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Prelude

Rhythm and Transforms contrasts two ways of
understanding temporal regularities in the world around
us: directly via perception and indirectly via analysis.
“Rhythm” alludes to the perceptual apparatus that
allows people to effortlessly observe and understand
rhythmic phenomena while “transforms” evokes the
mathematical tools used to detect regularities and to
study patterns.

Music has always been part of my life. Just as I don’t remember learning to
speak, I don’t remember learning to distinguish the sound of one instrument
from another or learning to tap my foot in time with the music.

I do recall being perplexed one day when my elementary school teacher
demonstrated how to identify the sounds of individual instruments. To me,
the sounds of a clarinet, a trumpet, and a guitar were as distinct as the colors
red, green, and blue. Many years later, I was similarly mystified by Ann’s
experiences in Ballet I. The class was taught by a professional dancer named
Vivian and, as is traditional in ballet, had live piano accompaniment. From
Ann’s perspective a typical drill began with Vivian cuing the pianist. After a
few twiddly notes, Vivian would call out instructions.

The class had been practicing basic jumps for several weeks when Vivian
announced that from now on the class should go “down on four and up on
one.” Ann was mystified. It was Vivian who called out the numbers

“One—and up!—two—and up!”

“One” was where Vivian starting counting. The idea that the piano was some-
how involved was a foreign concept. How do you know when the piano gets
to four? Or one? Ann asked me later.

Until this time I had been only vaguely aware that there were people in
this world who could not find “one.” As clear as it seemed to me, I found
it difficult to describe in words exactly what “one” is and how to find it. I
became aware that much of my perception of music, and rhythm in particular,
was colored by training and practice. The ability to tap the foot in time to
the music and to find “one” is a cognitive event, a learned behavior. What
other aspects of rhythmic perception are learned?

At the intersection of music, signal processing, and psychology lies an
area I call “perception-based audio processing.” My first book, Tuning, Tim-
bre, Spectrum, Scale explored the relationships between the timbre (or spec-
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trum) of a sound and the kinds of musical intervals that musicians throughout
the world use. Rhythm and Transforms explores the temporal and rhythmic
relationships between sounds and the structure of music, between biologi-
cal/perceptual aspects of the human auditory system and the sound machines
(musical synthesizers, effects units, drum machines, musical computer soft-
ware, etc.) we design.

People commonly respond to music by keeping time, tapping to the beat or
swaying to the pulse. Underlying such ordinary motions is an act of cognition
that is not easily reproduced in a computer program or automated by machine.
The first few chapters of Rhythm and Transforms ask – and answer – the
question: How can we build a device that can “tap its foot” along with the
music? The result is a tool for detecting and measuring the temporal aspects
of a musical performance: the periodicities, the regularities, the beat.

The second half of Rhythm and Transforms describes the impact of such a
“beat finder” on music theory and on the design of sound processing electron-
ics such as musical synthesizers, drum machines, and special effects devices.
The “beat finder” provides a concrete basis for a discussion of the relationship
between the cognitive processing of temporal information and the mathemati-
cal techniques used to describe and understand regularities in data. The book
also introduces related compositional techniques and new methods of musico-
logical analysis. At each stage, numerous sound examples (over 400 minutes
in total) provide concrete evidence that the discussion remains grounded in
perceptual reality. Jump ahead to Sect. 1.7 on p. 21 for an overview of the
audio contents of the CD.

Think about it this way. Humans are very good at identifying complex
patterns. The auditory system easily senses intricate periodicities such as the
rhythms that normally occur in music and speech. The visual system read-
ily grasps the symmetries and repetitions inherent in textures and tilings.
Computers are comparatively poor at locating such patterns, though some
kinds of transforms, certain statistical procedures, and particular dynamical
systems can be used in the attempt to automatically identify underlying pat-
terns. A variety of computer programs in MATLABR© are also provided on
the accompanying CD for those who wish to explore further.

Rhythm and Transforms will be useful to engineers working on signal pro-
cessing problems that involve repetitive behavior, to mathematicians seeking
clear statements of problems associated with temporal regularities, and to mu-
sicians and composers who use computer-based tools in the creation and the
recording process. It will be useful to those interested in the design of audio
devices such as musical synthesizers, drum machines, and electronic keyboards
and there are clear applications to the synchronization of audio with video.
Finally, there are tantalizing tidbits for those interested in the way the ear
works and how this influences the types of sound patterns we like to listen to.

Madison, WI, Dec. 2006 William A. Sethares
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1

What is Rhythm?

How can rhythm be described mathematically? How can
rhythm be detected automatically? People spontaneously
clap in time with a piece of music – but it is tricky
to create a computer program that can “tap its foot”
to the beat. Some peculiar features of the mind help
us to internalize rhythms. Teaching the computer to
synchronize to the music may require some peculiar
mathematics and some idiosyncratic kinds of signal
processing.

Rhythm is one of the most basic ways that we understand and interact with
time. Our first sensory impression as we float in our mother’s womb is the
rhythmic sound of her heart. The time between the opening and closing of
the heart’s valves is a clock that measures the passing of our lives. Breathing
is our most lasting experience of rhythm.

Rhythms occur at all time scales. The motion of waves against a beach,
the daily flow of the sun and moon, the waxing and waning of the year; these
occur at rates much slower than the heartbeat. Pitched phenomenon such as
the rotation of an engine, the oscillations of a string, and the vibrations of our
vocal chords occur at rates much faster than the heartbeat. At the slowest
rates, we conceive of the rhythm via long term memory. At rates near that of
the heartbeat, we perceive the repetition directly as rhythm. At the fastest
rates, the repetitions blur together into the perception called “pitch.” Thus
we perceive rhythmic patterns differently at different time scales.

Figure 1.1 shows several seconds of the rhythmic beating of a healthy heart.
Large spikes recur at approximately regular intervals and at approximately
the same height. After each peak is a dip followed by two smaller bumps which
vary slightly in position and size from beat to beat. This kind of regularity
with variation, of repetition with change, is a characteristic feature of rhythmic
patterns in time. The sound of a heartbeat can be heard in example [S: 1].1

It is not easy to measure irregularities in the heartbeat by eye. The scraggly
circular object in Fig. 1.1(b) contains the same heartbeat signal plotted so that

1 References marked [S:] point to the sound examples contained on the CD. They
are described in detail starting on p. 295. References to printed matter [B:] are in
the bibliography on p. 309 and references to recordings [D:] are in the discography
on p. 321. Web references [W:] are detailed on p. 323 and are also available on
the CD as direct links.
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Fig. 1.1. The steady rhythm of a heartbeat is among our earliest sensations; the
“lub-dub” sound is caused by the rhythmic closing of the heart’s valves. (a) is a plot
of the waveform over time while (b) is a polar plot in which time moves around the
circle at a rate of approximately one beat per revolution. Listen to the heartbeat in
sound example [S: 1].

time moves around the circle at a rate of approximately one heartbeat each
cycle. This overlays the various beats, and the differences in the location of
the peaks emphasizes the variability of the timing.

