die away exponentially, like
envi(t) = e−t, tend to mimic the character of a struck, plucked, or percussive
timbre.

By construction, the waveform w(t) has partials at the wi, and hence,
it has a dissonance curve with minima at many of the same locations as the
original sound. This is one way of generating “new” sounds that are compatible
with an existing timbre. For instance, the high percussive tones in the Chaco
Canyon Rock (audio track [S: 44]) were generated with exponentially decaying
envelopes, and the sustained organish tones of the middle section were created
using constant envelopes.

The Matlab program addsynth.m, which generates .wav files via addi-
tive synthesis, appears on the CD in the software folder. The frequencies
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(in Hertz) are placed in the vector freq and the corresponding amplitudes
and decay rates are specified in amp and decay.1 The program generates a
waveform time seconds long at a sampling rate sr. If there is a soundcard
available on the computer, the sound can be previewed using the command

sound(wave, sr)

which plays the vector wave at the sampling rate sr. With its default pa-
rameters, addsynth.m generates a harmonic sound with five partials of equal
amplitude. The sound is somewhat different each time addsynth.m is run be-
cause the decay rates change (due to the randn function in the definition of
decay).

One common technique is to use data from the spectrum to resynthesize a
sound. In the simplest case, the spectrum may be calculated and then trans-
formed back into a waveform without loss of information. This is demonstrated
in the Matlab program resynth.m (also available in the software folder of
the CD), which calculates the spectrum of a sound and then carries out a
direct resynthesis of the sound from the FFT decomposition. With no addi-
tional processing, the output x is identical to the input y, at least to numerical
precision.

Alternatively, the sound can be sculpted or shaped as desired by manipu-
lating the magnitude and/or phase values prior to the resynthesis. This would
occur at the place in the code marked with the comment:

% Frequency domain processing goes here:

One possibility is to “move” the most prominent partials to make them com-
patible with some desired reference spectrum. This is the idea exploited in
the “Spectral Mappings” chapter, although the more efficient inverse FFT is
used instead of an additive resynthesis approach.

The programs given here are not computationally efficient; rather, they
are intended to present the ideas as clearly as possible. For instance, a better
way of carrying out additive synthesis is given in Steiglitz [B: 182], and a
reasonable implementation of the related phase vocoder is presented in Moore
[B: 117]. Finally, an important discussion of the impact of additive synthesis
on electronic music is given in Risset [B: 150].

1 The three vectors freq and amp and decay must all be the same length.
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How to Draw Dissonance Curves

This appendix describes a parameterization of Plomp
and Levelt’s dissonance curves and computer programs
that carry out the calculations. It is not necessary to
follow the math in detail to make use of the computer
programs. Contrariwise, it is not necessary to program
the computer to understand the math.

The Plomp–Levelt curves of Fig. 3.7 on p. 46 can be conveniently parameter-
ized by a model of the form

d(x) = e−b1x − e−b2x (E.1)

where x represents the absolute value of the difference in frequency between
two sinusoids, and the exponents b1 and b2 determine the rates at which the
function rises and falls. Using a gradient minimization of the squared error
between the (averaged) data and the curve d(x) gives values of b1 = 3.5 and
b2 = 5.75.1

The dissonance function d(x) can be scaled so that the curves for different
base frequencies and with different amplitudes are represented conveniently. If
the point of maximum dissonance occurs at x∗, then the dissonance between
sinusoids at frequency f1 with loudness �1 and at frequency f2 with loudness
�2 (for f1 < f2) is

d(f1, f2, �1, �2) = �12[e−b1s(f2−f1) − e−b2s(f2−f1)] (E.2)

where
s =

x∗

s1f1 + s2
(E.3)

and
�12 = min(�1, �2). (E.4)

The point of maximum dissonance x∗ = 0.24 is derived directly from the
model (E.1) above. The s parameters in (E.3) allow a single functional form
1 An alternative parameterization of the Plomp–Levelt curves, proposed by

Lafrenière [B: 92], replaces the difference between exponentials in (E.1) with
d(x) = e−(log(βx))2 , where β is chosen so that βx occurs at the point of maxi-
mum dissonance and where x = f2−f1

f1
is the normalized frequency. The resulting

dissonance curves are qualitatively similar to the ones presented here, although
the corners are more rounded. Another functional form that may also be useful
in this context is d(x) = xe−βx.
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to interpolate between the various curves of Fig. 3.8 on p. 47 by sliding the
dissonance curve along the frequency axis so that it begins at f1, and by
stretching (or compressing) it so that the maximum dissonance occurs at the
appropriate frequency. A least square fit was made to determine the values
s1 = 0.021 and s2 = 19.

The form of equation (E.4) ensures that softer components contribute
less to the total dissonance measure than louder components. For instance, if
either �1 or �2 approaches zero, then �12 decreases and the dissonance in (E.2)
vanishes. Conversely, if the volume of the partials increases, the dissonance
increases. This form is discussed in Appendix G, and is a refinement of the
model in [B: 165], which assumed that the loudnesses were multiplicative.

Calculating loudness is not completely trivial as the discussions in [B: 85],
[B: 154] and [B: 187] suggest. If p(t) represents a simple harmonic planar wave
with period T , then the effective pressure is the power

Pe =

√
1
T

∫ T

0
p2(t)dt

of the wave. For a sine wave, p(t) = A sin(2πf0t + φ) with frequency f0 and
amplitude A, Pe = A√

2
. The sound pressure level in decibels (dB) is SPL =

20 log10(
Pe

Pref
), where Pref is the standard reference of 20µPa2 for SPL in air,

which corresponds to the SPL of a barely audible sine wave of frequency 1000
Hz. Finally (and somewhat crudely), the loudness can be approximated as

� =
1
16

2
SPL

10 . (E.5)

The loudness � is measured in sones. The form of (E.5) originates from the
observation that an increase of 10 dB corresponds (approximately) to a dou-
bling of loudness. The fraction 1/16 normalizes the loudness so that 40 dB
corresponds to one sone. More accurate models than (E.5) would include the
effects of the Fletcher–Munson curves of equal loudness [B: 154], would sum
the loudnesses differently depending on whether they occupy the same critical
band, and would take into account masking effects.

To calculate the dissonance of more complex sounds, let F be a collection
of n sine wave partials with frequencies f1 < f2 < ... < fn and loudnesses
�j for j = 1, 2, ..., n. The partials will typically be displayed as the n-tuple
f1, f2, ..., fn. The dissonance of F can be calculated as the sum of the disso-
nances of all pairs of partials

DF =
1
2

n∑
i=1

n∑
j=1

d(fi, fj , �i, �j), (E.6)

which is called the intrinsic or inherent dissonance of F . When two notes with
spectrum F are played simultaneously at an interval α, the resulting sound
2 One Pascal (Pa) is one N/m2.
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has a dissonance that is the same as that of a single timbre with frequencies
fi and αfi by the additivity assumption. Thus, (E.6) can be used directly to
calculate the dissonance between intervals (and chords) as well as the disso-
nance of isolated timbres. Defining the spectrum αF to contain the frequencies
αf1, αf2, ..., αfn (with loudnesses �j), the dissonance of F at an interval α is

DF (α) = DF + DαF +
n∑

i=1

n∑
j=1

d(fi, αfj , �i, �j), (E.7)

and the dissonance curve generated by the timbre F is defined as the function
DF (α) over all intervals of interest α.

The dissonance of a chord of three notes at the intervals 1, r, and s can be
similarly calculated by adding the dissonances between all partials

DF (r, s) = DF (r) + DF (s) + DrF (s/r),

where DF (r) is the dissonance of F at the interval r, DF (s) is the dissonance
of F at the interval s, and DrF (s/r) is the dissonance between rF and sF .
Generalizations to m sounds, each with their own spectrum, follow the same
philosophy of calculating the sum of the dissonances between all simultane-
ously sounding partials.

Two computer programs that carry out these calculations are located in
the software folder on the CD. The first, Dissonance(Basic), is written
in Microsoft’s version of BASIC, and the other is in Matlab. Both programs
encapsulate the equations of this section and can be used to draw dissonance
curves for a timbre with n partials, at frequencies specified in the array freq
with corresponding amplitudes in the array amp.

Some details of the implementation might help to follow the program logic.
In the BASIC program, the i and j loops calculate the dissonance of the
timbre at a particular interval alpha, and the alpha loop runs through all in-
tervals of interest. The first few lines set up the frequencies and amplitudes of
the timbre. The variable n must be equal to the number of frequencies in the
timbre. Running the program with its default values generates the dissonance
curve for a harmonic timbre with six partials. To change the start and end
points of the intervals, use startint and endint. To make the intervals fur-
ther apart, increase inc. All dissonance values are stored in the vector diss.
Do not change dstar or any of the variables with numbers.

The Matlab programs are modular, one defining a Matlab function called
dissmeasure.m, which calculates the dissonance of any set of partials f with
loudness amp (the partials can be in any order). The main routine dissmain.m
calls dissmeasure.m for each interval of interest to draw the dissonance curve.
A FORTRAN version is also listed in [B: 92].
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Properties of Dissonance Curves

For certain simple timbres, dissonance curves can be completely characterized.
This appendix derives bounds on the number and location of minima of the
dissonance curve and reveals some general properties, as discussed in Chap. 6.
Two simplifications are made to streamline the discussion. A single dissonance
function is assumed for all frequencies, and all partials are presumed to have
unit amplitudes. Thus the simpler model (E.1) is used in place of the more
complete model (E.2)-(E.4) whenever convenient.

When F is a spectrum with partials at frequencies f1, f2, ..., fn, the intrin-
sic dissonance (in this simplified setting) is

DF =
1
2

n∑
i=1

n∑
j=1

d(fi, fj) (F.1)

where d(fi, fj) is really a function of a single variable; that is, d(fi, fj) ≡ d(x)
as defined in (E.1) with x = |fi−fj |

min(fi,fj)
, and where the last two (amplitude)

terms of (E.2) are assumed unity. Because of the form of x, d(αfi, αfj) =
d(fi, fj), and so DF = DαF for any α. In other words, the simplification has
removed the dependency on absolute frequency from the dissonance measure.

Using these notations, the dissonance curve (E.7) becomes

DF (α) = DF + DαF +
n∑

i=1

n∑
j=1

d(fi, αfj). (F.2)

The first result gives a precise statement of property two from p. 121, describ-
ing the behavior of the dissonance curve as the interval α grows large.

Theorem F.1. For any timbre F with partials at f1, f2, ..., fn,
limα→∞ DF (α) = DF + DαF .

Proof: Clearly, d(x) → 0 as x → ∞. Thus, d(fi, αfj) → 0 for all i, j as α → ∞,
which implies that the double sum in (F.2) approaches zero. ∆
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Thus, the dissonance decreases as the interval α grows larger, approaching a
value that is no more than the dissonances of the timbres DF and DαF .

Various aspects of the dissonance curve (E.1) become important when
investigating the locations of possible minima of the dissonance curve. Several
of these are given here, most following from a direct application of calculus.
Taking the derivative of (E.1), setting it to zero, and solving shows that the
point of maximum dissonance occurs when

x∗ =
ln(b1/b2)
b1 − b2

. (F.3)

Two partials fi and fj are said to be separated by x∗ if

x =
|fi − fj |

min(fi, fj)
> x∗.

The change in dissonance at x = 0 is

d′(0) = −b1e−b1x + b2e−b2x|x=0 = b2 − b1. (F.4)

For x > x∗, the maximum change in the derivative occurs when d′(x∗∗) is
minimum. As

d′′(x) = b2
1e

−b1x − b2
2e

−b2x, (F.5)

x∗∗ = 2 ln(b1/b2)
(b1−b2)

is where the minimum occurs. After some simplification, the
value of d′ at x∗∗ is

d′(x∗∗) = b2

(
b1

b2

) 2b2
b1−b2 − b1

(
b1

b2

) 2b1
b1−b2

. (F.6)

When needed, the values b1 = 3.5 and b2 = 5.75 are used, so that x∗ ≈ 0.22,
d′(0) ≈ 2.25, x∗∗ ≈ 0.44, and d′(x∗∗) ≈ −0.292, although generally b2 > b1 >
0 is enough.

The next result finds conditions under which the unison α = 1 is a mini-
mum of the dissonance curve DF (α).

Theorem F.2. Let F have partials f1 < f2 < ... < fn that are all separated
by at least x∗. Then α = 1 is a minimum of DF (α).

Proof: As DF and DαF are fixed and equal for all α, only the terms in the
double sum (F.2) change the value of DF (α). There are n terms of the form
d(fi, αfi) in the sum, and for each of these there are n − 1 terms of the form
d(fi, αfj) with i �= j. We show that the change in d(fi, αfi) is greater than
the sum of all changes in d(fi, αfj) for i �= j when α is suitably close to 1.

The change in d(f1, αf1) for α ≈ 1 is proportional to d′(0), which is given
in (F.4) as b2 − b1 (because α = 1 corresponds to x = 0). The largest possible
value for any of the d(f1, αfj) occurs when f1 and αfj define an x with
x = x∗∗. Then d′(x∗∗) is given in (F.6). Because the fj are assumed separated
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by at least x∗, and because x∗∗ = 2x∗, the next largest derivative is at most
d′(3x∗). We now claim that the sum of all derivatives

∑n
i=1 |d′(ix∗)| is less

than d′(0). Observe that

d′(ix∗) = b2

(
b1

b2

) ib2
b1−b2 − b1

(
b1

b2

) ib1
b1−b2 ≡ b2t

i
2 − b1t

i
1

and that
n∑

i=2

|d′(ix∗)| ≤
∞∑

i=1

|d′(ix∗)|.

As the d′(ix∗) are all of the same sign, drop the | · |. Combining the two
previous expressions yields

∞∑
i=1

(b2t
i
2 − b1t

i
1) =

b2t2
1 − t2

− b1t1
1 − t1

≡ t,

which is approximately t = −0.758. Since the fj need not be spaced evenly,∑n
i=1 |d′(·)| could be as large as |t| + |d′(x∗∗)| ≈ 1.05. In the general case,

d(fi, αfj), the αfj could occur both above and below the fi; hence, the∑n
i=1 |d′(·)| could be as large as 2(|t| + |d′(x∗∗)|) ≈ 2.1. In all cases, the

change in the diagonal terms d(fi, αfi) dominates the sum of the changes in
all off-diagonal terms d(fi, αfj), giving the required inequality. ∆

The requirement in theorem F.2 that the partials be separated by x∗ is
sufficient but is certainly not necessary. If n ≤ 7, then the same arguments
show that no requirements are needed on the spacing of the fi, because the
change in each d(fi, αfi) is over seven times the largest possible value of the
change in d(fi, αfj), for i �= j (i.e., d′(0)/d′(x∗∗) ≈ 7.7).

Minima of dissonance curves tend to occur at ratios of the partials.

Theorem F.3. Let timbre F have partials at f1, f2 that are separated by at
least x∗. Then the dissonance curve DF (α) has a minimum at α∗ = f2/f1.

Proof: Let timbre G have partials (g1, g2) = (αf1, αf2). Then DF = DG =
DαF , and any change in DF (α) must originate from the double sum in (F.2),
which contains the terms d(fi, gj) for i = 1, 2 and j = 1, 2. For α∗ = f2/f1,
(g1, g2) = (f2, αf2). As α is perturbed from α∗, the contribution from the term
d(f2, g1) = d(f2, αf1) increases, because at α∗, α∗f1 = f2 and so d(f2, g1) =
d(f2, f2) = 0. Thus, the result can be demonstrated by showing that the
increase in d(f2, g1) is greater than the decrease in the other three terms
combined. The increase in d(f2, g1) is proportional to d′(0). As f1 and f2 are
separated by x∗, the decrease in each of the other three terms is no greater
than d′(x∗∗). As |d′(0)| > 7|d′(x∗∗)|, this proves the desired result. ∆

Thus, the dissonance curve generated by a timbre with partials at f1, f2 has
a minimum when α∗f1 = f2. For example, for the timbre with partials at (500,
750), α∗ = 1.5. The result asserts that the timbre α∗F , with frequencies (750,



352 F Properties of Dissonance Curves

1125) is locally a most consonant interval. In symbols, DF (α∗ − ε) > DF (α∗)
and DF (α∗ + ε) > DF (α∗) for small ε. Thus, both (748, 1122) and (752,
1128) are less consonant than (750, 1125). This result is intuitively reasonable
because when αf1 �= f2, the dissonance between the partials at αf1 and f2 is
large, but when αf1 = f2, this term disappears from the dissonance measure.
Interestingly, the result can fail when f1 and f2 are too close.