All animals engage in rhythmic motions: their hearts beat, they breathe,
their brains exhibit periodic electrical activity, and they walk, run, or swim.
Indeed, many such physical activities are easier to do rhythmically. It is almost
impossible to walk without rhythm. The rhythms inherent in these behaviors
are not direct responses to the environment, they are internally generated.

Though rhythms surround us in both the physical world and the animate
world, humans are among the only creatures who create rhythmic patterns
consciously.2 From the age of about 3–4 years, a child can tap along with
a metronome or a song. This is significant not because of the regularity of
the tapping but because of the synchrony: the child learns to recognize the
regularity of the pulse and then anticipates successive pulses in order to tap
at the same time. Most animals never develop this capability, suggesting that
much of our experience of rhythm “comes from the mind, not from the body”
[B: 19]. It is not easy to emulate this kind of synchronization in a computer,
and Chaps. 5 – 7 discuss the problem in depth. Perhaps our highest level of
rhythmic achievement occurs in music, where rhythmic phenomena play in
complex ways with our perceptions of time, sequence, and pattern.

A computational approach to the study of rhythm builds a model or a com-
puter program that attempts to mimic people’s behavior in locating rhythms
and periodicities. Such a “foot-tapping machine” is diagrammed in Fig. 1.2.
To the extent that the model can duplicate or imitate human behavior it
can be judged successful. When it fails (as any model will eventually fail to
capture the full range of human abilities), it helps identify the limits of our
understanding. Understanding rhythm well enough to create a foot-tapping
machine involves:
2 Recent work [B: 91] suggests that bottlenose dolphins may be capable of sponta-

neously employing rhythmic patterns in communication.
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Fig. 1.2. A foot-tapping machine
designed to mimic people’s ability
to synchronize to complex rhythmic
sound must “listen” to the sound, lo-
cate the underlying rhythmic pulse,
anticipate when the next beat time-
point will occur, and then provide an
output

Cognition: High level mental abilities allow us to recognize, remember, and
recall complex patterns over long periods of time.

Perception: The information that enters the senses must be organized into
events, chunks, and categories. See Chap. 4.

Mathematics: Scientists searching for patterns and repetitions in data have
developed sophisticated mathematical tools (for example: transforms,
adaptive oscillators, and statistical models) that help to uncover regu-
larities that may exist. See Chaps. 5–7.

Signal processing: Using various kinds of “perceptual preprocessing” (which
attempt to extract significant features of a sound from its waveform) leads
to new classes of algorithms for the manipulation of signals and songs at
the beat level. See Chaps. 8 and 9.

Music: The human spirit engages in an amazing variety of rhythmic behav-
iors. An overview of the world’s music in Chap. 3 reveals several common
threads that broaden our view of what rhythm is and how it works, and
Chap. 10 shows how beat-synchronized methods can be used in musical
(re)composition.

1.1 Rhythm, Periodicity, Regularity, Recurrence

Mathematics helps explain the patterns and rhythms of the uni-
verse. Music helps us synchronize to those patterns. (paraphrased from
[B: 70])

Many words have meanings that are intimately related to rhythm. Repeti-
tion embodies the idea of repeating, and exact repetition implies periodicity.
For example, the sequence

. . . c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ . . .

recurs at predictable intervals, in this case, every six elements. Thus one com-
ponent of periodicity is the rate of recurrence, called the period. But what is it
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that is repeating? Is it the six element pattern c 3 � ℵ μ ♥ or is it the pattern
� ℵ μ ♥ c 3? Evidently, the two descriptions are on equal logical footing since
they are identical except for the starting element.

While any of the possible six element patterns may be equal on a logical
footing, they may not be equal on a perceptual footing. Look again at the
complete sequence. For many observers, the ♥ stands out from the others,
creating a visually compelling reason to place the ♥ symbol at the start of
the sequence. Thus, perceptually, the sequence is perhaps best described by
a repetition of the pattern

♥ c 3 � ℵ μ,

though some might wish to place the ♥ at the end. Thus the starting ambiguity
may be resolved by choosing the position of one prominent element. This
defines the phase of the sequence (by analogy with the phase of a sinusoid).

Analogous effects occur in the auditory realm. The rhythmic pattern shown
in Fig. 1.3 is presented in sound examples [S: 2](0–7). In the first case, all
notes are struck identically. Which note appears to start the pattern? The
succeeding examples with N = 1 to N = 7 each single out one note (the notes
are labeled N in the figure) to emphasize. In many cases (but not all) this
changes the apparent starting note of the pattern.

   q  q  e q  q  q  e q  q  e q  q  q  e q  q  e q  q  q  e q  q  e q  q  q  e] }
1 2 3 4 5 6 7 2

I II

N =

Fig. 1.3. The rhythmic pattern repeats every seven notes. Where does the pattern
start? Listen to the sound examples in [S: 2] and find out.

An important feature of periodic phenomena is that they readily support
hierarchical structures. For example, by emphasizing every other c, the visual
focus changes from the ♥ to the c .

. . . c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ μ ♥ c 3 � ℵ . . .

Pairs of the six-term sequences become perceptually linked, creating a simple
two-level hierarchy where each repetition (of twelve elements) consists of a pair
of lower-level six-element terms. This is a visual analogy of metrical structure,
as discussed in Sect. 3.2.

Exact repetition and perfect periodicity are absent in an imperfect world.
For example, in the visual pattern . . .♥ c 3 � ℵ μ . . . there may be occasional
mistakes. Maybe one out of every hundred symbols is randomly changed.
Clearly, the sequence is still “mostly” periodic, and this kind of corruption is
often described by saying that the periodic sequence has been contaminated
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with noise. (Observe that this use of noise is quite different from the use
of noise in the sense of an annoying or undesirable sound, as in a hiss-filled
recording or a noisy environment.) Another kind of deviation from periodic-
ity occurs when the number of elements changes; perhaps one out of every
hundred symbols is randomly deleted, or extra ones may be added.