Theorem F.4. Let timbre F have partials f1, f2. Then there is a ε > 0 such
that for |f2 − f1| < ε, the point α∗ = f2/f1 is not a minimum of DF (α).

Proof: Define G as in theorem F.3. Again, any change in DF (α) is a result of
the four terms in the sum of (F.2). For small ε > 0, note that d(f1, g1 + ε) >
d(f1, g1) > d(f1, g1 − ε), d(f1, g2 + ε) > d(f1, g2) > d(f1, g2 − ε), d(f2, g2 + ε) >
d(f2, g2) > d(f2, g2 − ε), and d(f2, g1 + ε) > d(f2, g1). On the other hand,
d(f2, g1 − ε) > d(f2, g1) = d(f2, f2) = 0. For small ε, the change in all four
terms is approximately ε(b2 − b1) in magnitude. Thus, the dissonance value is
decreased as G is moved ε closer to F , and α∗ = f2/f1 is not a minimum. ∆

In essence, if the partials f1 and f2 are too close, then the minimum at
f2/f1 disappears. Theorem F.3 shows that a minimum occurs when partials
coincide with each other. Minima can also occur when the partials are widely
separated. For a two-partial timbre F , suppose that f1 and f2 are separated
by at least 4x∗. Then there is an interval of maximum dissonance near αf1 =
f1 + x∗, and another near αf2 = f2 − x∗. Consequently, there must be a
minimum for some α between αL = (f1 + x∗)/f1 and αH = (f2 − x∗)/f2.
The full range of possible dissonance curves for two-partial timbres is shown
in Fig. 6.15 on p. 121.

Theorem F.4 suggests that minima of the dissonance curve are unlikely for
intervals smaller than about half the interval x∗ at which maximum dissonance
occurs. Plomp and Levelt estimate that x∗ corresponds to a little less than
1/3 of the critical bandwidth. Thus, theorem F.4 predicts that scale steps
closer together than about 1/6 of the critical bandwidth should be rare.

The next result describes minima of the dissonance curve for timbres with
three partials.

Theorem F.5. Let timbre F have partials f1, f2, f3. Then there are c1 > 0
and c2 > 0 such that whenever f1 and f2 are separated by at least x∗ + c1,
and f2 and f3 are separated by at least x∗ +c2, then minima of the dissonance
curve occur at α1 = f2/f1, α2 = f3/f1, and α3 = f3/f2.

Proof: Let G have partials (g1, g2, g3) = (αf1, αf2, αf3). Suppose first that
f2 − f1 > f3 − f2 + c2. Consider the candidate minimum α1. For small ε, the
most significant terms in DF (α+ε)−DF (α) are d(f2, g1) and d(f3, g2), because
all others are separated by at least x∗ + c2. For ε > 0, d(f2, g1 + ε) > d(f2, g1),
d(f3, g2 + ε) > d(f3, g2), and d(f2, g1 − ε) > d(f2, g1). On the other hand,
d(f3, g2 − ε) < d(f3, g2). But d′(0) = b2 − b1 and d′′(0) = b2

1 − b2
2 < 0, so

the slope is decreasing. Hence, |d(f2, g1 − ε)| > |d(f3, g2 − ε)|. Consequently,
DF (α1 + ε) > DF (α1) and DF (α1 − ε) > DF (α1), showing that α1 is a local
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minimum. The case f3 − f2 > f2 − f1 + c1 follows identically. The proofs for
α2 and α3 are similar. ∆

Figures 6.16 and 6.17 on pp. 123 and 123 show theorem F.5 graphically.
The final result specifies the maximum number of minima that a dissonance
curve can have in terms of the complexity of the spectrum of the sound.

Theorem F.6. Let timbre F have partials f1, f2, ..., fn. Then the dissonance
curve generated by F has at most 2n2 local minima.

Proof: Consider the portion of DF (α) due to the partial f interacting with a
fixed partial fj . For both very small α (α ≈ 0) and very large α (α → ∞),
d(αf, fj) ≈ 0. At α = fj/f , d(αf, fj) = 0. For the two intervals where αf and
fj are separated by x∗ (one with αf < fj and one with αf > fj), d(αf, fj)
attains its maximum value. Thus, f interacting with a fixed fj has two maxima
and one minima. Each fi can interact with each fj , and there are n2 possible
pairs. As DF (α) consists of n2 such curves added together, there are at most
2n2 maxima. Consequently, there can be no more than 2n2 minima. The two
extreme minima at α = 0 and α = ∞ are not included. ∆

Despite the detail of this presentation, its main conclusion is not inacces-
sible: The most (musically) useful minima of the dissonance curve tend to
be located at intervals α for which fi = αfj , where fi and fj are arbitrary
partials of the timbre F .

The theorems of this appendix assume that all partials are of equal ampli-
tude. The effect of nonequal amplitudes is that some minima may disappear,
some may appear, and others may shift slightly in frequency. Fortunately,
these changes occur in a structured way. To be concrete, let the timbre F
have partials f1, f2, ..., fn with amplitudes a1, a2, ..., an and let F̂ have the
same set of partials but with amplitudes 1, 1, ..., 1. As discussed above, the
dissonance curve for F̂ will have up to n2 minima due to coinciding partials
that occur at the intervals αij = fi/fj . As the amplitudes aj of F move away
from unity, the depth of the dissonance curve at αij may change and the min-
ima at some of the αij may disappear (an αij that is a minimum of DF̂ may
not be a minimum of DF ), and other αij may appear (an αij that is not a
minimum of DF̂ may be a minimum of DF ). Thus, amplitude variations of the
partials tend to affect which of the αij happen to be minima. The dissonance
curve also contains up to n2 minima of the “broad” type. The location of
these equilibria are less certain, because they move continuously with respect
to variations in the aj .
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Analysis of the Time Domain Model

This appendix expands the model of Sect. 3.6 to account
for more complex sounds and to reproduce the general
dissonance curves (such as Figs. 6.1, 6.2, and 6.7) of
Chap. 6. The model is then examined in some detail.
This appendix is based on collaborative work with Marc
Leman of IPEM [W: 16].

Recent time domain models of the pitch extraction mechanism (such as those
of Patterson and Moore [B: 130] and Meddis [B: 111]) can successfully predict
listeners’ performance in a number of areas, including the pitch of the missing
fundamental, pitch shift due to certain kinds of inharmonic components, rep-
etition pitch, detection of the pitch of multiple tones sounding simultaneously,
and musical applications such as harmony and tone center perception [B: 95].
These models typically consist of four steps:

(i) A critical band filtering that simulates the mechanical filtering in
the inner and middle ear

(ii) A half wave rectification that simulates the nonlinear firing of hair
cells

(iii) A periodicity extraction mechanism such as autocorrelation
(iv) A mechanism for aggregation of the within-band information

Similarly, the modeling of amplitude-modulation detector thresholds such as
those of [B: 37] (and references therein) replace the third step (the pitch ex-
traction schemes) with a “temporal modulation transfer function” and a “de-
tector.” The resulting systems can predict various masking effects and have
been used to examine how the auditory system trades off spectral and tem-
poral resolutions.

In contrast, models designed to predict the sensory dissonance of a col-
lection of complex tones (such as in Chap. 6) typically begin with a spectral
analysis that decomposes the sound into a collection of partials. When these
partials are close to each other in frequency (but not identical), they beat in a
characteristic way; when this roughness occurs at certain rates, it is called sen-
sory dissonance. This appendix shows how sensory dissonance can be modeled
directly in the time domain with a method that is closely related to the first
two (common) steps of current pitch extraction and amplitude-modulation
models.

The computational model of Sect. 3.6 contains an envelope detector fol-
lowed by a bandpass filter. The simulations shown in Fig. 3.10 demonstrate



356 G Analysis of the Time Domain Model

that the model can account for the dissonance curve generated from two pure
sine waves. But this simple model breaks down when confronted with more
complex wideband inputs. The source of the problem is that the envelope
detector (the rectification nonlinearity followed by the LPF) only functions
meaningfully on narrowband signals.1 In keeping with (i)-(iv) above, Fig. G.1
suggests passing the input through a collection of bandpass filters (such as
those in Fig. 3.5) that simulate the critical bands. This generates a series
of narrowband signals to which the envelope detector can be applied, and it
gives an approximation to the sensory dissonance within each critical band.
The overall sensory dissonance can then be calculated by summing up all
dissonances in all critical bands.

f

b

input sound

critical band 
(bandpass) filters

f1

f2

fn

rectification LPF
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rectification
noninearity g(x)
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{
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Fig. G.1. The n filters separate the input sound into narrowband signals with band-
widths that approximate the critical bands of the basilar membrane. The envelope
detectors outline the beating within each critical band and the final bandpass filters
accumulate the energy. Summing over all bands gives the overall sensory dissonance
of the sound.

The core of the model lies in the rectification nonlinearity (where g(x) is
defined by equation (3.1) on p. 48). Physically, this originates from the hair
cells of the basilar membrane, which are mechanically constrained to certain
kinds of oscillation, and for which there is considerable neurophysiological ev-
idence [B: 156]. The effect of the subsequent bandpass filtering is to remove
both the lowest frequencies (which correspond perceptually to slow, pleasant
beats and the sensation of loudness) and the higher frequencies (which corre-
spond to the fundamentals, overtones, and summation tones). The energy of
the signal in the passband is then proportional to the amount of roughness,
or sensory dissonance due to the interactions of frequencies within the given
1 This generic property of envelope detectors is discussed in [B: 76].
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critical band. Summing these energies from all critical bands gives an overall
measure of the sensory dissonance of the sound.

To see how this model works, consider the case where two sine waves at
frequencies w1 and w2 pass through the same critical band filter at equal
intensities. For w1 near (but not equal) to w2, this results in beats as shown
in Fig. G.2(a). After passing through the rectification stage, this becomes the
r(t) as shown in G.2(b). To be concrete, suppose that the input x(t) is the sum
of the two sinusoids sin(w1t) and sin(w2t + π). The rectification nonlinearity
g(x) of (3.1) can be rewritten

g(x(t)) =
1
2
x(t) +

1
2
|x(t)|

and so

r(t) = g(sin(w1t) + sin(w2t + π))

=
1
2
(sin(w1t) + sin(w2t + π)) +

1
2
| sin(w1t) + sin(w2t + π)|

=
1
2

sin(w1t) +
1
2

sin(w2t + π) + | sin(v1t) sin(v2t +
π

2
)|

where v1 = w1−w2
2 and v2 = w1+w2

2 are assumed commensurate.

(a)

(b)

(c)

(d)

E max
E min

r(t)

envelope

Fig. G.2. The beating of sine
waves. (a) shows the sum of two
sine waves of equal amplitude,
which is rectified to give (b). (c)
shows the sum of two sine waves of
unequal amplitude, which is recti-
fied to give (d).

Accordingly, the magnitude spectrum of r(t) can be calculated as

F{r(t)} =
1
2
F{sin(w1t)}+

1
2
F{sin(w2t+π)}+F{| sin(v1t)|}∗F{| sin(v2t+

π

2
)|},

where ∗ is the convolution operator. The Fourier series for | sin(v1t)| is

2
π

− 4
π

∞∑
r=1

cos(2rv1t)
4r2 − 1

,

and so the magnitude spectrum consists of spikes at the even harmonics of
v1. Similarly, the Fourier series of | sin(v2t + π

2 )| has a magnitude spectrum
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consisting of spikes at the even harmonics of v2. As w1 ≈ w2, v1 << v2 and
the convolution of F{| sin(v1t)|} with F{| sin(v2t + π

2 )|} consists of a cluster
of spikes near zero (these have magnitude 4

π(4n2−1) at frequencies 2nv1) and
similar clusters near nv2 for all integers n.

From Fig. G.1, the rectification is followed by a bandpass filter with pass-
band frequencies considerably less than w1, w2, and v2. Hence, only the spikes
near zero contribute significantly to the energy of BPF{r(t)}. Summing these
terms over the frequency region of interest gives

d(v1) =
∑

f1
2v1

≤n≤ f2
2v1

4
π(4n2 − 1)

, (G.1)

where f1 and f2 define the cutoff frequencies of the bandpass filter and 2v1
is the difference frequency. This function d(v1) represents the energy of the
beating sinusoids within the critical band. Clearly, d(v1) is a function of the
(difference between the) frequencies of the two input sine waves.

The following heuristic argument explains how (G.1), which provides a
time domain analog of (E.2), qualitatively reproduces sensory dissonance
curves. For v1 = 0 (equivalently, w1 = w2), there are no terms in the sum and
d(v1) = 0. Consider fixing w1 and varying w2. As w2 increases, v1 increases
and more terms (initially) enter into the sum (G.1), increasing d(v1). Even-
tually, however, v1 increases past some critical value and the range ( f1

2v1
, f2

2v1
)

compresses so that fewer and fewer terms are summed in (G.1). Asymptot-
ically, d(v1) returns to zero. Hence, d(v1) has a shape that is qualitatively
like the measured dissonance curves such as shown in Fig. 3.7. The cutoff fre-
quencies f1 and f2 of the bandpass filter must therefore be chosen so that the
maximum of this sum occurs at the measured value d∗ of maximum sensory
dissonance.

Next, suppose that the two input waves are of unequal amplitudes,

s(t) = α1ejw1t + α2ejw2t,

where again the frequencies of the (complex) sinusoids are w1 and w2, and
w2 > w1 >> w2 − w1. If B(w) represents the frequency response of the
critical band (and other pre-rectification) filters then the signal entering the
rectification is

α1B(w1)ejw1t + α2B(w2)ejw2t

= ejw1t[α1B(w1) + α2B(w2)ej(w2−w1)t].

The ejw1t term is the “carrier” and the bracketed term is the envelope, which
achieves its maximum and minimum at

Emax =
1
2
(|α1B(w1)| + |α2B(w2)|)

Emin =
1
2
(||α1B(w1)| − |α2B(w2)||)
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as shown in Fig. G.2(c).
The previous analysis can now be repeated with r(t) redefined as

r(t) = Emin y(t) + (Emax − Emin) x(t)y(t).

As the Fourier Series of a sum is the sum of the Fourier Series, the net effect is
to increase the amplitudes of the spikes at nv2 and to scale the sum in (G.1)
by the constant Emax − Emin.

This weighting is incorporated into the dissonance model (E.2) by assum-
ing that the roughness is proportional to the loudness of the beating. The
amplitude of the beats is proportional to Emax −Emin, ignoring the effect of
the filters B(·).2 If α1 > α2, then Emax−Emin = 1

2 (α1+α2)− 1
2 (α1−α2) = α2.

Similarly, if α2 > α1, Emax − Emin = 1
2 (α1 + α2) − 1

2 (α2 − α1) = α1. Hence
Emax − Emin = min(α1, α2). Thus, the amplitude of the beating is given by
the minimum of the two amplitudes.

As the disparity in the amplitudes of the partials increases, the dissonance
d(v1) decreases and the maximum sensory dissonance occurs when the partials
have equal amplitudes. Thus, the time-based model of sensory dissonance
naturally accounts for the varying amplitudes of the partials of a sound.

To summarize this analysis: The time-based model of sensory dissonance
can qualitatively reproduce the sensory dissonance curves such as are found in
Plomp and Levelt [B: 141] and [B: 79] and makes concrete predictions regard-
ing amplitude effects. Details of the shape of the dissonance curves will depend
on the cutoff frequencies of the bandpass filters, their shape, and the integra-
tion time. As the model uses many of the building blocks of standard auditory
models, it is not unreasonable to view sensory dissonance as a byproduct (or
coproduct) of these neural elements.

2 This is reasonable because the important beating (from the point of view of the
dissonance calculation) is at the low frequencies near DC.
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Behavior of Adaptive Tunings

This appendix derives concrete expressions for the update terms of the adap-
tive tuning algorithm and gives detailed statements and proofs of the results.
The cost function

D =
∑
i,j

DF (
fi

fj
) (H.1)

can be rewritten as

D =
1
2

m∑
l=1

m∑
k=1

n∑
p=1

n∑
q=1

d(apfl, aqfk, vp, vq). (H.2)

Only the terms in D that include fi need to be considered when calculating
the gradient dD

dfi
. Thus, dD

dfi
is equal to

d

dfi

[
1
2

m∑
k=1

n∑
p=1

n∑
q=1

d(apfi, aqfk, vp, vq) +
1
2

m∑
k=1

n∑
p=1

n∑
q=1

d(apfk, aqfi, vp, vq)

]

=
m∑

k=1

n∑
p=1

n∑
q=1

d

dfi
d(apfi, aqfk, vp, vq) (H.3)

because d(f, g, v, w) = d(g, f, v, w) and the derivative commutes with the
sums. Calculating the derivative of the individual terms d

dfi
d(f, g, v, w) in

(H.3) is complicated by the presence of the absolute value and min functions
in (E.2) and (E.3). The function is not differentiable at f = g and changes
depending on whether f > g or g > f . Letting x∗ be the point at which
maximum dissonance occurs, define the function d

df d(f, g, v, w) as

min(v, w)
[

−b1x∗
(fs1+s2)

e

(
b1x∗(f−g)

fs1+s2

)
+ b2x∗

(fs1+s2)
e

(
b2x∗(f−g)

fs1+s2

)]
if f > g

min(v, w)
[

b1x∗(gs1+s2)
(fs1+s2)2

e

(
b1x∗(f−g)

fs1+s2

)
− b2x∗(gs1+s2)

(fs1+s2)2
e

(
b2x∗(f−g)

fs1+s2

)]
if f < g

0 if f = g
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which is a close approximation to the desired derivative. Then an approximate
gradient is readily computable as the triple sum (H.3) of elements of the form
d
df d(f, g, v, w).

To streamline the results, the same simplifications and notations are made
as in the previous appendices. The first theorem demonstrates the behavior
of the algorithm when adapting two notes of equal loudness, each consisting
of a single partial. Figure 8.5 on p. 165 shows this pictorially.

Theorem H.1. Let f0 and g0 be the frequencies of two sine waves, with f0 <
g0. Apply the adaptive tuning algorithm. Then
(i) g0 > (1 − s1)f0 − s2 implies that |gk+1 − fk+1| > |gk − fk| for all k,
(ii) g0 < (1 − s1)f0 − s2 implies that |gk+1 − fk+1| < |gk − fk| for all k.

Proof: From the form of d
df d(f, g, v, w), the updates for f and g are:

fk+1 = fk − µx∗(gks1 + s2)
(fks1 + s2)2

[
b1e

(
b1x∗(fk−gk)

fks1+s2

)
− b2e

(
b2x∗(fk−gk)

fks1+s2

)]

gk+1 = gk +
µx∗

(fks1 + s2)

[
b1e

(
b1x∗(fk−gk)

fks1+s2

)
− b2e

(
b2x∗(fk−gk)

fks1+s2

)]

The terms in brackets are positive whenever

ln(b1) +
b1x

∗(fk − gk)
fks1 + s2

> ln(b2) +
b2x

∗(fk − gk)
fks1 + s2

.

Rearranging gives
ln(b1) − ln(b1)

b1 − b2
>

x∗(fk − gk)
fks1 + s2

.

As the left-hand side is equal to x∗, this can be rewritten

fks1 + s2 > fk − gk.

Thus, gk > (1−s1)fk −s2 implies that gk+1 > gk. Similarly, fk+1 < fk, which
together show (a). On the other hand, if gk < (1 − s1)fk − s2, an identical
argument shows that gk+1 < gk and fk+1 > fk for all k. ∆

The next result is the theoretical counterpart of Fig. 8.6 on p. 166.

Theorem H.2. Consider two notes F and G. Suppose that F consists of two
partials fixed at frequencies f and αf with α > 1, and that G consists of a
single partial at frequency g0 that is allowed to adapt via the adaptive tuning
algorithm. Assuming that all partials are of equal loudness:

(i) There are three stable equilibria: at g = f , at g = αf and at
g = (1 + α)f/2.

(ii) If g0 << f , then |gk+1 − f | > |gk − f | for all k.
(iii) If g0 >> αf , then |gk+1 − αf | > |gk − αf | for all k.
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Proof: The total dissonance for this case includes three terms: Dtotal =
d(f, g) + d(f, αf) + d(g, αf). As α and f are fixed, d(f, αf) is constant,
and minimizing Dtotal is the same as minimizing d(f, g) + d(g, αf). Using
the simplified dissonance measure (E.1) in place of the more complete model
(E.2)-(E.4), and assuming f < g < αf , the update for g is

gk+1 = gk − µ
[
b1e−b1(αf−gk) − b2e−b2(αf−gk) − b1e−b1(gk−f) + b2e−b2(gk−f)

]
.

This has an equilibrium when αf − gk = gk − f , that is, when g = (1+α)
2 f .

Calculation of the second derivative shows that it is positive at this point as
long as f/2(α − 1) >> 1, which holds for all reasonable f and α. Hence this
is a stable equilibrium. (Note that if the complete model is used, then a much
more complex update develops for g. This will have an equilibrium near, but
not at, (1 + α)f/2.)

Due to the nondifferentiability of the dissonance function at f = g, it is
not possible to simply take the derivative at this point. The strategy to show
that f = g is stable is to show that if g = f + ε for some small ε > 0 then
the update decreases g, whereas if g = f − ε for some small ε > 0 then the
update increases g. Supposing that g > f , and assuming that f(α − 1) >> 1,
the gradient is approximately

b1e−b1f(α−1) − b2e−b2f(α−1) − b1 + b2.

As b2 is about twice the size of b1, this is positive. Similarly, for g = f − ε,
the gradient is approximately

b1e−b1f(α−1) − b2e−b2f(α−1) + b1 − b2,

which is negative. Consequently, f = g is a local stable point. The point where
αf = g is analyzed similarly. Analogous arguments to those used in theorem
H.1 show that for g << f , g decreases, and for g >> αf , g increases. ∆
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Symbolic Properties of ⊕-Tables

Although ⊕-tables do not form any recognizable algebraic structure, they do
have several features that would be familiar to an algebraist. For instance,
the tables have an identity element, the operation ⊕ is commutative, and it is
associative when it is well defined. These are used to derive a set of properties
that can help make intelligent choices in the symbolic timbre construction
procedure.

Given any set of scale intervals S, the ⊕-table derived from S has the
following characteristics.

Identity: The “octave” or unit of repetition s∗ acts as an identity
element, i.e.,

s∗ ⊕ s = s ⊕ s∗ = s ∀s ∈ S.

Commutativity: The ⊕-table is symmetric, i.e.,

s1 ⊕ s2 = s2 ⊕ s1 ∀s1, s2 ∈ S. (I.1)

If one side of (I.1) is undefined (is “equal” to ∗), then so is the other. Commu-
tativity of ⊕ follows directly from the commutativity of products of powers
of real numbers.

Associativity: The ⊕ operator is associative whenever it is well defined.
Thus

(s1 ⊕ s2) ⊕ s3 = s1 ⊕ (s2 ⊕ s3) ∀s1, s2, s3 ∈ S, (I.2)

provided that both sides of (I.2) exist.

It is indeed possible for one side of (I.2) to exist but not the other.
Example: Consider the tetrachordal scale with ⊕-table 12.5 on p. 262. Observe
that ((2, 1, 1) ⊕ (1, 0, 0)) ⊕ (2, 1, 0) is well defined and equals (1, 0, 0), but
that (2, 1, 1) ⊕ ((1, 0, 0) ⊕ (2, 1, 0)) does not exist because (1, 0, 0) ⊕ (2, 1, 0)
is disallowed. To further emphasize how unusual this construction is, observe
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that by commutativity, (2, 1, 1) ⊕ (1, 0, 0) = (1, 0, 0) ⊕ (2, 1, 1). Substituting
this in the above calculation gives ((1, 0, 0)⊕(2, 1, 1))⊕(2, 1, 0), which is indeed
equal to (1, 0, 0) ⊕ ((2, 1, 1) ⊕ (2, 1, 0)), because both sides are (1, 0, 0).

The remaining properties of ⊕-tables concern “solutions” to the ⊕-equation
defined in the symbolic timbre construction procedure

si = sj ⊕ ri,i−j . (I.3)

Recall that in the procedure, a set of sj are given (which are defined by
previous choices of the tj). The goal is to find a single si such that the equation
(I.3) is well defined for all j up to i − 1. The properties of ⊕-tables can help
pinpoint viable solutions to (I.3).

Theorem I.1. Suppose that sj ∈ S have been chosen for all j < k. Let Sj be
the set of all non-∗ entries in the sj column of the ⊕-table. Then for all i ≥ k,

si must be an element of
⋂

j<k
Sj.

Proof: First consider the case i = k = 2, with s1 specified. Then (I.3) requires
choice of s2 such that s2 = s1 ⊕ r1,1 for some r1,1. Such r1,1 will exist exactly
when s2 ∈ S1. For i > 2, si = s1 ⊕ ri,i−j must be solvable, which again
requires that si ∈ S1. The general case si = sj ⊕ ri,i−j is similarly solvable

exactly when si ∈ Sj. As this is true for every j < k, si ∈
⋂

j<k
Sj . ∆

Thus, when building timbres according to the procedure, the set Sk =⋂
j<k

Sj defines the allowable partials at the kth step. Clearly, Sk can never
grow larger because Sk ⊃ Sk+1 ∀k, and it may well become smaller as k
increases. This demonstrates that the order in which the partials are chosen
is crucial in determining whether a perfect timbre is realizable.

The easiest way to appreciate how the theorem I.1 simplifies (and limits)
the selection problem is by example.
Example: In Table 12.1 on p. 257, once si = (3, 2) for some i, then for all
k > i, sk must be (3, 2), (1, 0), or (2, 1).
Example: In Table 12.3 on p. 260, once si = (2, 0) has been chosen, then for
all k > i, sk must be either (2, 0), (4, 1), or (5, 1). In particular, no sk can be
the identity (0, 0).

Corollary I.2. Suppose that an element ŝ ∈ S appears in every column of the
⊕-table. Then for any choice of sj, j < i, (I.3) is always solvable with si = ŝ.

Proof: As ŝ is in every column of the table, ŝ ∈ Sj ∀j and hence ŝ ∈
⋂

j<k
Sj

for any k. ∆
In other words, for any s ∈ S, there is always a r ∈ S such that ŝ = s ⊕ r,

and so ŝ is always permissible.
Example: In Table 12.5 on p. 262, the identity s∗ = (0, 0, 0) appears in

every column. Thus, it is always possible to choose a partial ti with the equiv-
alence class s∗ at any step.
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Suppose, on the other hand, that an element s̄ ∈ S appears nowhere in the
⊕-table other than in the column and row of the identity. Then s̄ cannot be
used to define one of the si because s̄ /∈ Sk for any k and so for any si �= s∗,
si = s̄ + r has no solution. Although s̄ cannot occur among the si, it is still
possible that it might appear among the ri,k. Indeed, it will need to in order
to find a complete timbre.
Example: The element s̄ = (2, 1) appears nowhere in ⊕-table 12.3 (from p. 260)
defined by the Pythagorean scale. The timbre was made complete by ensuring
that s̄ appears among the ri,k of Table 12.4 of p. 260.

Another property of ⊕-tables is that elements are arranged in “stripes”
from southwest to northeast. For instance, in Table 12.3 of p. 260, a stripe of
(4, 1) elements connects the 4, 1 entry with the 1, 4 entry. Similarly, a stripe
of (3, 1) elements connect the 3, 1 with the 1, 3 entries, although the stripe is
broken up by a ∗. The fact that such (possibly interrupted) stripes must exist
is the content of the next theorem.

Given an m note scale S, the entries of the corresponding ⊕-table can
be labeled as a matrix {aj,k} for j = 1, 2, ..., m and k = 1, 2, ..., m. Let Pi

denote the ith stripe of the ⊕-table, that is, Pi = {aj,k} for all j and k with
j + k = i + 1.
Example: For the Pythagorean ⊕-table:

P1 = {(0, 0)}, P2 = {(1, 0), (0, 1)}, P3 = {(2, 0), (2, 0), (2, 0)},

P4 = {(2, 1), ∗, ∗, (2, 1)}, P4 = {(3, 1), (3, 1), ∗, (3, 1), (3, 1), }, etc.

Theorem I.3. For each i, all non-∗ elements of the stripe Pi are identical.

Proof: By construction, the elements si and si+1 ∈ S are integer vectors,
and they may be ordered so that

si+1 = si + ej,i ∀i, (I.4)

where ej,i is a unit vector with zeroes everywhere except for a single 1 in the
jth entry. Let Σ(si) represent the sum of the entries in si = (σ1, σ2, , ..., σp),
i.e., Σ(si) =

∑p
j=1 σj , and let Σ∗ represent the sum of the entries in the

element that forms the unit of repetition. Because the ⊕ operation adds powers
of the generating intervals,

Σ(sj ⊕ sk) = Σ(sj) + Σ(sk) (mod Σ∗) (I.5)

whenever sj ⊕ sk is well defined. Because of the ordering, the entries in the
stripe Pi can be written

sj ⊕ sk, sj−1 ⊕ sk+1, sj−2 ⊕ sk+2, · · ·
for all positive j and k with j + k = i + 1. Hence,

Σ(sj ⊕ sk) = Σ(sj−1 ⊕ sk+1) = · · · (I.6)



368 I Symbolic Properties of ⊕-Tables

whenever these are defined. From (I.4), Σ(sj) = Σ(sk) implies that sj = sj .
Hence (I.6) shows that sj ⊕ sk = sj−1 ⊕ sk+1 = · · · whenever the terms are
defined, and hence all well-defined elements of the stripe are identical. ∆

This is useful because stripes define whether a given choice for the ti (and
hence si) is likely to lead to complete timbres. Suppose that s̃ is a candidate
for si at the ith step. Whether s̃ will “work” for all previous sj (i.e., whether
s̃ = sj ⊕ r has solutions for all sj) depends on whether s̃ appears in all
corresponding Sj . Theorem I.3 pinpoints exactly where s̃ must appear; at the
intersection of the column Sj and the stripe containing s̃. Thus, the procedure
can be implemented without conducting a search for s̃ among all possible
columns.

A special case is when a column is “full,” i.e., when it contains no ∗ entries.

Theorem I.4. Let Sf be a full column corresponding to sf ∈ S. Then si =
sf ⊕ ri is solvable for all si ∈ S.

Proof: As there are m entries in the column Sf and there are m different si,
it is only necessary to show that no entries appear twice. Using the ordering
(I.4) of the previous proof, Sf has elements

s1 ⊕ sf , s2 ⊕ sf , · · · , sm ⊕ sf , (I.7)

which are well defined by assumption. Now proceed by contradiction, and
suppose that the ith and jth elements of (I.7) are the same, i.e., si ⊕ sf =
sj ⊕ sf . Then

Σ(si ⊕ sf ) = Σ(sj ⊕ sf ) (mod Σ∗)

(where Σ and Σ∗ were defined in the previous proof). This implies that

Σ(si) + Σ(sf ) = Σ(sj) + Σ(sf ) (mod Σ∗)

which implies that Σ(si) = Σ(sj) (mod Σ∗). By the same argument as in the
proof of theorem I.3, this implies that si = sj . But each si appears exactly
once in (I.7), which gives the desired contradiction. ∆

Thus, when a column is full, it must contain every element. In this case,
equation (I.3) puts no restrictions on the choice of si. Let {sj} be all elements
of S that have full columns. Then a ⊕-subtable can be formed by these {sj}
that has no illegal ∗ entries. For example, Table 12.1 on p. 257 is generated by
the the ab-cubed scale. The elements (0, 0), (1, 1), and (2, 2) have full columns
and hence can be used to form a full ⊕-subtable. It is easy to generate perfect
timbres for such full ⊕-subtables because equation (I.3) puts no restrictions
on the choice of partials for a complementary timbre. Whether these extend
to all elements of the scale, however, depends heavily on the structure of the
non-full part of the table. Finding timbres for full subtables is exactly the same
as finding timbres for equal temperaments, whose ⊕-tables have no disallowed
∗ entries. In fact, full ⊕-tables form a commutative group, which may explain
why the equal-tempered case is relatively easy to solve.
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All of the above properties were stated in terms of the columns of the
⊕-table. By commutativity, the properties could have been stated in terms of
the corresponding rows.

From a mathematical point of view, the symbolic timbre selection proce-
dure raises a number of interesting issues. The operation ⊕ defined here is
not any kind of standard mathematical operator because of the disallowed ∗
entries. Yet ⊕-tables clearly have a significant amount of structure. For in-
stance, any ⊕-table can be viewed as a subset of the commutative group of
integer m vectors (σ1, σ2, ..., σm) where the ith entry is taken mod ni, from
which certain elements have been removed. Can this structure be exploited?
Another obvious question concerns the possibility of decomposing ⊕-tables
in the same kind of ways that arbitrary groups are decomposed into normal
subgroups. Might such a decomposition allow the building up of spectra for
larger scales in terms of spectra defined for simpler scales?
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Harmonic Entropy

Harmonic entropy is a measure of the uncertainty in
pitch perception, and it provides a physical correlate
of tonalness, one aspect of the psychoacoustic concept
of dissonance. This Appendix shows in detail how to
calculate harmonic entropy and continues the discussion
in Sect. 5.3.3.