In the auditory realm, this corresponds to a kind of jitter in the exact
timing of events and of the underlying period. For example, in the final sound
example in the series [S: 2](8), the notes are all struck identically, but each note
is displaced in time by a small random amount. Such small timing deviations
may change the rhythm that is perceived.

Yet another kind of change in a periodic structure occurs when the period
changes. Perhaps the six-element sequence is augmented to include a sev-
enth element, increasing the underlying period to seven. Analogous changes
are quite common in the auditory realm where they may be perceived as
changes in tempo: faster tempos occur when there is a decrease in the period,
slower tempos correspond to an increase in the underlying period. Alterna-
tively, changes in period may be perceived as changes in pitch: lower pitches
correspond to longer periods and higher pitches correspond to shorter periods.

In summary, periodic phenomenon are characterized by

(i) period
(ii) phase or starting point
(iii) the elements that are ordered within a single repetition

Deviations from periodicity may occur in several ways:

(i) elements may (occasionally) change
(ii) elements may jitter in time (or the number of elements in a period

may temporarily increase or decrease)
(iii) the period may increase or decrease

Moreover, periodic sequences may not be perceived straightforwardly: they
may be perceived in different ways depending on the rate of presentation and
they may be interpreted in hierarchical terms. Deviations from periodicity
may influence (and be influenced by) the perceived hierarchies. As will be-
come clear in later chapters, these basic notions of periodic sequences underlie
many of the analytical tools that can be used to locate rhythmic phenomena.
Deviations from periodicity will cause the bulk of the difficulties with these
methods.

Subjective Rhythm

The constant interaction between the physically measurable properties of a
sequence and the human perception of those properties is fascinating. Think of
a periodic sequence of identical clicks separated by a constant time interval, as
is shown schematically in Fig. 1.4. Now listen to the Regular Interval 750 sound
example [S: 3] where the time between successive clicks is exactly 750 ms.
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Does it sound perfectly regular? Almost invariably, listeners begin “counting”
the clicks. The inner ear may count 1-2-1-2 or perhaps 1-2-3-1-2-3. Many
people report hearing 1-2-3-4-1-2-3-4. Almost no one hears this as it truly
is: a repetition of exactly identical clicks.3 Consider the implication; the ear
creates an ordered pattern (the apparent repetition of the clicks in units of 2,
3, or 4) where none objectively exists.

. . .. . .

time
T seconds

Fig. 1.4. A completely regular sequence of identical clicks is perceived as clustered
into groups with 2, 3, or 4 elements even though there is no objective (physical)
basis for such grouping. Listen to [S: 3].

Psychologists have been fascinated by this subjective rhythm for more
than a century [B: 17]. It presents a clear cautionary message to researchers
attempting to simulate human responses to music; physical measurements
alone cannot fully reveal how a sound is perceived.

1.2 Perception and Time Scale

Cognitive scientists describe memory as operating on three time scales: echoic,
short term, and long term [B: 219]. Echoic memory operates on a very short
time scale (up to about a second) where features are extracted from sensory
impressions and events are fused together to form individual objects of per-
ception. For example, consider the sound of a stick hitting a drum. It may
seem as if the sound is a single object; in reality it is a complex pattern of
pressure waves that impinge on the ear. Binding all the necessary impressions
into a single entity requires considerable cognitive activity.

Similarly, the puff of air at the start of a flute note becomes bound to the
(relatively) steady oscillations that follow. This new entity must interact with
long term memory for the listener to “recognize” and name the sound, creating
the illusion that it represents a familiar object: the flute sound. Moreover,
because the flute generates more-or-less periodic sound waves of a certain kind
that we recognize as pitch, the auditory system integrates this information
and we “hear” the flute playing C as a single object of perception. Similarly,
complex sense impressions such as those that represent phonemes in speech,
simultaneous musical intervals, timbres (the sound of the guitar in contrast
to that of the flute playing the same note), and the boundaries between such
events are aggregated together into coherent auditory events [B: 18]. Figure

3 Logically, the counting should be 1-2-3-4-5-6-7. . . or perhaps 1-1-1-1-1-1-1. But
the ear has its own kind of logic.
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Fig. 1.5. Different time scales cause different perceptions of the “same” phenomenon
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1.5 shows the approximate time scales at which various cognitive, perceptual,
and musical events occur.

After the disparate sensory impressions are bound into coherent objects of
perception, these objects are themselves grouped together based on similarity
or proximity. Short term memory is where patterns such as words, phrases,
melodies, and rhythms are gathered into perceptual streams. Long term mem-
ory is where larger cognitive structures and conceptual categories are stored;
abstract ideas, forms, language, poems, and songs. But long term memory is
not a passive receptacle where short term memories retire. Rather, there is a
constant interplay between short and long term memories. Whenever an ob-
ject is present in short term memory, it activates similar objects from within
long term storage; these are then recirculated in parallel with the new events.

There are also differences in the perception of events at different time
scales that mirror these differences in cognition. For example, if a series of
short clicks is played at a rate of 3 per second they are heard as a series of
short clicks. But if the same clicks are performed at a rate of 100 per second,
then they are perceived as a buzzing tone with a definite pitch. Thus “pitch” is
the name we give to this perception when it occurs between 20 Hz and 20 kHz,
while we call it “rhythm” when the interval between clicks is longer, between
about 1

10 and 3 s. There is even a different vocabulary to describe the rates of
these phenomena: pitch is described as being low or high; rhythm is described
as being slow or fast. See Chap. 4 for sound examples and further discussion.
At yet longer time intervals, the clicks are heard as disconnected events. Thus
rhythmic patterns may be conceived (as in the orderly succession of day and
night) or perceived (as in a heartbeat, a dance, or a musical passage).

In between the time scales associated with pitch and those associated with
rhythm lies a region (called fluttering in Fig. 1.5) where sound is perceived in
brief bursts. Rainsticks, bell trees, and ratchets, for example, produce sounds
that occur faster than rhythm but slower than pitch. Similarly, drum rolls
and rapid finger taps are too fast to be rhythmic but too slow to be pitched.
Roughly speaking, pitched sounds occur on the same time scale as echoic
memory and rhythmic perceptions are coincident with the time scales of short
term memory.

Musical usage also reflects the disparity of time scales. The shortest iso-
lated sounds are perceivable as clicks, and may have duration as short as
fractions of a millisecond. These are called “grains” of sound. In order to have
a clear sense of pitch, a sound must endure for at least about 100 ms, and
this is enough time to evoke impressions of pitch, loudness, and timbre. Such
sensations are typically fused together to form sound objects, which are com-
monly called “notes” if they are played by an instrument or sung by a voice.
Groups of notes cluster into phrases, and phrases coalesce into songs, or more
generally, into performances that may last up to a few hours.

Finally, Fig. 1.5 shows the time scales at which various kinds of signal
processing occur; from the single sample (which may be from about 5 kHz to
200 kHz for audio), through filters (such as lowpass, bandpass, and highpass),
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various special effect processing such as flanging and phasing, and the rate
at which vibrato and tremolo occur. These signal processing methods occur
within the zone of event fusion and so effect the quality of a sound (its tim-
bre, vibrato, spectral width, attack characteristics, etc.). Multi-tap delay line
effects extend into the time scale dominated by short term memory and thus
can change the perception of rhythmic events.

The above discussion has focused on how the scale of time interacts with
our cognitive, perceptual, and musical makeup. A different, though related
issue is how we perceive the flow of time. This depends on many factors: the
emotional state of the observer, how the attention is directed, familiarity with
the events, etc. In addition, the perception of time depends on the nature
of the events that fill the time: repetition and a regular pulse help time to
pass quickly while irregular noises or unchanging sounds tend to slow the
perception of time. Issues of duration and time perception are explored more
fully in Chap. 4.

1.3 Illusions of Sound Perception

There are a number of optical illusions that are frequently cited as demonstrat-
ing that our senses do not always accurately report the reality of the world
around us. For instance, Fig. 1.6(a) shows a diagonal line that is interrupted
by two parallel vertical lines. It appears that the two halves of the diagonal
are misaligned. Part (b) shows the Necker cube (familiar to quilters as “tum-
bling blocks”) which can be seen in two ways: either as jutting up and to the
right or as receding back and to the left. Interestingly, it is usually possible
to perceive this shape either way, but not both simultaneously. The figure in
(c) appears to be a forked object. At the left it appears to have two prongs,
while at the right it has three prongs. Most people “see” a triangular shape
in part (d), even though the reality is that there are only three pac-man-like
partial circles. Part (e) shows Penrose’s “impossible tribar” which appears to
be a triangular solid built from three 90◦ right angles. Even though geometry
proves that the sum of all angles in a triangle must total 180◦, it still looks like
the tribar could exist in three-dimensional space. The ever-ascending stairway
(f) from [B: 161] was made famous by the graphic artist M. C. Escher in his
prints “Ascending and Descending” and in the enigmatic “Waterfall.”

Less well known, but just as fundamental as such visual tricks, are everyday
aspects of audio perception that are “illusions” in the sense that what we
perceive is very different from the reality in the physical world surrounding
us. For example, if I were to say “think of a steady, continuous, unchanging
sound like the tone of an organ,” you could most likely do so without difficulty.
In reality, however, there is nothing “steady” or “continuous” or “unchanging”
about an organ sound. The physical reality is that an organ sound (like any
sound) is an undulating wave with alternating regions of high and low pressure,
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(a)

(d)

(b) (c)

(e) (f)

Fig. 1.6. Several visual illusions demonstrate that the visual system does not always
perceive what is presented. In (a), the diagonal appears to be misaligned (it is not).
(b) can be perceived in two completely different ways: as angled up and to the right,
or as angled down and to the left. The “objects” that appear to be depicted in (c),
(e) and (f) cannot exist. There is no triangle in (d), only three partial circles. The
stairway in (f) appears to ascend (or descend) forever.

air molecules must be constantly wiggling back and forth. Were the pressure
changes and the motions to cease, then so would the sound.4

Because the undulations occur at a rate too fast to perceive separately,
the auditory system “blurs” them together and they achieve the illusion of
steadiness. Thus sounds which occur closer together in time than the threshold
of simultaneity (Fig. 1.5 places this at about 1 ms) are merged into a “single
sound.” This is parallel to the everyday illusion that television (and movies)
show continuous action; in reality movies consist of a sequence of still photos
which are shown at a rate faster than the threshold of simultaneity for vision,
which is about 20 Hz. Closely related to the illusion of continuity is the illusion
of simultaneity: sounds appear to occur at the same time instant even though
in reality they do not. The ear5 tends to bind events together when they occur
close to each other in time and to clearly separate others that may be only
slightly further apart.

Another common auditory “illusion” is based on the ear’s propensity to
categorize certain kinds of sounds. For example, it is easy to say the vowel
“a” and to slowly (and “continuously”) change it into the vowel “e.” Thus
there is a continuum of possible vowel sounds: “a” at one end, two thirds
“a” and one third “e,” one half “a” and one half “e,” one third “a” and two
thirds “e,” continuing to a pure “e” at the other end. Yet no matter who
is speaking, one never perceives the intermediate vowel sounds. The sound is
automatically categorized by the auditory system into either “a” or “e,” never
4 The only truly steady sound is silence.
5 When there is no danger of confusion, it is common to use “the ear” as shorthand

for “the human auditory system.”
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into something in between. This is called categorical perception, and it has
obvious importance in the comprehension of language.

While there are many similarities between visual and auditory percep-
tions, there are also significant differences. For example, in 1886 Mach [B: 136]
demonstrated that spatial symmetry is directly perceptible to the eye whereas
temporal symmetry is not directly perceptible to the ear. Unlike vision, the
human ability to parse musical rhythms inherently involves the measurement
of time intervals.

1.3.1 Illusions of Pitch

Loosely speaking, pitch is the perceptual analog of frequency. Acousticians
define pitch formally as “that attribute of auditory sensation in terms of which
sounds may be ordered on a scale extending from low to high.” Sine waves,
for which the frequency is clearly defined, have unambiguous pitches because
everyone orders them the same way from low to high.6 For non-sine wave
sounds, such an ordering can be accomplished by comparing the sound with
unknown pitch to sine waves of various frequencies. The pitch of the sinusoid
that most closely matches the unknown sound is then said to be the pitch of
that sound.