Harmonic entropy was introduced by Erlich [W: 9] as a refinement of a model
by van Eck [B: 125]. It is based on Terhardt’s [B: 196] theory of harmony, and
it follows in the tradition of Rameau’s fundamental bass [B: 145]. It provides a
way to measure the uncertainty of the fit of a harmonic template to a complex
sound spectrum. As a major component of tonalness is the closeness of the
partials of a complex sound to a harmonic series, high tonalness corresponds
to low entropy and low tonalness corresponds to high entropy.

In the simplest case, consider two harmonic tones. If the tones are to be
understood as approximate harmonic overtones of some common root, they
must form a simple-integer ratio with one another. One way to model this
uses the Farey series Fn of order n, which lists all ratios of integers up to n.
For example, F6 is

0
1
,

1
6
,

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

5
6
,

1
1
.

A useful property of the Farey series is that the distance between successive
terms is larger when the ratios are simpler. Let the jth element of the series
be fj = aj

bj
. Then the region over which fj dominates goes from the mediant1

below to the mediant above, that is, from aj−1+aj

bj−1+bj
to aj+aj+1

bj+bj+1
. Designate this

region rj . Figure J.1 plots the length of rj vs. fj for F50, the Farey series of
order 50. Observe that complex ratios cluster together, and that the simple
ratios tend to separate. Thus, simple ratios like 1/2, 2/3, and 3/4 have wide
regions with large rj , and complex ratios tend to have small regions with small
rj .

For any interval i, a Gaussian distribution (a bell curve) is used to associate
a probability pj(i) with the ratio fj in Fn. The probability that interval i is
perceived as a mistuning of the jth member of the Farey series is

pj(i) =
1

σ
√

2π

∫
t∈rj

e−(t−i)2/2σ2
dt.

1 Recall that the mediant of two ratios a
b

and c
d

is the fraction a+c
b+d

.
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Fig. J.1. The mediant distances between entries (the length of the rj) are plotted
as a function of the small integer ratios fj drawn from the Farey series of order 50.
The simplest ratios dominate.

Thus, the probability is high when the i is close to fj and low when i is far
from fj . This is depicted in Fig. J.2 where the probabilities that i is perceived
as fj+1, fj+2, and fj+3 are shown as the three regions under the bell curve.
Erlich refines this model to incorporate the log of the intervals and mediants,
which is sensible because pitch perception is itself (roughly) logarithmic.

The harmonic entropy (HE) of i is then defined (parallel to the definition
of entropy used in information theory) as

HE(i) = −
∑

j

pj(i) log(pj(i)).

When the interval i lies near a simple-integer ratio fj , there will be one large
probability and many small ones. Harmonic entropy is low. When the interval
i is distant from any simple-integer ratio, many complex ratios contribute
many nonzero probabilities. Harmonic entropy is high. A plot of harmonic
entropy over an octave of intervals i (labeled in cents) appears in Fig. 5.5 on
p. 92. This figure used F50 and σ = 0.007. Clearly, intervals that are close
to simple ratios are distinguished by having low entropy, and more complex
intervals have high harmonic entropy.

Generalizations of the harmonic entropy measure to consider more than
two sounds at a time are currently under investigation; one possibility involves
Voronoi cells. Harmonic series triads with simple ratios are associated with
large Voronoi cells, whereas triads with complex ratios are associated with
small cells. This nicely parallels the dyadic case. Recall the example (from
p. 100 and sound examples [S: 40]–[S: 42]), which compares the clusters 4:5:6:7
with 1/7:1/6:1/5:1/4. In such cases, the harmonic entropy model tends to
agree better with listener’s perceptions of the dissonance of these chords than
does the sensory dissonance approach. Paul Erlich comments that the study
of harmonic entropy is a “public work in progress” at [W: 9].
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fj fj+1 fj+2 fj+3 fj+4

rj+1 rj+2 rj+3

i

this area gives the probability pj+1(i)
that the interval i is perceived as

the simple integer ratio fj+1

probability pj+2(i) that
i is perceived as fj+2

probability pj+3(i) that
i is perceived as fj+3

mediant between
fj and fj+1 mediant between

fj+1 and fj+2
mediant between

fj+2 and fj+3

Fig. J.2. Each region rj+1 extends from the mediant between fj and fj+1 to the
mediant between fj+1 and fj+2. The interval i specifies the mean of the Gaussian
curve, and the probabilities pj(i) are defined as the disjoint areas between the axis
and the curve.
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Fourier’s Song

Also known as Table 4.1: Properties of the Fourier
Transform, Fourier’s Song was written by Bob
Williamson and Bill Sethares “because we love Fourier
Transforms, and we know you will too.” Perhaps you
have never taken a course where everything is laid out in
a single song. Well, here it is...a song containing 17% of
the theoretical results, 25% of the practical insights, and
100% of the humor of ECE330: Signals and Systems.
The music is played in an additive (overtone) scale
that consists of all harmonics of 100 Hz. It appears
on the CD in sounds/Chapter04/fouriersong.mp3; see
[S: 34]. There will be a test in the morning.

Integrate your function times a complex exponential.
It’s really not so hard you can do it with your pencil.
And when you’re done with this calculation,
You’ve got a brand new function—the Fourier Transformation.

What a prism does to sunlight, what the ear does to sound,
Fourier does to signals, it’s the coolest trick around.
Now filtering is easy, you don’t need to convolve,
All you do is multiply in order to solve.

From time into frequency—from frequency to time

Every operation in the time domain
Has a Fourier analog – that’s what I claim.
Think of a delay, a simple shift in time,
It becomes a phase rotation—now that’s truly sublime!

And to differentiate, here’s a simple trick.
Just multiply by jω, ain’t that slick?
Integration is the inverse, what you gonna do?
Divide instead of multiply—you can do it too.

From time into frequency—from frequency to time

Let’s do some examples... consider a sine.
It’s mapped to a delta, in frequency—not time.
Now take that same delta as a function of time,
Mapped into frequency, of course, it’s a sine!



376 K Fourier’s Song

Sine x on x is handy, let’s call it a sinc.
Its Fourier Transform is simpler than you think.
You get a pulse that’s shaped just like a top hat...
Squeeze the pulse thin, and the sinc grows fat.
Or make the pulse wide, and the sinc grows dense,
The uncertainty principle is just common sense.

Exercise K.1. Find as many Fourier transform pairs as you can in the lyrics
to Fourier’s Song.

Exercise K.2. Find as many properties of the Fourier transform in the lyrics
to Fourier’s Song as you can.

Exercise K.3. Mathematically define the function that looks like a “top hat”
and explain why its transform is the sinc.

Exercise K.4. Explain what property of the Fourier transform is used in the
last verse when the sinc “grows fat” and “grows dense.” Why does this relate
to the uncertainty principle?
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Tables of Scales

This appendix provides tables of several historical and
ethnic tunings. Others can be found throughout the text.
A number of meantone tunings are defined on p. 65,
and several well temperaments appear on p. 65. A large
variety of tunings and scales are derived and defined
throughout the chapter “Musical Scales.”

Table L.1. Historical tunings, with all values rounded to the nearest cent.

Tuning cents
12-tet 100 200 300 400 500 600 700 800 900 1000 1100
1/4 Comma A 76 193 310 386 503 580 697 772 890 1007 1083
Barca 92 197 296 393 498 590 698 794 895 996 1092
Barca A 92 200 296 397 498 594 702 794 899 998 1095
Bethisy 87 193 289 386 496 587 697 787 890 993 1087
Chaumont 76 193 289 386 503 580 697 773 890 996 1083
Corrette 76 193 289 386 503 580 697 783 890 996 1083
d’Alembert 87 193 290 386 497 587 697 787 890 994 1087
Kirnberger 2 90 204 294 386 498 590 702 792 895 996 1088
Kirnberger 3 90 193 294 386 498 590 697 792 890 996 1088
Marpourg 84 193 294 386 503 580 697 789 890 999 1083
Rameau b 93 193 305 386 503 582 697 800 890 1007 1083
Rameau � 76 193 286 386 498 580 697 775 890 993 1083
Valloti 90 196 294 392 498 588 698 792 894 996 1090
Vallotti A 90 200 294 396 498 592 702 792 898 996 1094
Werkmeister 3 90 192 294 390 498 588 696 792 888 996 1092
Werkmeister 4 82 196 294 392 498 588 694 784 890 1004 1086
Werkmeister 5 96 204 300 396 504 600 702 792 900 1002 1098
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Table L.2. Tuning of each slendro instrument of Gamelan Swastigitha. All values
are rounded to the nearest Hertz.

Gamelan Swastigitha: Slendro
I II III

Instrument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 118 133 155 178 206 236 271
gender 121 135 155 178 205 234 271 310 358 412 471 542 623 719
gender 236 265 310 358 412 471 542 623 719 825 950 1093 1266
saron 272 310 358 412 472 544
saron 544 626 719 828 951 1094 1268
bonang 271 308 355 413 472 544 622 717 825 954 1094 1250
bonang 472 545 622 717 825 954 1094 1268
kenong 357 412 472 623
gambang 238 272 311 361 415 475 545 626 725 828 956 1106 1276

median 120 134 155 178 205 236 271 310 358 412 472 544 623 719 825 954 1094 1268

Table L.3. Tuning of each slendro instrument of Gamelan Kyai Kaduk Manis. All
values are rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Slendro
I II III

Instrument 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2
gender 120 140 160 183 210 241 279 320 367 420 480 557 639 733
gender 241 279 320 366 420 482 556 638 733 838 968 1114 1279
gender 120 139 159 182 209 240 277
saron 241 280 322 367 421 482 557
saron 244 281 322 369 423 482 557
saron 482 559 651 738 840 968 1113
saron 484 560 643 738 841 978 1129 1283
saron 483 569 641 739 853 985 1139
bonang 281 322 367 423 484 560 641 736 837 966 1114 1268
bonang 557 643 736 838 972 1113 1281
kenong 242 320 369 421 478 557
gambang 155 180 206 237 275 319 366 415 474 556 637 725 844 961 1112 1266

median 120 140 159 182 209 241 279 320 367 421 482 557 641 738 840 968 1114 1278
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Table L.4. Tuning of each pelog instrument of Gamelan Swastigitha. All values are rounded to the nearest Hertz.

Gamelan Swastigitha: Pelog
I II III

Instrument 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4
gender 120 151 160 174 222 234 299 324 354 443 471 599 643 709
gender 240 300 322 354 444 474 600 642 709 887 950 1203 1305 1414
gender 151 160 174 207 222 236 258
saron 300 326 354 415 445 472 524
saron 602 645 709 829 890 953 1052
saron 1205 1312 1427 1674
bonang 300 324 353 415 444 472 525 599 645 711 820 886 950 1042
bonang 602 643 708 828 887 950 1052 1205 1311 1427 1676
gambang 157 178 215 234 258 328 354 444 471 522 645 712 892 961 1047

median 120 151 160 174 207 222 235 258 300 324 354 415 444 472 524 600 644 709 828 887 950 1050 1205 1311 1427 1675
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Table L.5. Tuning of each pelog instrument of Gamelan Kyai Kaduk Manis. All values are rounded to the nearest Hertz.

Gamelan Kyai Kaduk Manis: Pelog
I II III

Instrument 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3
gender 120 149 164 180 225 241 303 332 361 451 480 604 661 717
gender 149 164 179 210 223 241 264
gender 241 266 334 359 452 479 537 661 717 891 972 1073 1311 1427
gender 240 304 332 361 451 480 606 662 717 892 972 1213 1307 1425
gender 120 135 166 180 226 241 269 332 361 452 480 538 661 717
saron 306 334 362 423 452 482 540
saron 362 421 452 483 538
saron 618 672 733 860 898 988 1082
saron 612 668 729 844 904 991 1082
saron 974 1116 1233 1453
saron 608 665 727 838 892 977 1101
bonang 310 336 362 424 445 482 538 606 668 728 844 892 973 1074
bonang 604 682 732 840 892 976 1077 1219 1323 1428
kenong 242 332 362 454 478 536 611

median 120 135 149 164 180 210 225 241 266 305 332 361 423 452 480 538 607 665 727 844 892 975 1082 1219 1311 1428
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[Scarlatti performed on classical guitar.]

[D: 15] Gamelan Batel Wayang Ramayana, CMP Records, NY CMP CD 3003
(1990). [Gamelan music accompanying the Ramayana saga.]

[D: 16] Gamelan of Cirebon, King Records, KICC 5130, Tokyo, Japan (1991). [An
iron gamelan from Cirebon, played in the slendro tuning.]

[D: 17] Gamelan Gong Gede of Batur Temple, King Records, KICC 5153, Tokyo,
Japan (1992). [A Balinese gamelan.]

[D: 18] Gamelan Gong Kebyar of “Eka Cita,” Abian Kapas Kaja, King Records,
KICC 5154, Tokyo, Japan (1992). [Award-winning gamelan from Denpassar,
Bali.]

[D: 19] Gender Wayang of Sukawati Village, King Records, KICC 5156, Tokyo,
Japan (1992). [The gamelan that accompanies the shadow puppet.]

[D: 20] The Gyuto Monks, Freedom chants from the roof of the world, Rykodisc
(1989). [Overtone singing is common in the Tibetan tradition.]

[D: 21] A. J. M. Houtsma, T. D. Rossing, and W. M. Wagenaars, Auditory Demon-
strations (Phillips compact disc No. 1126-061 and text) Acoustical Society of
America, Woodbury NY (1987). [A wealth of great sound examples: thorough
and thought provoking.]

[D: 22] Huun-Huur-Tu, “60 horses in my herd,” Shanachie 64050 (1993). [Throat
singing is integral to these traditional Tuvan songs.]

[D: 23] On the Edge, Selections of the 1996 International Computer Music Society,
Hong Kong (1996).

[D: 24] E. Katahn, Beethoven In The Temperaments, Gasparo Records, No. 332
(1998). [Performances of several Beethoven piano sonatas in authentic temper-
aments.]

[D: 25] Klênêngan Session of Solonese Gamelan, King Records, KICC 5185, Tokyo,
Japan (1994). [Gamelan from the palace (kraton) in Solo, played by musicians
from the National Broadcasting Company (RRI).]

[D: 26] E. Lyon, Red Velvet, Smart Noise Records (1996) [Music that “hypernavi-
gates a compressed informational world.” Thanks, Eric.]

[D: 27] Music from the Morning of the World, Elekctra/Asylum/Nonesuch Records,
9 79196-2, Rockefeller Plaza, NY (1988). [Balinese gamelan and the Ramayana
monkey chant.]

[D: 28] T. Murail, Gondwana/Désintégrations/Time and Again, performed by Y.
Prin and P. Plissier, Salabert, Scd8902. [Spectral compositions.]

[D: 29] Music for the Gods, Ryko RCD 10315 (1992). [Recorded in 1941 and recently
reissued. Compare the early sound of the gamelan with what it has become
today.]

[D: 30] A. Newman, Scarlatti Sonatas NCD 60080, Newport Classic, RI (1989).
[Scarlatti played on the “Magnum Opus” harpsichord, “maybe the largest harp-
sichord ever built.”]

[D: 31] H. Partch, The Bewitched, Performed by members of the University of Illi-
nois Musical Ensemble, CRI CD7001, 179 W. 74th St. NY (1990). [Partch’s
dance-satire is performed with a variety of his instruments tuned to his 43-tone
just scale.]
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[D: 32] H. Partch, Music of Harry Partch, CRI CD7000, New York (1989). [A “best
of” Partch: new scales, new instruments, a new listening experience.]

[D: 33] I. Pogorelich, Domenico Scarlatti Sonaten, Deutsche Grammophon 435-855-
2 (1992). [Scarlatti adapted for piano.]

[D: 34] L. Polansky, Simple Harmonic Motion, Artifact Recordings, Berkeley, CA
(1994). [Works for instruments in just intonation.]

[D: 35] S. Reich, Phase Patterns Robi Droli/Newtone, No. 5018, (2000). [Exploits
rhythmic phasing.]

[D: 36] J. C. Risset, Sud, Dialogues, Inharmonique, Mutations, INA C 1003,
INA.GRM Paris, France (1987). [Use of inharmonic materials in a “western”
context.]

[D: 37] S. Ross, Scarlatti, Best Sonatas Erato, 2292-45423-2, Erato-Disques, Radio
France (1988). [Scarlatti recorded at the Chapelle du Chateau d’Assas.]

[D: 38] I. W. Sadra, Karya, Lyrichord LYRCD 7421. [New music from an influential
Indonesian composer.]

[D: 39] Thailand-Ceremonial and Court Music.
[D: 40] W. A. Sethares, Xentonality, Odyssey Records XEN2001 (1997). [A variety

of equal and unequal temperaments played with related timbres. Adaptively
tuned and found-sound pieces. Thoroughly xentonal. Available from Frog Peak
Music, Box 1052, Lebabnon NH 03766 and from amazon.com.]

[D: 41] W. A. Sethares, Exomusicology, Odyssey Records EXO2002 (2002). [A va-
riety of equal and unequal temperaments played with related timbres. Adap-
tively tuned and found-sound pieces. Thoroughly xentonal. Available from ama-
zon.com.]

[D: 42] L. Sgrizzi, Vingt-quatre Sonates pour Clavecin, Accord, 1491014, France
(1984). [Scarlatti played on the harpsichord at the Cathedrale San Lorenzo.]

[D: 43] J. Teller, My Inner Ear, The Tyte Institute, Hesselogado 4,3 DC-2100,
Copenhagen, Denmark. [Concert for three samplers in the spiral corridor of
the Roundtower.]

[D: 44] F. Terenzi, Music from the Galaxies, Island Records, Inc., New York (1991).
[Maps from interstellar radio telescope data into sound waves, creating interest-
ing outer space sounds.]

[D: 45] Instrumental Music of Northeast Thailand, King Records, KICC 5124,
Tokyo, Japan (1991). [Pong lang is a kind of wooden xylophone and a style
of music.]
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The sound files on the CD-ROM are saved in the .mp3
format, which is readable using Windows Media Player
or Quicktime. Navigate to TTSS/sounds/Chapter/ and
launch the *.mp3 file by double clicking, or by opening
the file from within the player. References in the body
of the text to sound examples are coded with [S:] to
distinguish them from references to the bibliography,
discography, video examples, and web links. The sound
examples may also be accessed using a web browser.
Open the file TTSS/Contents.html in the top level of
the CD-ROM and navigate using the html inteface.

Sound Examples for Chapter 1

[S: 1] Challenging the octave (challoct.mp3 0:24). The spectrum of a sound is
constructed so that the octave between f and 2f is dissonant while the nonoctave
f to 2.1f is consonant. See p. 2 and video [V: 1].

[S: 2] A simple tune (simptun1.mp3 0:47). Harmonic timbres in the 12-tet scale set
the stage for the next three examples. Chord pattern is taken from Plastic City,
sound example [S: 38]. See pp. 3 and 322.

[S: 3] The “same” tune (simptun2.mp3 0:47). Harmonic timbres in the 2.1-
stretched scale appear uniformly dissonant. See p. 3.

[S: 4] The “same” tune (simptun3.mp3 0:47). 2.1-stretched timbres are matched to
the 2.1-stretched scale. See p. 3.

[S: 5] The “same” tune (simptun4.mp3 0:47). 2.1-stretched timbres in 12-tet ap-
pear uniformly dissonant. See p. 3.

Sound Examples for Chapter 2

[S: 6] Virtual pitch ascending (virtpitchup.mp3 0:22). Harmonic and inharmonic
timbres alternate with sine waves at the appropriate virtual pitch. See Table 2.2
on p. 37 for a listing of all frequencies in this example.

[S: 7] Virtual pitch descending (virtpitchdown.mp3 0:22). Harmonic and inhar-
monic timbres alternate with sine waves at the appropriate virtual pitch. Com-
paring this example with [S: 6] shows how virtual pitch may be influenced by
context. See Table 2.2 on p. 37 for a listing of all frequencies in this example.
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Sound Examples for Chapter 3

[S: 8] Beating of sine waves I (beats1.mp3 0:24). See p. 41 and video [V: 5].
(i) A sine wave of 220 Hz (4 seconds)
(ii) A sine wave of 221 Hz (4 seconds)
(iii) Sine waves (i) and (ii) together (8 seconds)

[S: 9] Beating of sine waves II (beats2.mp3 0:24). See p. 41 and video [V: 6].
(iv) A sine wave of 220 Hz (4 seconds)
(v) A sine wave of 225 Hz (4 seconds)
(vi) Sine waves (iv) and (v) together (8 seconds)

[S: 10] Beating of sine waves III (beats3.mp3 0:24). See p. 41 and video [V: 7].
(vii) A sine wave of 220 Hz (4 seconds)
(viii) A sine wave of 270 Hz (4 seconds)
(ix) Sine waves (vii) and (viii) together (8 seconds)

[S: 11] Dissonance between two sine waves (sinediss.mp3 1:06). A sine wave of
fixed frequency 220 Hz is played along with a “sine wave” with frequency that
begins at 220 Hz and slowly increases to 470 Hz. See p. 45 and video [V: 8].
Figure 3.6 on p. 46 provides a visual representation.

[S: 12] Dissonance between two sine waves: Binaural Presentation
(sinedissbin.mp3 1:06). The same as [S: 11], except the sine wave of
fixed frequency is panned completely to the right and the variable sine wave
is panned completely to the left. Using headphones will ensure that only one
channel is audible to each ear. The dissonance percept is still present, although
diminished. See p. 49.

Sound Examples for Chapter 4

[S: 13] Dream to the Beat (dreambeat.mp3 5:28). A 19-tet pop tune with a bass
that beats like the heart. A microtonal love song. See p. 59.

[S: 14] Incidence and Coincidence (incidence.mp3 5:23). What happens when you
play simultaneously in different tunings? Each note in this 19-tet melody is
“harmonized” by a note from 12-tet, resulting in some unusual inharmonic sound
textures. The distinction between “timbre” and “harmony” becomes confused,
although the piece is by no means confusing. See p. 59.

[S: 15] Haroun in 88 (haroun88.mp3 3:36). In all 12-tet instruments (like the pi-
ano), there are 100 cents between adjacent steps. Haroun in 88 uses a tuning
in which there are 88 cents between adjacent steps, a scale first explored by
Gary Morrison [B: 113]. One feature of this scale is that it does not repeat at
the octave; instead, it has 14 equal steps in a stretched “pseudo-octave” of 1232
cents. One way to exploit such “strange” tunings is to carefully match the tonal
qualities of the sounds to the particular scale. See pp. 60, 277, and 283.

[S: 16] 88 Vibes (vibes88.mp3 3:47). Also in the 88-cent-per-tone tuning, 88 Vibes
features a spectrally mapped “vibraphone.” See pp. 60, 277, and 283.

[S: 17] Sonata K380 by Scarlatti (k380tet12.mp3 1:29). Performed in 12-tet in the
key of C. See pp. 61 and 224.

[S: 18] Sonata K380 by Scarlatti (K380JImajC.mp3 1:29). Performed in just intona-
tion centered in the key of C. See p. 61.
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[S: 19] Sonata K380 by Scarlatti (K380JIC+12.mp3 1:29). Performed in just intona-
tion centered in the key of C and 12-tet simultaneously. The notes where the
differences are greatest stand out clearly. See p. 61.

[S: 20] Sonata K380 by Scarlatti (K380JImajC+.mp3 1:29). Performed in just into-
nation centered in the key of C�. See p. 63.

[S: 21] Sonata K380 by Scarlatti (K380JImeanC.mp3 1:29). Performed in the quarter
comma meantone tuning centered in the key of C. See p. 66.

[S: 22] Sonata K380 by Scarlatti (K380JImeanC+.mp3 1:29). Performed in the quar-
ter comma meantone tuning centered in the key of C�. See p. 66.

[S: 23] Imaginary Horses (imaghorses.mp3 3:58). This sequence contains the har-
monic spectra of a piano and a “perc flute,” which are matched to the simple
integer ratios

1/1 6/5 4/3 3/2 8/5 9/5 2/1

to form a Just Intonation scale that was called “solemn procession” by Lou
Harrison. The consequence is a piano and synth duet with galloping piano riff
and bucking synth lines that does not sound solemn to me. See p. 61.

[S: 24] Joyous Day (joyous.mp3 4:35). This uses the just intonation

1/1 9/8 5/4 3/2 5/3 15/8 2/1

created by Lou Harrison. To my ears, it is a majestic, extra-major sounding
tuning. See p. 61.

[S: 25] What is a Dream? (whatdream.mp3 3:51). Although the ancient Greeks did
not record their music, they did write about it. They noticed the relationships
between musical pitches and mathematical ratios. Some of the ancient scales
fell into disuse, among them the “aeolic” scale, which uses the justly tempered
pitches

1/1 9/8 32/27 4/3 3/2 128/81 16/9 2/1.

Lyrics expertly crafted by a non-ancient Greek, George Sethares. See p. 61.
[S: 26] Just Playing (justplay.mp3 2:52). In this piece, the 12 notes of the key-

board are mapped:

cents: 0 19 205 267 386 498 583 702 766 884 969 1088
mapped to: C C� D D� E F F� G G� A A� B
interval: 1.0 1.011 1.125 1.167 1.25 1.33 1.4 1.5 1.56 1.67 1.75 1.87
ratio: 1/1 x/x 9/8 7/6 5/4 4/3 7/5 3/2 11/7 5/3 7/4 15/8

This includes all ratios of the JI major scale, along with a few extras. The small
interval between C and C�, for which there is no (small integer) just ratio, was
used primarily for trills. See p. 61.

[S: 27] Signs (signs.mp3 3:41). One of the more prolific ancient Greeks (from the
point of view of discovering and codifying musical scales) was Archytas, who
lived about 400 B.C. Although his music has been lost, his tunings have survived.
This song is played in one of Archytas’ chromatic scales that is based on equal
“tetrachords” (a set of four descending notes, see p. 55) with the intervals

28/27 243/224 32/27.

It is rather amazing that the sonorous beauty of scales such as this were surren-
dered by the European musical tradition for centuries in exchange for a keyboard
that could be played equally in all keys. See p. 61.



402 S: Sound Examples on the CD-ROM

[S: 28] Immanent Sphere (imsphere.mp3 4:17). Each note is an overtone of a single
underlying fundamental. See p. 69.

[S: 29] Free from Gravity (freegrav.mp3 3:28). The melodic and harmonic motion
conform to a simple additive scale, a regular lattice that organizes pitch space
additively in frequency. See p. 69.

[S: 30] Intersecting Spheres (intersphere.mp3 3:33). The basic timbre is harmonic,
and all partials of all tones are integer multiples of 50 Hz. The tuning is similarly
a spectral scale consisting of all multiples of 50 Hz (although only a small subset
are actually used.) The timbres were created using additive-style synthesis with
the program Metasynth [W: 23], and the results were passed through various
nonlinearities in Matlab [W: 21]. This causes many new overtones at ever higher
frequencies that eventually hit the fold over frequency (22050 for normal CD
recording) and begin descending. Because 22050 is divisible by 50, when the
partials fold back, they still lie on the same 50 Hz lattice—they just augment (or
decrease) the amplitude of the partials. So no matter how many nonlinearities
are used, the sound remains within the same harmonic template. Much of the
character (the “hair-raising on end”) of the timbres is due to this unorthodox
method of creating the sounds. See p. 69.

[S: 31] Over Venus (overvenus.mp3 4:25). This melody floats above a single low
tone, playing on the multidimensional harmonics. See p. 69.

[S: 32] Pulsating Silences (pulsilence.mp3 3:33). A single living note that changes
without moving, that grows while remaining still. Even if there was only one
note, there would still be music. See p. 69.

[S: 33] Overtune (overtune.mp3 3:54). Additive synthesis can create very precise
and clean sounds. All partials are from the same harmonic series. See p. 69.

[S: 34] Fourier’s Song (fouriersong.mp3 3:54). Also known as Table 4.1: Proper-
ties of the Fourier Transform, this song was written by Bob Williamson and
Bill Sethares “because we love Fourier Transforms, and we know you will too.”
Perhaps you have never taken a course where everything is laid out in a single
song. Well, here it is...a song containing 17% of the theoretical results, 25%
of the practical insights, and 100% of the humor of ECE330: Signals and Sys-
tems. The music is played in an additive (overtone) scale that consists of all
harmonics of 100 Hz. See p. 69 or visit the web pages at [W: 8]. Lyrics appear
in Appendix K.

Sound Examples for Chapter 6

[S: 35] Tritone dissonance curve (tridiss.mp3 1:06). This is the auditory version
of Fig. 6.2. See p. 101 and video [V: 9].

[S: 36] Tritone chime (trichime.mp3 0:37). First, you hear a single note of the
“tritone chime.” Next, the chime plays the three chords from Fig. 6.3. The
chords are then repeated using a more “organ-like” tritone timbre. See p. 102
and video [V: 10].

[S: 37] Tritone chord patterns (trichord.mp3 0:52). This sound example presents
two chord patterns, each repeated once. Which passage appears more consonant,
the major or the diminished?

(a) F major, C major, G major, C major
(b) C dim, D dim, D� dim, C dim
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Which of the next two patterns feels more resolved?

(c) C dim, C major, C dim, C major
(d) C major, C dim, C major, C dim

Musical scores for these four segments are given in Fig. 6.4. See p. 103.
[S: 38] Plastic City: A Stretched Journey (plasticity.mp3 6:00). The “same” piece

is played with harmonic sounds in 12-tet, with 2.2-stretched sounds, with 1.87-
compressed sounds, and finally with 2.1-stretched sounds, all in their respective
stretched or compressed tunings. See pp. 58, 109, and 321.

[S: 39] October 21st (october21.mp3 1:42). There are no real octaves (defined as
a frequency ratio of 2 to 1) anywhere in this piece. The sounds in October 21st
are constructed so that the octave between f and 2f is dissonant, whereas the
nonoctave between f and 2.1f is consonant. Thus, the unit of repetition is a
“stretched pseudo-octave” with a frequency ratio of 2.1 to 1. As the structure of
the timbres are matched to the structure of the scale, these nonoctave intervals
can be consonant, even as the (real) octave is dissonant. The same 2.1-stretched
tones were demonstrated in [S: 4]. See pp. 58 and 110.

[S: 40] A note with partials at 4:5:6:7 (4567.mp3 0:08). This note/chord is built
from four sine wave partials with frequencies 400, 500, 600, and 700 Hz. See
p. 100.

[S: 41] A note with partials at 1/7:1/6:1/5:1/4 (7654.mp3 0:08). This note/chord
is built from four sine wave partials with frequencies 400, 467, 560, and 700 Hz.
See p. 100.

[S: 42] 4:5:6:7 vs. 1/7:1/6:1/5:1/4 (4567 7654.mp3 0:16). The two notes from
sound examples [S: 40] and [S: 41] alternate. Which is more consonant? See
p. 100.

Sound Examples for Chapter 7

[S: 43] Tingshaw (tingshaw.mp3 4:03). The tingshaw is a small handbell with a
bright and cheerful ring, and it is played in a scale determined by the spectrum
of the bell itself. Tingshaw is discussed extensively in Chap. 7. See p. 131.

[S: 44] Chaco Canyon Rock (chacorock.mp3 3:38). Piece based on the rock de-
scribed at length in Chap. 7. See pp. 139 and 343.

[S: 45] Duet for Morphine and Cymbal (morphine.mp3 3:21). Each angle in an x-
ray diffraction pattern can be mapped to an audible frequency, transforming
a crystalline structure into sound. In this piece, complex clusters of tones de-
rived from morphine crystal resonances are juxtaposed over a rhythmic bed
supplied by the more percussive timbre of the cymbal. The mapping technique
is described at length in Chap. 7. See p. 145.

Sound Examples for Chapter 8

[S: 46] Adaptation of stretched timbres: minor chord (streminoradapt.mp3 0:06).
Stretched timbres play a 12-tet minor chord. After adaptation, this converges
to the stretched minor chord detailed in Table 8.2. See p. 169.
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[S: 47] Adaptation of stretched timbres: major chord (stremajoradapt.mp3 0:06).
Stretched timbres play a 12-tet major chord. After adaptation, this converges
to the stretched major chord detailed in Table 8.2. See p. 169.

[S: 48] Circle of fifths in 12-tet (circle12tet.mp3 0:38). The circle of fifths moves
through all 12 keys, demonstrating one of the great strengths of 12-tet: reason-
able consonance in all keys. See p. 168.