Pitch determinations are straightforward when working with musical in-
struments that have a clear fundamental frequency and harmonic overtones.
When there is no discernible fundamental, however, the ear will often create
one. Such virtual pitch (see [B: 225] and [B: 226]) occurs when the pitch of the
sound is not the same as the pitch of any of its overtones. This is shown on
the Auditory Demonstrations CD [D: 24], where the “Westminster Chimes”
song is played using only upper harmonics. In one demonstration, the sounds
have spectra like that shown in Fig. 1.7. This particular note has partials at
780, 1040, and 1300 Hz, which is clearly not a harmonic series. These partials
are, however, closely related to a harmonic series with fundamental at 260 Hz,
because the lowest partial is 260 times 3, the middle partial is 260 times 4, and
the highest partial is 260 times 5. The ear recreates the missing fundamental,
and this perception is strong enough to support the playing of melodies, even
when the particular harmonics used to generate the sound change from note
to note. Thus the ear can create pitches even when there is no stimulus at the
frequency of the corresponding sinusoid. This is somewhat analogous to the
“triangle” that is visible in Fig. 1.6(d).

Perhaps the most striking demonstration that pitch is a product of the
mind and not of the physical world is Shepard’s [B: 211] ever rising tone,
which is an auditory analog of the ever-ascending staircase in Fig. 1.6(f).
Sound example [S: 4] presents an organ-like timbre that is constructed as
diagrammed in Fig. 1.8. The sound ascends chromatically up the scale: after
6 With the caveat that some languages may use different words, for instance, “big”

and “small” instead of “low” and “high.”
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Fig. 1.7. Spectrum of a sound with prominent par-
tials at 780, 1040, and 1300 Hz. These are marked
by the arrows as the third, fourth, and fifth partials
of a “missing” or “virtual” fundamental at 260 Hz.
The ear perceives a note at 260 Hz, which is indi-
cated by the extended arrow.

ascending one full octave, it has returned to its starting point and ascends
again. The perception is that the tone rises forever (this version is about 5
minutes long) even though it never actually leaves a single octave!
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Fig. 1.8. The Shepard tone of sound ex-
ample [S: 4] contains many octaves of the
same note (indicated as C). Successive
tones increase in frequency with ampli-
tudes that increase (for low frequencies)
and decrease (for high frequencies). The
dotted lines indicate the C� tone. As the
highest frequencies dissolve into inaudi-
bility, the lowest frequencies become per-
ceptible.

1.3.2 Why Illusions Happen

Already we have encountered illusions of continuity and simultaneity, illusions
of categorization, and two different kinds of pitch illusions (the missing fun-
damental and the ever-rising sound). As will become clear in Chap. 4, there
are many other kinds of auditory illusions, not all of them operating at very
short time scales. Why is the ear so easily fooled into reporting things that do
not exist (such as the missing fundamental), into failing to sense things that
do exist (such as the vowel that is in reality halfway between “a” and “e”),
and into perceiving things that cannot be (such as an ever-rising pitch)?

The ear’s job (to engage in some introductory chapter anthropomorphiza-
tion) is to make sense of the auditory world surrounding it. This is not an
easy job, because sound consists of nothing more than ephemeral pressure
waves embedded in a complex three-dimensional world. The sound wave that
arrives at the ear is a conglomeration of sound from all surrounding events
merged together. The ear must unmerge, untangle, and interpret these events.
The ear must capture the essence of what is happening in the world at large,
simultaneously emphasizing the significant features and removing the trivial.
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Does that sound represent the distant rustling of a lion or the nearby bustling
of a deer? The distinction may be of some importance.

Given this formidable task, the ear has developed a sophisticated multi-
level strategy. In the first stage, collections of similar sense impressions are
clustered into objects of perception called auditory events. This occurs on a
very short time scale. At the second stage, auditory events that are similar in
some way are themselves grouped together into larger chunks, to form patterns
and categories that are most likely the result of learning and experience.

For example, the low level processing might decode a complex wave into
an auditory event described by the phoneme “a.” This represents a huge
simplification because while there are effectively an infinite variety of possible
waveshapes, there are only about 45 distinct phonemes.7 At the next stage,
successive phonemes are scanned and properly chunked together into words,
which can then invoke various kinds of long term memory where something
corresponding to meaning might be stored.

As another example, the low level processing might decode a complex
waveform into an auditory event such as the performance of a musical “note”
on a familiar instrument; the C of a flute. Again, this represents a simplifi-
cation because there are only a few kinds of instruments while there are an
infinite variety of waveforms. At the next stage, several such notes may be
clustered to form a melodic or rhythmic pattern, again, condensing the infor-
mation into simple and coherent clusters that can then be presented to long
term memory and parsed for meaning.

Thus the ear’s strategy involves simplification and categorization. A large
amount of continuously variable data arrives; a (relatively) small amount of
well categorized data leaves, to be forwarded to the higher processing centers.
In the normal course of events, this strategy works extremely well. If, for
instance, two sounds are similar (by beginning at the same time, by having a
common envelope, by being modulated in a common way, by having a common
period, by arriving from the same direction, etc.) then they are likely to be
clustered into a single event. This makes sense because in the real world,
having such similarities implies that they are likely to have arisen from the
same source. This is the ear doing its job.

If we, as mischievous scientists, happen to separate out the cues associ-
ated with legitimate clustering and to manipulate them independently, then
it should come as no surprise that we can “fool” the ear into perceiving “illu-
sions.” The pitch illusions are of exactly this kind. It would be a rare sound in
the real world that would have multiple harmonically related partials yet have
no energy at the frequency corresponding to their common period (such as
occurs in Fig. 1.7). It would be an even rarer sound that spanned the complete
audio range in such a way that the highest partials faded out of awareness
exactly as the lowest partials entered.
7 in English. This is not to suggest that the phonemes themselves are innate; rather,

it is the processes that allow the ear to recognize and categorize phonemes.
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1.3.3 Why Illusions Matter

Illusions show the limitations of our perceptual apparatus. Somewhat para-
doxically, they are also helpful in distinguishing what is “really” in the world
from what is “really” in our minds.

Consider two friends talking. It might appear that a tape recording of
their conversation would contain all the information needed to understand
the conversation. Indeed, you or I could listen to the recording, and, providing
it was in a language we understood, reconstruct much of the meaning. But
there is currently no computer that can do the same. Why? The answer is,
at least in part, because the recording does not contain anywhere near “all”
the information. There are two different levels at which it fails. First, the
computer does not know English and lacks the cultural, social, and personal
background that the two friends share. Second, it lacks the ability to parse
and decode the audio signal into phonemes and then into words. Thus the
computer fails at both the cognitive and the perceptual levels.

The same issues arise when attempting to automate the interpretation of
a musical passage. What part of the music is in the signal, what part is in the
perceptual apparatus of the listener, and what part is in the cognitive and/or
cultural framework in which the music exists? Features of the music that op-
erate at the cognitive level are unlikely to yield to automation because the
required information is vast. Features that fundamentally involve perceptual
processing may yield to computer analysis if an appropriate way to prepro-
cess the signal in an analogous fashion can be found. Only features that are
primarily “in the signal” are easy. Illusions can help distinguish which parts of
our sense impressions correspond directly to features of the world, and which
do not. As will become clear, the things we call “notes,” “beats,” “melodies,”
“rhythms,” and “meter” are objects of cognition or perception and not pri-
mary sense impressions; they are “illusions” in the mind of the listener and
not intrinsic properties of the musical signal.

1.4 Beat Tracking

One interesting aspect of musical rhythm is the “beat,” the steady foot-
tapping pulse that drives music forward and provides the temporal framework
on which the composition rests. Is the beat directly present in the signal, is it
a perceptual construct, or does it require high level cognitive processing?

Though it may be tempting to imagine that the beat really exists in the
musical signal itself (because it is so conspicuous in our conception), it does
not. For example, there may be a syncopated section where all the energy
occurs “off” the beat. Or a song may momentarily stop and yet the beat
continues even in the absence of sound. Something that can exist without
sound cannot be in the signal!
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Figure 1.9 shows a number of the physical and perceptual terms associated
with musical rhythm. The waveform depicts a bit more than five seconds of
Scott Joplin’s Maple Leaf Rag (which may be heard in sound example [S: 5]).
The beats are shown above, aligned with the waveform. While several beats
are clearly visible in the waveform (the final three, for instance, involve obvious
amplitude fluctuations), many are not. The stretch between 30.5 s and 33.5 s
is devoid of obvious amplitude changes, yet the beat goes on.
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Fig. 1.9. A few seconds of Joplin’s Maple Leaf Rag is used to illustrate a number
of the terms associated with rhythm. The waveform is a direct representation of the
physical pressure wave from which the feature vector is derived. Perceptual terms
include the tatum (“temporal atom”), beat (or tactus), beat interval, and tempo.
Cognitive terms include measures, time signatures, and musical notations which
correlate with (but are distinct from) their perceptual counterparts (e.g., the tatum
corresponds to the sixteenth note while the beat corresponds to the eighth note).
Perceived pulses typically align with the tatum (and/or beat) though they need not
in all circumstances.

Comparing the waveform to the line of dots that represent the beat shows
why it can be difficult to recover the beat directly from the waveform. Fea-
ture vectors may be helpful as an intermediate step; they are derived from
waveforms but are designed to emphasize significant features of the sound.
For example, the feature vector shown in Fig. 1.9 was constructed by calcu-
lating the short term spectrum and measuring the change in the spectrum
from one “instant” to the next. Large values (in either the positive or nega-
tive directions) indicate large changes. To the extent that the ear is sensitive
to such spectral changes, the large values of the feature vector correspond to
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perceptible pulses. Clearly, choosing good feature vectors is an important but
tricky business. This is discussed at great length in Chap. 4.

When such pulses occur at regular intervals, they tend to induce a percep-
tion of repetitiveness. For instance, the string of six pulses beginning at 28.5 s
coincides with six successive timepoints. In this case, the pulses occur at a
rate faster than it is comfortable to tap the foot (i.e., faster than the beat),
and the grid of approximately equally spaced timepoints that is aligned with
the pulses is called the tatum (the regular repetition of the most rapid tem-
poral unit in the piece). Thus the beat and the tatum are similar; they are
both regular, repetitive perceptions of a steady flow. They exist because of
and persist despite the moment by moment sound of the piece which may or
may not reinforce the regularity over any given duration. The difference is
that the tatum is always the fastest such regular grid while the beat may be
slower. Typical beat intervals are between about 300 and 700 ms.

The tatum is also typically the rate at which the fastest notes in a musical
score are written; in this case, sixteenth notes. Because there are two tatum
timepoints for each beat, the beat is therefore represented in the score by the
eighth notes, and the measure by a 2

4
time signature. These latter notions,

involving the musical score, are clearly higher level cognitive constructions
and such notations are discussed in Sect. 2.1.2.

1.5 Why Study Rhythm?

Analyzing and modeling the perception of musical rhythm provides in-
sights into non-verbal knowledge representations, quantification of mu-
sicological theories, and intelligent tools for music performance and
composition. [B: 217]

Understanding the workings of the human mind is one of the great scien-
tific frontiers of our time. One of the few paths into the brain is the auditory
system, and discovering the boundaries between auditory cognition, percep-
tion, and the signals that arrive at our ears is a way to probe at the edges
of our understanding. Building models that try to mimic particular human
abilities is a great way to proceed: when the models are successful they lead to
better algorithms and to new applications. When the models fail they point to
places where deeper understanding is needed. Studying the rhythmic aspects
of music is one piece of this larger puzzle.

Three important aspects of rhythmic phenomena are its nonverbal nature,
its relationship with motor activity, and its relationship with time. Rhyth-
mic knowledge is nonverbal, yet operates in a hierarchical, multi-tiered fash-
ion analogous to language with “notes” instead of “phonemes” and “musi-
cal phrases” instead of “sentences.” Rhythmic phenomena express a kind of
meaning that is difficult to express in words – just as words express a kind of
meaning that is difficult to express in rhythm.
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Second, rhythmic activities are closely tied into the motor system, and
there is an interplay between kinesthetic “meaning” and “memory” and other
kinds of meaning and memory. From the work song to the dance floor, the
synchronization of activities is a common theme in human interactions that
can help to solidify group relationships.

Third, rhythmic activities are one of the few ways that humans interact
with time. We sense light with our eyes and sound with our ears. But what
organ senses the passage of time? There is none, yet we clearly do know that it
is passing. Gibson [B: 73] concludes that time is an intellectual achievement,
not a perceptual category. By observing how time appears to pass, Kramer
[B: 117] explores the interactions between musical and absolute time, and
shows how musical compositions can interrupt or reorder time as experienced.
Indeed, Chap. 10 shows very concretely how such reorderings can be exploited
as compositional elements. In arguing that music and time reveal each other,
Langer [B: 122] states elegantly that music “makes time audible.”