[S: 49] Circle of fifths in C major just intonation (circleJICmaj.mp3 0:38). The
circle of fifths demonstrates one of the liabilities of JI: keys that are distant from
the tonal center are unuseable. See p. 168.

[S: 50] Circle of fifths in adaptive tuning (circleadapt.mp3 0:38). Applying adap-
tation to the circle of fifths allows all chords to maintain the simple integer ratios,
combining the best of 12-tet (modulation to all keys) with the consonance of JI.
See p. 169.

[S: 51] Syntonic comma example: JI (syntonJIdrift.mp3 0:43). Each repeat of the
phrase in Fig. 8.7 the tuning drifts lower. See p. 170.

[S: 52] Syntonic comma example: 12-tet (synton12tet.mp3 0:21). The phrase of
Fig. 8.7 is performed in 12-tet. See p. 170.

[S: 53] Syntonic comma example: adaptive tuning (syntonadapt.mp3 0:21). The
phrase of Fig. 8.7 does not drift yet maintains fidelity to the simple integer
ratios when played in adaptive tuning with harmonic sounds. See p. 170.

[S: 54] Listening to adaptation (listenadapt.mp3 0:32). Each note has a spectrum
containing four inharmonic partials at f, 1.414f, 1.7f, and 2f . Three notes are
initialized at the ratios 1, 1.335, and 1.587 (the 12-tet scale steps C, F , and
G�) and allowed to adapt. The final adapted ratios are 1, 1.414, and 1.703. The
adaptation is done three times:

(i) With extremely slow adaptation (very small stepsize)
(ii) Slow adaptation
(iii) Medium adaptation

See pp. 99 and 173.
[S: 55] Scarlatti’s K1 Sonata in 12-tet. (k001tet12.mp3 0:32). The first phrase of

the sonata. See Fig. 8.10 on p. 175.
[S: 56] Scarlatti’s K1 Sonata in adaptive tuning (k001adaptX.mp3 0:32). Poor

choice of stepsizes can lead to wavering pitches in the adaptive tuning. See
Fig. 8.10 on p. 175.

[S: 57] Scarlatti’s K1 Sonata in adaptive tuning. (k001adapt.mp3 0:32). Better
choices of stepsizes can ameliorate the wavering pitches. See Fig. 8.10 on p. 175.

[S: 58] Wavering pitches (waverpitch.mp3 0:21). The second measure of Domenico
Scarlatti’s harpsichord sonata K1 is played three ways:

(i) Scarlatti’s K1 sonata in 12-tet.
(ii) Scarlatti’s K1 sonata with adaptation. Observe the wavering pitch

underneath the trill at the end of the second measure.
(iii) Scarlatti’s K1 sonata with adaptation, modified so that “new” notes

are adapted ten times as fast as held notes. The wavering pitch is
imperceptible.

See p. 175.
[S: 59] Sliding pitches (slidepitch.mp3 0:45). The kinds of pitch changes caused

by the adaptive tuning algorithm are often musically intelligent responses to the
context of the piece.
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(a) A simple chord sequence from F major to G major is transformed
by the adaptive tuning algorithm. The sliding pitch of one note stands
out. Each measure is played separately, then together.
(b) The adaptive tuning algorithm “changes” the chord on the fourth
beat.

See p. 176.
[S: 60] Three Ears (three ears.mp3 4:24). As each new note sounds, its pitch (and

that of all currently sounding notes) is adjusted microtonally (based on its
spectrum) to maximize consonance. The adaptation causes interesting glides
and microtonal pitch adjustments in a perceptually sensible fashion. Listen for
the two previous segments from [S: 59]. Many similar effects occur throughout.
See pp. 177, 189, and 191.

Sound Examples for Chapter 9

[S: 61] Adaptive Study No. 1 (adapt study1.mp3 2:36). Example of the pitch glides
and wavering pitches using Adaptun. See p. 185.

[S: 62] Adaptive Study No. 2 (adapt study2.mp3 2:28). Using Adaptun’s context
feature, the wandering of the pitch is reduced. See pp. 185 and 188.

[S: 63] Compositional technique: example 1 (breakdrums1.mp3 0:10). A standard
MIDI drum file from the Keyfax Software [W: 17] “Breakbeat” collection is
performed using drum sounds. See Fig. 9.3 on p. 191.

[S: 64] Compositional Technique: example 2 (breakdrums2.mp3 0:10). The same
MIDI file as in [S: 63] is reochestrated with guitar and bass guitar. See p. 191.

[S: 65] Compositional technique: example 3 (breakmap1.mp3 0:20). Editing the
MIDI data in Fig. 9.3 leads to the sequence in Fig. 9.4 on p. 191. The orig-
inal cymbal part is time stretched and offset in pitch.

[S: 66] Compositional technique: example 4 (breakmap2.mp3 0:20). A variant of
[S: 65]. See p. 191.

[S: 67] Compositional technique: example 5 (breakmap3.mp3 0:20) Another variant
of [S: 65]. See p. 191.

[S: 68] Compositional technique: example 6 (breakadapt1.mp3 0:23). Adaptation
the standard MIDI file of Fig. 9.4 using no context and default settings in
Adaptun. See p. 191.

[S: 69] Compositional technique: example 7 (breakrand1.mp3 0:20). The sequence
in Fig. 9.4 and sound example [S: 65] is transformed by randomizing the bass
line over an octave. See p. 192.

[S: 70] Compositional technique: example 8 (breakrand2.mp3 0:20). Randomiza-
tion of the “fast” line in Fig. 9.4 leads to this arpeggiated guitar. See p. 192.

[S: 71] Compositional technique: example 9 (breakrand3.mp3 0:20). Randomiza-
tion of the “slow” line in Fig. 9.4 leads to this synthesized melody. See p. 192.

[S: 72] Compositional technique: example 10 (breakadapt2.mp3 0:21). After adap-
tation, example [S: 71] sounds very different. See p. 192.

[S: 73] Compositional technique: example 11 (breakadapt3.mp3 0:47). Sound ex-
ample [S: 71] is adapted with full convergence of the algorithm. The sound
example is played twice: first without the melody, and then with. See p. 192.

[S: 74] Adventiles in a Distorium (adventiles.mp3 4:46). An adaptively tuned
composition featuring frenetically distorted guitars. See p. 189.
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[S: 75] Aerophonious Intent (aerophonious.mp3 3:24). An adaptively tuned com-
position orchestrated using an extreme form of hocketing. See p. 189.

[S: 76] Story of Earlight (earlight.mp3 3:53). An adaptively tuned recitation of
whispers and flutes. See p. 189.

[S: 77] Excitalking Very Much (excitalking.mp3 3:32). An adaptively tuned con-
versation between a synthetic bass and a synthetic clarinet. See p. 189.

[S: 78] Inspective Liquency (inspective.mp3 3:46). An adaptively tuned piece
where no note remains fixed. See p. 189.

[S: 79] Local Anomaly (localanomaly.mp3 3:27). This piece was created from a
standard MIDI drum track, which was randomized and orchestrated using var-
ious percussive stringed sounds such as sampled guitars and basses. The ex-
tremely dissonant but highly rhythmic soundscape was input into Adaptun, and
the notes adapted toward consonance. No context was used. See pp. 189 and
193.

[S: 80] Maximum Dissonance (maxdiss.mp3 3:24). Instead of minimizing the dis-
sonance, this piece maximizes the dissonance at every time instant. See pp. 189
and 195.

[S: 81] Persistence of Time (persistence.mp3 4:54). Polyrhythms beat three
against two, a paleo-futuristic audio conundrum where all intervals adapt to
maximize instantaneous consonance. See pp. 189 and 189.

[S: 82] Recalled Opus (recalledopus.mp3 3:45). At each instant in time, these “vi-
olins” strive to minimize dissonance. See pp. 185, 189, and 193.

[S: 83] Saint Vitus Dance (saintvitus.mp3 3:32). Begin with a MIDI drum pat-
tern. Use the pattern to trigger a sampled guitar sound; it is wildly dissonant
because the pitches are essentially random. At each time instant, perturb the
pitches of all currently sounding notes to the nearest intervals that maximize
consonance. Thus is born an adaptively tuned dance.

[S: 84] Simpossible Taker (simpossible.mp3 3:20). An adaptively tuned composi-
tion that began as a hip hop drum pattern. See pp. 189 and 191.

[S: 85] Wing Donevier (wing.mp3 3:17). An adaptively tuned composition in seven
beats per measure. See pp. 189 and 193.

Sound Examples for Chapter 13

[S: 86] 11-tet spectral mappings: before and after (tim11tet.mp3 1:20). Several dif-
ferent instrumental sounds alternate with their 11-tet spectrally mapped ver-
sions:

(i) Harmonic trumpet compared with 11-tet trumpet
(ii) Harmonic bass compared with 11-tet bass
(iii) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” synth
(vii) Harmonic “phase” synth compared with 11-tet “phase” synth

See p. 277 and video [V: 11].
[S: 87] 12-tet vs. 11-tet (tim11vs12.mp3 0:37). A short sequence of major chords

are played:
(viii) Harmonic oboe in 12-tet
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(ix) Spectrally mapped 11-tet oboe in 12-tet
(x) Harmonic oboe in 11-tet
(xi) Spectrally mapped 11-tet oboe in 11-tet

See p. 279 and video [V: 12].
[S: 88] The Turquoise Dabo Girl (dabogirl.mp3 4:16). Many of the kinds of effects

normally associated with (harmonic) tonal music can occur, even in such strange
settings as 11-tet (which is often considered among the hardest tunings in which
to play tonal music). Consider, for instance, the harmonization of the 11-tet pan
flute melody that occurs in the “chorus.” Does this have the feeling of some kind
of (perhaps unfamiliar) “cadence” as the melody resolves back to its “tonic?”
Spectral mapping of the instrumental sounds allows such xentonal motion. See
pp. 59 and 279.

[S: 89] The Turquoise Dabo Girl (first 16 bars) (dabogirlX.mp3 0:29). In 11-tet,
but using unmapped harmonic sounds. The “out-of-timbre” percept is unmis-
takable. See p. 279.

[S: 90] Tom Tom Spectral Mappings: Before and After (tomspec.mp3 0:37). Several
different instrumental sounds alternate with versions mapped into the spectrum
of a tom tom:

(i) Harmonic flute compared with tom tom flute
(ii) Harmonic trumpet compared with tom tom trumpet
(iii) Harmonic bass compared with tom tom bass
(iv) Harmonic guitar compared with tom tom guitar

See p. 281 and video [V: 13].
[S: 91] Glass Lake (glasslake.mp3 3:08). Instruments that are spectrally mapped

“too far” can lose their tonal integrity. When guitars, basses, and flutes are
transformed into the partial structure of a drum (a tom tom), they are almost
unrecognizable. But this does not mean that they are useless. All sounds in
this piece (except for the percussion) were demonstrated in [S: 90]. The “tom
tom” scale supports perceptible “chords,” though the chords are not necessarily
composed of familiar intervals. Tom Staley played a key role in writing and
performing Glass Lake. See pp. 277 and 281.

[S: 92] A harmonic cymbal (harmcym.mp3 0:23). A cymbal is spectrally mapped into
a harmonic spectrum. The resulting sound is pitched and capable of supporting
melodies and chords.

(i) The original sample contrasted with the spectrally mapped version
(ii) A simple “chord” pattern played with the original sample, and then

with the spectrally mapped version
See p. 282 and video [V: 14].

[S: 93] Sonork (sonork.mp3 3:15). The origin of each sound is a cymbal, spectrally
mapped to nearby harmonic templates to create the bass, synth, and other
instrumental sounds. See pp. 277 and 283.

[S: 94] Inharmonic drum (inharmdrum.mp3 0:59). This drum sound is incapable of
supporting melody or harmony. See p. 283.

[S: 95] Harmonic drum (harmdrum.mp3 1:29). The drum sound from [S: 94] is spec-
trally mapped to the nearest harmonic template. It can now support both
melody or harmony. See p. 283.

[S: 96] Harmonic and inharmonic drum (harm+inharm.mp3 1:29). The sounds from
[S: 94] (the original inharmonic drum) and [S: 95] (the spectrally mapped ver-
sion) are combined. See p. 283.
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[S: 97] Hexavamp (hexavamp.mp3 3:22). A “classical” guitar is spectrally mapped
into 16-tet and overdubbed with itself. See pp. 59 and 277.

[S: 98] Seventeen Strings (17strings.mp3 3:22). A sampled Celtic harp is trans-
formed for compatibility with 17-tet. See pp. 59, 279, and 277.

[S: 99] Unlucky Flutes (13flutes.mp3 3:51). Flutes, guitars, bass, and keyboards
are spectrally mapped into 13-tet. All instruments clearly retain their tonal
identity, and yet sound harmonious even on sustained passages. Compare with
the 13-tet demonstration on Carlos’ Secrets of Synthesis [D: 6], which is intro-
duced, “But the worst way to tune is probably this temperament of 13 equal
steps.” See pp. 59 and 277.

[S: 100] Truth on a Bus (truthbus.mp3 3:22). A 19-tet guitar piece that is un-
abashedly diatonic. If you were not listening carefully, you might imagine that
this was a real guitar, tuned normally, and played skillfully. You would be very
wrong. See pp. 277 and 59.

[S: 101] Sympathetic Metaphor (sympathetic.mp3 3:59). This guitar has 19 tones
in each octave, and the melody dances pensively on a delicately balanced timbre.
Peter Kidd plays the excellent fretless bass. See pp. 59 and 277.

Sound Examples for Chapter 14

[S: 102] Ten Fingers (tenfingers.mp3 3:18). Demonstrates the kind of consonance
effects achievable in 10-tet. The guitar-like 10-tet timbre is created by spectrally
mapping a sampled guitar into an induced spectrum. The full title of this piece
is If God Had Intended Us To Play In Ten Tones Per Octave, Then He Would
Have Given Us Ten Fingers. See pp. 59, 249, 277, 293, and 322.

[S: 103] Ten Fingers: harmonic guitar (tenfingersX.mp3 0:28). The first 16 bars
of Ten Fingers [S: 102] are played with a harmonic (sampled) guitar. The out-
of-spectrum effect is unmistakable. See p. 294.

[S: 104] Circle of Thirds (circlethirds.mp3 3:41). There is an interesting and
beautiful chord pattern in 10-tet that is analogous to (but very different from)
the traditional circle of fifths. This piece cycles around the Circle of Thirds over
and over: first fast, then slow, and then fast again. See p. 297.

[S: 105] Isochronism (isochronism.mp3 3:55). When there are ten equal tones in
each octave, special tone colors are needed to align the partials into consonant
patterns. See p. 277 and p. 298 for a description of the 10-tet chord patterns.

[S: 106] Anima (anima.mp3 4:03). Uses modified timbres to effect a balance be-
tween coherence and chaos, between the obvious and the obscure. See p. 277.
Exploits the 10-tet tritone chords described starting on p. 300.

[S: 107] Swish (swish.mp3 3:20). Timbres constructed in Metasynth swirl and mu-
tate as the piece evolves in 5-tet, which is analogous to a wholetone scale inside
10-tet. See p. 59.

Sound Examples for Chapter 15

[S: 108] Tuning of a classical Thai piece (thai7tet.mp3 0:28). Demonstrates the
procedure whereby the tuning of a piece can be found from the recording. Begins
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with the first 10 seconds of Sudsaboun from [D: 39] and then separates the
melody into individual notes, each of which is compared with a sine wave to
determine its pitch. See Sect. 15.2 on p. 304.

[S: 109] Comparison of harmonic sounds and their spectrally mapped 7-tet versions
(7tetcompare.mp3 0:25). Three instruments are demonstrated:

(i) Three different notes of a bouzouki
(ii) Three different notes of a harp
(iii) A pan flute

See pp. 311 and 313.
[S: 110] Comparison between 7-tet and a 12-tet major scale (7vs12.mp3 1:19). The

theme of the simple tune from sound example [S: 2] is played first in 12-tet and
then in 7-tet, using the “naive” mapping between 7-tet and the diatonic (major)
scale defined in (15.2) and using harmonic timbres. See p. 312.

[S: 111] Comparison between 7-tet and a 12-tet major scale (7vs12bar.mp3 1:19).
The theme of the simple tune from sound example [S: 2] is played first in 12-tet
and then in 7-tet, using the “naive” mapping between 7-tet and the diatonic
(major) scale defined in (15.2) with timbres have been mapped to the spectrum
of an ideal bar. See p. 312.

[S: 112] Scarlatti’s K380 in 7-tet (K380tet7.mp3 1:29). Using the “naive” mapping
between 7-tet and the diatonic (major) scale of (15.2), Scarlatti’s theme looses
its harmonic meaning. More conventional tunings of K380 can be heard in sound
examples [S: 17] through [S: 22]. The timbres are harmonic. See p. 312.

[S: 113] Scarlatti’s K380 in 7-tet (K380tet7bar.mp3 1:29). Using the “naive” map-
ping between 7-tet and the diatonic (major) scale of (15.2), Scarlatti’s theme
loses its harmonic meaning. More conventional tunings of K380 can be heard in
sound examples [S: 17] through [S: 22]. The timbres have been mapped to the
spectrum of an ideal bar. See p. 312.

[S: 114] Scarlatti’s K380 in 12-tet (K380tet12bar.mp3 1:29). This performance of
K380 uses timbres that have been mapped to the spectrum of an ideal bar. See
p. 312.

[S: 115] March of the Wheels (marwheel.mp3 3:38). The notes of a standard MIDI
drum track are mapped into the 7-tet scale, creating the rhythmic foundation
for this piece. The notes are randomized, creating a variety of serendipitous
melodies. See pp. 59 and 313.

[S: 116] Pagan’s Revenge (pagan.mp3 3:55). The notes of a standard MIDI file (Pa-
ganini’s Caprice No.24 performed by D. Lovell) are mapped into 7-tet, creating
the foundation for this piece. At the halfway point, the MIDI data in the file was
time reversed so that the theme proceeds forward and then backward—finally
ending on the first note. See pp. 59 and 315.

[S: 117] Nothing Broken in Seven (broken.mp3 3:29). A single six-note isorhythmic
melody is repeated over and over, played simultaneously at five different speeds.
See pp. 59 and 315.

[S: 118] Phase Seven (phase7.mp3 3:41). A single eight-note isorhythmic melody
is repeated over and over, played simultaneously at five different speeds. See
pp. 59 and 315.
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The video files on the CD-ROM are saved in the .avi
format, which is readable using Windows Media Player
or Quicktime. Navigate to TTSS/Videos/ and launch
the *.avi file by double clicking, or by opening the
file from within the player. References in the body of
the text to the video examples are coded with [V:] to
distinguish them from references to the bibliography,
discography, and sound examples. The video examples
may also be accessed using a web browser. Open the file
TTSS/Contents.html in the top level of the CD-ROM
and navigate using the html inteface.

[V: 1] Challenging the Octave (challoct.avi 0:21). See p. 2 and sound example
[S: 1]. The spectrum of the sound is constructed so that the octave between f
and 2f is dissonant while the nonoctave f to 2.1f is consonant.

[V: 2] Pitch of Periodic Sounds (pitchclicks.avi 0:21). See p. 33. The five buzzy
sounds all have the same period; the pitch jumps up an octave somewhere
between (a) and (e).

[V: 3] Virtual Pitch of Harmonic Partials (virtpitch.avi 0:29). See p. 35. Sine
waves at frequencies 1040, 1300, and 1560 are presented individually and then
together. With all three sounding, the primary percept is of a low buzzy sound
at a pitch corresponding to 260 Hz.

[V: 4] Virtual Pitch of Inharmonic Partials (virtpitchX.avi 0:30). See p. 35. Sine
waves at frequencies 1060, 1320, and 1580 are presented individually and then
together. With all three sounding, the primary percept is of a low buzzy sound
at a pitch corresponding to about 264 Hz, although this is less clear than when
the partials are harmonically related, as in [V: 3].

[V: 5] Beating of Sine Waves I (beats1.avi 0:23). See p. 41 and sound example
[S: 8].

[V: 6] Beating of Sine Waves II (beats2.avi 0:23). See p. 41 and sound example
[S: 9].

[V: 7] Beating of Sine Waves III (beats3.avi 0:23). See p. 41 and sound example
[S: 10].

[V: 8] Dissonance Between Two Sine Waves (sinediss.avi 1:06). See p. 45 and
sound example [S: 11]. A sine wave of fixed frequency 220 Hz is played along
with a “sine wave” with frequency that begins at 220 Hz and slowly increases
to 470 Hz.

[V: 9] Tritone Dissonance Curve (tridiss.avi 1:04). See p. 101 and sound exam-
ple [S: 35]. This is the auditory version of Fig. 6.2.

[V: 10] Tritone Chime (trichime.avi 0:42). See p. 102 and sound example [S: 36].
First, you hear a single note of the “tritone chime.” Next, the chime plays the
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three chords from Fig. 6.3. The chords are then repeated using a more “organ-
like” tritone timbre.

[V: 11] 11-tet Spectral Mappings: Before and After (tim11tet.avi 1:15). See p. 277
and sound example [S: 86]. Several different instrumental sounds alternate with
their 11-tet spectrally mapped versions.

[V: 12] 12-tet vs. 11-tet (tim11vs12.avi 0:38). See p. 279 and sound example
[S: 87]. A short sequence of chords is played that compares spectrally mapped
11-tet sounds to harmonic sounds when playing chords drawn from the 11-tet
scale.

[V: 13] Tom Tom Spectral Mappings: Before and After (tomspec.avi 0:44). See
p. 281 and sound example [S: 90]. Several different instrumental sounds alternate
with versions mapped into the spectrum of a tom tom:

[V: 14] A Harmonic Cymbal (harmcym.avi 0:23). See p. 282 and sound example
[S: 92]. A cymbal is spectrally mapped into a harmonic spectrum—the resulting
sound is pitched and capable of supporting melodies and chords.
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This section contains all web links referred to throughout
Tuning, Timbre, Spectrum, Scale. References in the
body of the text to websites are coded with [W:] to
distinguish them from references to the bibliography,
discography, and sound and video examples. The web
examples may also be accessed using a web browser.
Open the file TTSS/Links.html in the top level of the
CD-ROM and navigate using the html interface.

[W: 1] Alternate tuning mailing list, http://groups.yahoo.com/group/tuning/ [This
group and [W: 18] continually discuss techniques of creating and analyzing music
that is outside the Western tradition.]

[W: 2] Bitheadz, Inc., http://www.bitheadz.com [Makers of audio tools such as the
Unity software synthesizer.]

[W: 3] How harmonic are harmonics? http://www.phys.unsw.edu.au/˜jw/ harmon-
ics.html [Discussion of inharmonicities in strings and air column instruments.]

[W: 4] Classical MIDI Archives, http://www.classicalarchives.com/ [Thousands of
standard MIDI files are available here free for listening, studying, and enjoying.]

[W: 5] Content Organs, http://www.content-organs.com [An organ maker that of-
fers the hermode tuning in its organs.]

[W: 6] Corporeal Meadows, http://www.corporeal.com/ [Website devoted to Harry
Partch. Partch’s music, instruments, and personality are all profiled here.]

[W: 7] J. A. deLaubenfels, “Adaptive Tuning Web Site,”
http:// www.adaptune.com/ [Also, see John’s personal web page at
http://personalpages.bellsouth.net/j/d/jdelaub/jstudio.htm for sound exam-
ples and further details on the spring method of adaptive tuning.]

[W: 8] ECE330: Signals and Systems Prof. Sethares’ class website for the course on
Fourier transforms is:
http://eceserv0.ece.wisc.edu/̃ sethares/classes/ece330.html and the official uni-
versity website is:
http://www.engr.wisc.edu/ece/courses/ece330.html

[W: 9] P. Erlich on Harmonic Entropy, http://tonalsoft.com/td/erlich/entropy.htm
[Erlich discusses models of harmonic entropy in a series of posts to the Tuning
Digest beginning in Sept. 1997.]

[W: 10] P. Erlich, “The forms of tonality,” http://lumma.org/tuning/erlich/ Also
available on the CD TTSS/PDF/erlich-forms.pdf. [Concepts of tone-lattices,
scales, and notational systems for 5-limit and 7-limit music.]

[W: 11] P. Frazer, Midicode Synthesizer, http://www.midicode.com [Implements a
method of dynamic retuning in a software syntheizer.]

[W: 12] Freenote Music, http://microtones.com/new.htm [Dedicated to microtonal
guitars and recordings.]
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[W: 13] Frog Peak Music, http://www.frogpeak.org/ [This composer’s collective is
a gold mine of alternatively tuned music.]

[W: 14] The Justonic Tuning System, http://www.justonic.com/ [Jutonic’s pitch
palette uses any 12-tone just, or harmonic scale to create a 3-dimensional array
of tones that can be used to automatically retune a synthesizer as it plays.]

[W: 15] The Hermode Tuning, http://www.hermode.com/ [A form of automated
tuning implemented in the Waldorf Virus C synthesizer. Website has good
demonstrations of the uses of adaptive tunings.]

[W: 16] Institute for Psychoacoustics and Music, http://www.ipem.rug.ac.be/ [Part
of the University of Ghent, IPEM is Belgium’s premier center for electronic
music.]

[W: 17] Keyfax Software, http://www.keyfax.com [Professionally recorded standard
MIDI files.]

[W: 18] Make Micro Music mailing list, http:// groups.yahoo.com/ group/ MakeMi-
croMusic/ [This group and [W: 1] continually discuss techniques of creating and
analyzing music that is outside the Western tradition.]

[W: 19] Making Microtonal Music Website, http://www.microtonal.org/ [A gather-
ing point for people who are actively making microtonal music, and for those
who would like to join them.]

[W: 20] Mark of the Unicorn, http://www.motu.com/ [Makers of music hardware
and software,including Digital Performer, a MIDI and audio sequencer.]

[W: 21] Matlab, http://www.mathworks.com/ [General purpose programming lan-
guage common in signal processing and engineering: “the language of technical
computing.”]

[W: 22] Max 4.0 Reference Manual, http://www.cycling74.com/products/dldoc.html
[Website of Cycling ‘74, distributers of Max programming language. See also
[B: 210].]

[W: 23] Metasynth, http://www.uisoftware.com/ [A powerful graphic tool for sound
manipulation and visualization.]

[W: 24] Microtonal Dictionary, http://tonalsoft.com/ [Joseph Monzo’s online dic-
tionary of musical tuning terms is an excellent resource.]

[W: 25] MIDI file formats described, http://www.sonicspot.com/guide/midifiles.html
[W: 26] W. Mohrlok, The Hermode Tuning System [This provides a comprehensive

description of the operation of the hermode tuning, and is available on the CD
in TTSS/pdf/hermode.pdf.]

[W: 27] Scala Homepage, http://www.xs4all.nl/̃ huygensf/scala/ [Powerful software
tool for experimentation with musical tunings.]

[W: 28] Tuning, Timbre, Spectrum, Scale http://eceserv0.ece.wisc.edu/̃ sethares/
[W: 29] Smith, J. O. “Bandlimited interpolation—interpretation and algorithm,”

http://ccrma-www.stanford.edu/ ˜jos/resample/ [Excellent discussion of audio
signal processing with focus on interpolation techniques.]

[W: 30] John Starrett’s Microtonal Music, http:// www.nmt.edu/ ˜jstarret/ micro-
tone.html [Great resource for microtonal music, instruments, and tools.]

[W: 31] Tune Smithy, http://www.tunesmithy.connectfree.co.uk/ [A program for al-
gorithmic music composition that includes extensive microtonal support and a
dynamic tuning feature.]

[W: 32] Vicentino’s adaptive-JI of 1555, http:// tonalsoft.com/ monzo/ vicentino/
vicentino.htm [Vicentino’s “Second tuning of 1555” is composed of two chains
of 1/4-comma meantone that can avoid comma drift.]
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[W: 33] Access “Virus” Synthesizer, http://www.access-music.de/ [The hermode
tuning is available in the Virus synthesizer.]

[W: 34] Waldorf Synthesizers, http://www.waldorf-music.de [First commercial im-
plementation of an adaptive tuning.]
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⊕-table, 257, 365
-cet, XVII
-tet, see equal temperament, XVIII

n-tet, 57, 98

10-tet, 7–9, 57, 59, 277, 291–302, 322, V
chords, 294, 295, 299
circle of thirds, 297
dissonance curve, 248, 294
dissonance surface, 295
keyboard mapping, 292
music theory, 301
scales, 300
spectra, 247, 293
vs. 12-tet, 292, 294, 318

11-tet, 267, 277–280
chords, 279
dissonance curve, 268
instruments, 278
spectra, 278
vs. 12-tet, 287

12-tet, 3, 57
and inharmonic sounds, 98, 318
dissonance curve, 251
harmonic vs. induced, 251
introduction, 242
spectra, 250
vs. adaptation, 168–171
vs. dissonance curves, 97
vs. harmonics, 22
vs. just intonation, 61, 97, 101
vs. meantone, 66

13-tet, 59, 277

16-tet, 59, 277, V
17-tet, 59, 277
19-tet, 7, 59, 277, V

5-tet, 126
dissonance curve, 217
vs. slendro, 213

7-tet, 59, 277, 303–316
bar, 310
compositions, 313
dissonance curve, 306
sound design, 310
vs. 12-tet, 312

8-tet, 104
88-cet, 60

dissonance curve, 283
spectrum, 282

9-tet, 172

acoustic astronomy, 146
adaptive randomization, 190, 195
adaptive timbre, 197
adaptive tuning, 4, 7, 155–198, 235, 318

aesthetic, 194
algorithm, 164, 361
and inharmonic spectra, 171
compositions, 189
of chords, 167
stretched spectra, 168
vs. 12-tet, 168–171
vs. just intonation, 168–172, 188
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Adaptun
drone, 184, 186
parameters, 189
program setup, 180
specifying spectrum, 182
speed of adaptation, 181
update scheme, 183

additive synthesis, 135, 145, 148, 267,
289, 343–344

additivity of dissonances, see disso-
nance, additivity

Akkoç, C., 70
Alexjander, S., 152
alphabetical notation, 291
analysis

and resynthesis, 268
musical, 221–243
of performances, 5

analytic vs. holistic listening, 25, 333
antinode, 21
arbitrary scale, 252
artifacts of spectrum, see spectrum,

artifacts
associativity of ⊕ table, 365
asymmetries in spectrum, 271
Atmosujito, S., 203
attack, 29, 274, 338, XVII
auditory crystallography, 152
auditory system, 16

Bach, J. S., 233
backward piano, 28
bar

7-tet, 310
dissonance curve, 114, 115
resonance, 23, 114
spectrum, 114

barbershop quartet, 156
Barbour, J. M., 60, 61, 74
basilar membrane, 16, 45
beats, 40–43, 46, 48, 72, 87

envelope of, 357
formulas for, 329
removal of, 174
tuning with, 89

Beauty in the Beast, 229
bells, 116–117, 131–139

Ann, X
dissonance curve, 118, 136

major third, 116
minor third, 116
pseudo-octave, 137
spectrum, 116, 134

Benade, A., 2, 25, 38
bending modes, see resonance
Bernstein, L., 319
bifurcating partials, 205
binaural presentation, 50
bins, see quantization of frequency
biological spectrum analyzer, see

spectrum, biological analyzer
bismuth molybdenum oxide, 146
Blackwood, E., 57
blues tone, 57
Bohlen, H., 59, 110
Bohlen–Pierce scale, 59, 110–112
bonang, 199, 206–207
Boomsliter, P., 81
Bregman, A., 26, 287, 288
Brown, J. C., 25
Bruford, B., 190, 193
Bunnisattva, X

Cage, J., 320
Cariani, P., 44
Carlos, W., 60, 65, 74, 97, 113, 156, 229,

318
categorical perception, 51
Cazden, N., 80, 84
cent, 41, 56, 331–332, XVII

converting to ratios, 331
Chaco Canyon, 139
challenging the octave, 2
Chalmers, J., 55
Chimes of Partch, 26
chord

diminished, 103
dissonance, 127
even and odd, 106
suspended, 128

Chowning, J. M., 117
chromelodeon, 64
circle

of fifths, 168
of thirds, 297

cloud chamber bowls, 64
coevolution, 318
Cohen, E. A., 108



Index 419

coinciding partials, 123, 127, 247, 253
Cokro, Pak, 203, 214
commutativity of ⊕ table, 365
composing with spectrum, 69
compressed sounds, see stretched

sounds
computational models, 355
conditioning, cultural, see cultural

conditioning
conga, 24
consonance, 1

based modulation, 288
contrapuntal, 78
contrast, 8
controlling, 7
functional, 78
history of, 77
maxima, 98
maximizing, 235
melodic, 77, 196
of tritone, 101
pleasure, 78
polyphonic, 77
psychoacoustic, 79
resolution, 79
sensory, see dissonance, sensory

constraints, 246
constructive interference, 40, 329
context, 176
context model, 184, 186
convergence, 160, 164, 166, 183, 235
cost function, see optimization
critical band, 43, 356

and dissonance, 48, 92
crossfade, 276
crystal

dissonance curve, 149
instrument, 151
sounds, 145–152

cultural conditioning, 84
cymbal, harmonic, 282

Dabo Girl, 280
Darreg, I., 74, 164
decibels, 12
deLaubenfels, J., 157
destructive interference, 40, 329
DFT, see spectral analysis
diatonic, 54, XVII

difference frequency, see frequency,
difference

difference tones, 83
diffraction, 146
Digital Performer, 190
diminished chord, 103
dissonance

additivity, 99, 100, 127, 324, 347
and critical band, 48
calculating, 347
chord, 127
coinciding partials, 123, 127
computational model, 357
contrapuntal, 78
contrast, 8, 325
controlling, 7, 98, 127, 288, VII
curve, 5, 9, 47, 97–130, VI