How do we learn about time? Children playing with blocks are learning
about space and spatial relationships. Talking, singing, and listening to speech
and music teach about time and temporal relationships. Jody Diamond’s com-
ments [B: 47] about gamelan music apply equally well to the study of rhythm
in general:

The gamelan as a learning environment is well suited to some im-
portant educational goals: cooperative group interaction, accommoda-
tion of individual learning styles and strengths, development of self-
confidence, creativity. . .

Rhythm and Transforms focuses on a few of the simplest low level features
of musical rhythms such as the beat, the pulse, and the short phrase, and
attempts to create algorithms that can emulate the ability of listeners to
identify these features. We take a strictly pragmatic viewpoint in trying to
relate things we can measure to things we can perceive, and these correlations
demonstrate neither cause nor effect. The models are essentially mathematical
tricks that may be applied to sound waveforms, and the signal processing
techniques emphasize properties inherent in the signal prior to perceptual
processing.

Nonetheless, as the discussion throughout this chapter suggests, the mod-
els are often inspired by the operation of the perceptual mechanisms (or, more
accurately, guesses as to how the perceptual mechanisms might operate). For
example, Chaps. 5–7 explore mathematical models of periodicity detection. To
make these applicable to musical signals, a kind of perceptual preprocessing is
applied which extracts certain elementary features from the waveform. These
derived quantities (like the feature vector of Fig. 1.9) feed the periodicity de-
tection. Similarly, Chap. 7 describes an un-biological model of beat extraction
from musical signals based on a Bayesian model. These function in concert
with perceptually inspired features that are extracted from the musical signal.
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Several new and exciting applications open up once the foot-tapping ma-
chine of Fig. 1.2 can reliably locate the beats and basic periodicities of a
musical performance:

Musical Editing: Identification of beat boundaries allows easy cut-and-
paste operations when editing musical signals.

An Intelligent Drum Machine: Typical drum machines are preprogram-
med to play rhythms at predefined speeds and the performers must syn-
chronize themselves to the machine. A better idea is to build a drum
machine that can “listen” to the music and follow the beat laid down by
the musicians.

External Synchronization: Beat identification enables automated synchro-
nization of the music with light effects, video clips, or any kind of computer
controlled system. This may be especially useful in the synchronization of
audio to video in film scoring.

A Tool for Disc Jockeys: Any identified levels of metrical information (as
fast as the tatum or as slow as the phrase) can be used to mark the
boundaries of a rhythmic loop or to synchronize two or more audio tracks.

Music Transcription: Meter estimation is required for time quantization,
an indispensable subtask of transcribing a musical performance into a
musical score.

Beat-based Signal Processing: Beats provide natural boundaries in a mu-
sical signal, which can be used to align a variety of signal processing tech-
niques with the music. For example, filters, delays, echoes, and vibratos (as
well as other operations) may exploit beat boundaries in their processing.
This is discussed in Chap. 9 and appropriate algorithms are derived.

Beat-based Musical Recomposition: Once the beat boundaries are lo-
cated, composers can easily work with the beat intervals, an underex-
plored compositional level. Several surprising techniques are discussed and
explored in Chap. 10.

Information Retrieval: The standard way to search for music (on the web,
for instance) is to search metadata such as file names, .mp3 ID tags,
and keywords. It would be better to be able to search using melodic or
rhythmic features, and techniques such as beat tracking may help to make
this possible.

Score Following: In order for a computer program to follow a live performer
and act as a responsive accompanist, it needs to sense and anticipate
the location of musically significant points such as beat boundaries and
measures.

Personal Conducting: Combining the beat tracking with an input device
(such as a wand that could sense position and/or acceleration) and a
method of slowing/speeding the sound (such as a phase vocoder, see
Sect. 5.3.4), the listener can “conduct” the music at a desired tempo and
with the desired expressive timing.
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Speech Processing: Rhythm plays an important role in speech compre-
hension because it can help to segment connected speech into individual
phrases and syllables.

Visualization Software: Designed to augment the musical experience by
presenting appropriate visuals on a screen, visualization software is a pop-
ular adjunct to computer-based music players. Many of these relate the
visuals to the music using the amplitude of the audio signal (so that, for
instance, louder passages move faster), the shape of the waveform, or var-
ious transforms. It would clearly be preferable to also have them able to
synchronize to the beat of the piece.

1.6 Overview of Rhythm and Transforms

There are three parts to Rhythm and Transforms. There are chapters about
music theory, practice, and composition. There are chapters about the psy-
chology and makeup of listeners, and there are chapters about the technologies
involved in finding rhythms.

Music: Chapter 2 discusses some of the many ways people think about and
notate rhythmic patterns. Chapter 3 surveys the musics of the world and
shows many different ways of conceptualizing the use of rhythmic sound.

Perception: The primary difficulty with the automated detection of rhythms
is that the beat is not directly present in the musical signal; it is in the
mind of the listener. Hence it is necessary to understand and model the basic
perceptual apparatus of the listener. Chapter 4 describes some of the basic
perceptual laws that underlie rhythmic sound.

There are three approaches to the beat finding problem: transforms, adaptive
oscillators, and statistical methods. Each makes a different set of assumptions
about the nature of the problem, uses a different kind of mathematics, and has
different strengths, weaknesses, and areas of applicability. Despite the diversity
of the approaches, there are some common themes: the identification of the
period and the phase of the rhythmic phenomena and the use of certain kinds
of optimization strategies.