10-tet, 248, 294
11-tet, 268
12-tet, 251
5-tet, 126, 217
7-tet, 306
8-tet, 105
88-cet, 283
bar, 115
bells, 118, 136
crystal, 149
drawing, 99, 136, 142, 149
drum, 282
for harmonic sounds, 100
frequency modulation, 120
harmonic, 86, 101
minima, 121, 126, 350
multiple spectra, 125
pan flute, 112
pelog, 218
properties, 120–125, 349–353
Pythagorean, 261
rock, 143
slendro, 217
stretched, 107
symmetry, 121, 126
Thai, 306
three partials, 124
tritone, 102
two partials, 122
vs. 12-tet, 97

functional, 78
history of, 77
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instantaneous, 227
intrinsic, 80, 99, 121, 150, 346, 349
maximizing, 195
melodic, 77, 196
meter, 4
minima, 98, 163, 351
minimizing, 163, 235
polyphonic, 77
programs, 347
psychoacoustic, 79
restlessness, 79
score, 5, 221, 228, 310
sensory, 9, 39, 45–50, 84, VI
subharmonic sounds, 125
surfaces, 127–130, 295, 307
total, 233, 238
unison, 120

dissonance surfaces, 308
diversity of musical styles, 320
Doty, D., 61, 64
Douthett, J., 74
drift

constraining, 246
parameter, 165
tonic, 170

drum
dissonance curve, 282
spectrum, 280–281

dynamic tuning, see adaptive tuning

earphones, 40
elastic tuning, see adaptive tuning
end effects, see spectrum, artifacts
Ensoniq, 278
entropy

harmonic, see harmonic entropy
envelope, 29, 31, 115, 273, 287, XVII

bell, 133
detector, 49, 356
of beating sinusoids, 41, 48, 329
rock, 139

equal temperament, 6, 56
spectra, 247

Erlich, P., 74, 80, 90, 100, 371
Eskelin, G., 63, 94, 156
ethnomusicologist, 201
euphonious, 46

face/vase illusion, 36

Farey series, 91, 371
FFT, see spectral analysis
fifth, 33, 52, 103, 128, XVII
filter bank, 45, 273, 356
Fletcher, N., 38, 116
FM, see frequency modulation
formants, 30, XVII
Fourier’s song, 374
Fourier, J. B., 333
fourth, 33, 52, 103, 128, XVII
Fractal Tune Smithy, 157
frequency

difference, 42
modulation, 117–120, XVII

dissonance curves, 120
spectrum, 119

pitch, 13, 32
quantization, 338

frequency bins, see quantization of
frequency

fundamental bass, 26, 78, 150
fusion of sound, 69, 82, 85, 108, 279,

284, 321

GA, see genetic algorithm
Gadjah Mada University, 202
Galilei, G., 81
gambang, 209
gamelan, 5, 73, 199–220, VI

aesthetics, 200, 232
dissonance score, 230
instruments, 202
stretched tuning, 212
tunings, 73, 211, 378–381

Gamelan Eka Cita, 230
Gamelan Kyai Kaduk Manis, 203, 212
Gamelan Swastigitha, 203, 212
gender, 205–206
genetic algorithm, 252, XVIII
glockenspiel, 23
Gondwana, 68
gong, 199, 207–209
Gong Kebyar, 230
gradient descent, 163, 235
graphical method, 113
guitar

harmonics, 21
pluck, 17, 19
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hair cells, 355
Hall, D. E., 74, 156, 170
Hamming, R., 336
Hammond organ, 251
harmonic

cymbal, 282
dissonance

vs. 12-tet, 101
vs. JI, 101

entropy, 83, 90, 101, 371–372
scales vs. JI, 97
series, 3, 5, 319, XVIII
sounds

dissonance curve, 100
vs. induced spectra, 251

string, 17
template, 35, 82
vs. inharmonic instruments, 25

harmonics
odd, 110
of guitar, see guitar, harmonics

harpsichord spectrum, 234
Harrison, L., 74
Helmholtz, H., 20, 38, 75, 79, 87, 324,

331
Hermawan, D., 202
hermode tuning, 158
Hertz, 2, 12, XVIII
heterophonic layering, 303
Hindemith, P., 83, 221
historical musicology, 5
hocketing, 195
holistic vs. analytical listening, 25, 42,

333
Huygens, C., 319

IAC, 180, XVIII
identity for ⊕ table, 365
in tune and in spectrum, 325
inaudible sound, 146
induced spectrum, 286
inharmonic, 6, XVIII

11-tet, 278
adaptation, 171
bells, 117, 131
crystal, see crystal sounds
frequency modulation, 118
instruments, 73
metallophones, 202

music theory, 104, 284
perception, see perception of

inharmonic sounds
resonance, 23
rocks, 139
scales, 68
sounds, 4, 98, 267, 317, 325
tritone chime, 103
vs. harmonic instruments, 25

interference, see constructive (or
destructive) interference

interlaced partials, 166
intervals, 33, 52, 90
intonation, 5
intonational naturalism vs. relativism,

319

JI, see just intonation
JND, see just noticeable difference
Jorgensen, O. H., 72
just

interval, 6
intonation, 6, 60–64, XVIII

critiqued, 61
recordings, 61
vs. 12-tet, 61, 97, 101
vs. adaptation, 168–172, 188

scales, 62, 64
thirds and sixths, 60

just noticeable difference, 43, XVIII
justonic tuning, 157

Katahn, E., 65
Keisler, D. F., 81
kenong, 199, 207
keyboard mappings, 68, 137, 143, 150,

292
Kirkpatrick, R., 222
kithara, 64
Krantz, R. J., 74
Kunst, J., 200, 206, 208, 211, 212, 216

Lafrenière, V., 345
Leman, M., 355
limits to listening, 320
listening to adaptation, 173
lithophone, 139
looping, 274, 336, 340
loudness, 346
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amplitude, 13

magnitude spectrum, see spectrum,
magnitude

mapping, keyboard, see keyboard
mappings

mapping, spectral, 267–290
Marion, M., 337
matching

spectrum with scale, 7
tuning with timbre, 4

Mathematica, 13
Mathews, M. V., 108, 111, 317
Mathieu, W. A., 1
Matlab, 13, 270, 278, 332, 343, 347
Max, 180
maximizing consonance, see minimizing

dissonance
maximizing dissonance, 195
maq̃amãt, 70
McLaren, B., 59, 74, 113, 153, 333
meantone

tuning, 65, 237
vs. 12-tet, 66

metallophones, 73, 202
MIDI, XVIII

classical archives, 314
pitch bend resolution, 183
randomization, 192, 313
sequencer, 190, 194
time reversal, 315
time stretching, 191

minimizing dissonance, 163
modes of vibration, see resonance
modulation, 288
Mohrlok, W., 157
Moreno, E., 59
morphine, 149
Morrison, G., 60, 170, 282
multidimensional scaling, 28, 287
Murail, T., 68
music theory

for 10-tet, 301
for 8-tet, 106
for inharmonic sounds, 284
for tritone sound, 104
stretched and compressed, 108

musical
analysis, 221–243

synthesizer, 30

n-tet, 57, 98
natural modes of vibration, see

resonance
node, 25
noiseless sound, see inaudible sound
non-western music, 5
nonharmonic, see inharmonic

octave, 33, 52, 56, XVIII
consonant, 1
dissonant, 2
pseudo, see pseudo-octave

octotonic spectrum and scale, 104
Ohm, G., 17
Olsen, H., 1
one-footed bride, 89
optimization, 163, 197, 235, 245, 251
out of spectrum, 280, 294, 322
out of timbre, 279
out of tune, 52, 61
overtone, see partial
overtone scale, 66
overview, 8

pad with zeroes, 339
Paganini, N., 314
pan flute, 67

dissonance curve, 112
spectrum, 111

paradox, 11, 318
Parncutt, R., 80, 86
Partch’s 43-tone scale, 62
Partch, H., 64, 75, 81, 89, 137, 157
partial, 13, XVIII

bifurcating, 205
peak finding, 340
pelog, 73, 201, 211, 213, 218
perception of inharmonic sounds, 279,

284, 285
perceptual correlates, 12
perfect spectrum, 256, 259
periodic, 16, 333, 338, XVIII
periodicity theory of pitch perception,

see pitch, periodicity theory
Perlman, M., 319
persistence model, 184
phase spectrum, see spectrum, phase
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phase vocoder, 268, 344
physical attributes, 12
piano roll notation, 190, 314
piano tuning, 71
Pierce, J. R., 44, 59, 104–106, 110
Piston, W., 79, 221
pitch

ambiguous, 35
and spectrum, 34
computational models, 355
definition, 33
frequency, 13, 32
metallophones, 220
MIDI resolution, 180
of harmonic sounds, 33
periodicity theory, 44
place theory, 43
sliding, 176, 194, 195
standardization, 201, 319
to MIDI, 70
virtual, see virtual pitch
wavering, 175

place theory of pitch perception, see
pitch, place theory

Plastic City, 109
pleasant, 1, 46
Plomp, R., 46, 47, 79, 92, 99, 324, 345,

352, 359
plucked string, 17, 19
Polansky, L., 61, 156
polyphonic stratification, 303, 309, 315
pong lang, 305
portamento, 194
principle of coinciding partials, 123, 127
prism, 13, 146
pseudo-octave, 3, 58, 106, 137, 260, 282,

322
Purwardjito, 215
Pythagoras of Samos, 33, 52, 74
Pythagorean

comma, 54
dissonance curve, 261
perfect spectrum, 259, 367
scale, 54, 245, 255

quantization of frequency, 338

Rachmanto, B., 202

Rameau, J. P., 74, 78, 150, 236, 241,
242, 371

random search, 252
Rasch, R. A., 196
ratio-to-cent conversion, 331
ratios of frequencies, 33, 52
rebab, 210
rectification, 48, 355
Reich, S., 315
Reiley, D., 50
related

spectrum and scale, 9, 97–130, VI
renat, 304
reorchestration, 190
resampling, 270
resampling with identity window, 272,

XVIII
resonance, 17, 19, 20

inharmonic, 23, 141
resonant frequencies, see resonance
resynthesis, 135
retuning synthesizers, 63
Risset, J. C., 135, 267, 289, 317, 344
RIW, see resampling with identity

window
rock music, 139–145
root, see fundamental bass
Rossing, T. D., 63, 209
roughness, see dissonance sensory

sample playback, 137, 143, 150
Sankey, J., 233, 234
saron, 203–205
scale, 51–76

alpha and beta, 60, 229
arbitrary, 252
color, 232
complementary, complete, 256
defined, 51
fixed vs. variable, 155
historical, 377
inharmonic, 68
meantone, 65
overtone, 66
spectral, 66
stochastic, 71

Scarlatti, D., 61, 175, 222–243, 312
Schafer, R. M., 32
Schenker, H., 221
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Schoenberg, A., 221
score, dissonance, 221
semitone, 56, XVIII
Shephard, R., 28
simple integer ratio, see just, interval
sine wave, 12, 334, XVIII
Slawson, W., 30
Slaymaker, F. H., V
slendro, 73, 201, 211, 216

vs. 5-tet, 213
smearing of spectrum, see spectrum,

artifacts
SMF, see standard MIDI file
Sorrell, N., 200
sound

canceling, 40
classification, 32
color, see timbre
inaudible, see inaudible sound
of data, 152
perception, 11
pressure, 12
prism, 14
wave, 11

spectral
analysis, 13, 17, 272, XVII
composers, 68
mapping, 267–290, 311, XVIII
peaks, 340
recordings, 69
resynthesis, 135
scales, 66

spectral analysis, 333–341
spectrum

10-tet, 293
12-tet, 250
88-cet, 282
and analytical listening, 27
and periodicity, 17
and synthesizers, 30
artifacts, 18, 271, 276, 334
bar, 23
bell, 133
bells, 117
biological analyzer, 15, 16, 43, 333
bonang, 208
calculating, 133–136, 140–142,

147–149
crystal, 147, 148

drum, 280–281
equal temperaments, 247
frequency modulation, 119
gambang, 210
gender, 206
gong, 209
harmonic, see harmonic, spectrum
harpsichord, 234
induced, 247, 251, 286
interpretation, 134, 141, 148
magnitude, 14
metallophones, 202
of pan flute, 111
of string, 18
perfect, 256
ponglang, 305
rock, 141
saron, 203
simple vs. complex, 132
sine wave, 334
string, 53
symbolic method, 254–264
tetrachord, 254, 261
Thai instruments, 305
timbre, 13, 32
vs. waveform, 16

spiral of fifths, 55
spring tuning, 159–162
SPSA, 183, XVIII
Staley, T., 149
standard MIDI file, 182, 190, 222, 313,

315, XVIII
steady state, 32, 337, XVIII
stochastic scales, 71
Stoney, W., 74
Storr, A., 2
streaming, 288
stretched

chords, 169
dissonance curve, 107
gamelan, 212
partials

formula, 106
scale, 3, 106–110
sounds adapted, 168
string, 72
timbre, 3
vs. Bohlen–Pierce scale, 112

subjects
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trained vs. naive, 92, 112
Suharto, B., 202
Suhirdjan, 215
suling, 210
Sundberg, J., 72
supporting tone, 215
symbolic computation of spectra,

254–264, 365–369
symmetry of dissonance curves, 121,

126
sympathetic vibration, see resonance
synthesis, 30

additive, see additive synthesis
syntonic comma, 170

taksim, 70
temperament, 57, 65
Tenney, J., 77
Terenzi, F., 146, 152
Terhardt, E., 34, 48, 72, 80, 82, 85, 371
tetrachord, 55, 261, 365

spectrum, 254
Thai

classical music, 303–316, VI
dissonance curve, 306
dissonance score, 310
dissonance surface, 307, 308
instruments, 303
music theory, 306, 309
timbre, 305
tuning, 304
use of dissonance, 306

timbre, 25, 27
and vowels, 30
classification, 32
of sine wave, 285
spectrum, 13, 28

Time and Again, 68
time reversal, 28, 339
time scale, 174
Tingshaw, 131
tom tom, see drum
tonalness, 80, 91, 101, 108, 371
tone

color, 25, 65
fusion, 25
wolf, 54

transient, 29, XVIII
tree in forest, 11, 37, 42

tribbles, 51
tritave, 59, 111
tritone

10-tet, 299
chime, 103
dissonance curve, 102
spectrum, 101

tuning
adaptive, see adaptive tuning
alternative, VI
Bach, 233
criteria for, 73
gamelan, 211
hermode, 157
historical, 232–242
meantone, 65, 237
optimal, 236
piano, 71
real, 70, 75
Scarlatti, 233, 237
spring, 159–162
synthesizers, 63
table, 63, 318, V
Thai instruments, 304
using beats, 42

Turkish improvisations, 70

uncertainty, 91, 339, 371
unison, 120, 126, 350
universality of harmonic series, 319

vibrato, 52
virtual instruments, 137, 143
virtual pitch, 34–37, 73, 82
vocoder, 268, 344
voice leading, 78
von Hornbostel, 211
Vos, J., 81
vowels, 30

Waage, H., 156
Walker, R., 157
wandering pitches, 170, 186
waveform, 334
well temperaments, 65, 67
Westminster Chimes, 35
whole tone, XVIII
Widiyanto, G., 202
wind chime, 23
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windowing, 133, 336, 339
wolf tone, 54, 237, 239

x-ray diffraction, 146
xenharmonic, 6, 60, 287, XVIII
xentonal, 104, 153, 317, XVIII

Yunik, 74

zero padding, 274
zymo-xyl, 64
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