Transforms: The transforms of Chap. 5 model a signal as a collection of
waveforms with special form. The Fourier transform presumes that the signal
can be modeled as a sum of sinusoidal oscillations. Wavelet transforms operate
under the assumption that the signal can be decomposed into a collection
of scaled and stretched copies of a single mother wavelet. The periodicity
transform presumes that the signal contains a strong periodic component and
decomposes it under this assumption. When these assumptions hold, then
there is a good chance that the methods work well when applied to the search
for repetitive phenomena. When the assumptions fail, so do the methods.
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Adaptive Oscillators: The dynamical system approach of Chap. 6 views a
musical signal (or a feature vector derived from that signal) as a kind of clock.
The system contains one or more oscillators, which are also a kind of clock.
The trick is to find a way of coupling the music-clock to the oscillator-clock so
that they synchronize. Once achieved, the beats can be read directly from the
output of the synchronized oscillator. Many such coupled-oscillator systems
are in common use: phase locked loops are dynamic oscillators that synchro-
nize the carrier signal at a receiver to the carrier signal at a transmitter, the
“seek” button on a radio engages an adaptive system that scans through a
large number of possible stations and locks onto one that is powerful enough
for clear reception, timing recovery is a standard trick used in cell phones
to align the received bits into sensible packets, clever system design within
the power grid automatically synchronizes the outputs of electrical generators
(rotating machines that are again modeled as oscillators) even though they
may be thousands of miles apart. Thus synchronization technologies are well
developed in certain fields, and there is hope that insights from these may be
useful in the rhythm finding problem.

Statistical Methods: The models of Chap. 7 relate various characteristics
of a musical signal to the probability of occurrence of features of interest. For
example, a repetitive pulse of energy at equidistant times is a characteristic
of a signal that is likely to represent the presence of a beat; a collection of
harmonically related overtones is a characteristic that likely represents the
presence of a musical instrument playing a particular note. Once a proba-
bilistic (or generative) model is chosen, techniques such as Kalman filters and
Bayesian particle filtering can be used to estimate the parameters within the
models, for instance, the times between successive beats.

Beat Tracking: Chapter 8 applies the three technologies for locating rhyth-
mic patterns (transforms, adaptive oscillators, and statistical methods) to
three levels of processing: to symbolic patterns where the underlying pulse is
fixed (e.g., a musical score), to symbolic patterns where the underlying pulse
may vary (e.g., MIDI data), and to time series data where the pulse may be
both unknown and time varying (e.g., feature vectors derived from audio).
The result is a tool that tracks the beat of a musical performance.

Beat-based Signal Processing: The beat timepoints are used in Chap. 9 as
a way to intelligently segment the musical signal. Signal processing techniques
can be applied on a beat-by-beat basis: beat-synchronized filters, delay lines,
and special effects, beat-based spectral mappings with harmonic and/or in-
harmonic destinations, beat-synchronized transforms. This chapter introduces
several new kinds of beat-oriented sound manipulations.

Beat-based Musical Recomposition: Chapter 10 shows how the beats of
a single piece may be rearranged and reorganized to create new structures
and rhythmic patterns including the creation of beat-based “variations on a
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theme.” Beats from different pieces can be combined in a cross-performance
synthesis.

Beat-based Rhythmic Analysis: Traditional musical analysis often focuses
on the use of note-based musical scores. Since scores only exist for a small
subset of the world’s music, it is helpful to be able to analyze performances
directly, to probe both the literal and the symbolic levels. Chapter 11 creates
skeletal rhythm scores that capture some of the salient aspects of the rhythm.
By conducting analyses in a beat-synchronous manner, it is possible to track
changes in a number of psychoacoustically significant musical variables.

1.7 Sound Examples: Teasers

Rhythm and Transforms is accompanied by a CD-ROM that contains many
sound examples in .mp3 format that are playable in iTunes, Windows Media
Player, Quicktime, or almost any other audio program. The sound examples8

are an integral part of the book. You will miss many of the most important
aspects of the presentation if you do not “listen along.” This section presents
a few highlights, tidbits of sound that suggest some of the results and sound
manipulations that are possible using beat-oriented audio processing.

One of the primary examples used throughout Rhythm and Transforms for
sound demonstrations is the Maple Leaf Rag, a ragtime masterpiece composed
at the start of the twentieth century by Scott Joplin. The Maple Leaf Rag
became the most popular piano tune of its era, selling over one million copies
of the sheet music. A reproduction of the cover of the original sheet music
is shown in Fig. 1.10 along with a portrait of Joplin. Joplin’s music enjoyed
a revival in the 1970s when the copyrights expired and his work entered the
public domain. Because there are no legal complications, it is possible to
freely augment, manipulate, expand, and mutilate the music. Ragtime literally
means “time in tatters,” and I would like to imagine that Joplin would not
be offended by the temporal shredding and rhythmic splintering that follows.

The idea of tracking the beat can be heard in the Maple Tap Rag [S: 6]
which superimposes a brief burst of white noise at each detected beat point.
It is easy to hear that the process locates times when listeners might plausibly
tap their feet. The technology needed to accomplish this task is discussed in
Chaps. 5–7. Once the beat locations are found, there are many kinds of pro-
cessing that can be done. It is possible to remove some of the beats, leading
to the Maple Leaf Waltz [S: 131]. It is possible to employ signal processing
techniques in a beat-synchronous manner as in the Beat Gated Rag [S: 85],
the Make It Brief Rag [S: 142], and the Magic Leaf Rag [S: 141]. It is possible
to remove all the tonal material, leaving only the transients as in the Maple
Noise Rag [S: 91] or leaving only atonal material in each beat as in the Atonal

8 Sound examples are designated by [S: ] and described in detail in the list of
examples starting on p. 295.
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Scott Joplin

*
by

Fig. 1.10. The Maple Leaf Rag can be heard in sound
example [S: 5]. The first four measures of the musical
score can be found in Fig. 2.3 on p. 27. The complete
musical score is available on the CD [B: 107], which
also contains a standard MIDI file sequenced by W.
Trachtman.

Leaf Rag #2 [S: 99]. It is possible to map all of the harmonics of every note
to a desired location: Sixty-Five Maples [S: 104] maps every overtone to a
harmonic of 65 Hz while the Pentatonic Rag [S: 111] maps all overtones to
scale steps of the five-tone equal tempered (5-tet) scale. The Make Believe
Rag [S: 115] alternates among a number of different n-tets and the different
mappings play a role analogous to chord changes, even though it is the un-
derlying tuning/temperament that is changing. Rag Bags #1 and #2 [S: 155]
create hybrid sound collages that merge 27 different renditions of the Maple
Leaf Rag.

Julie’s Waltz by Mark Schatz [S: 8] provides a detailed case study in
Chap. 11 of how beat-based feature scores can display detailed information
about aspects of a musical performance (such as timing and timbre) that are
missing from a standard musical score. The little-known song Soul [S: 7] by
the (now defunct) Ithaca-based band Blip is also used extensively to demon-
strate the various techniques of sound manipulation in a vocal rock context.
Successful beat tracking of Soul is demonstrated in Table A.1(10) on p. 289
along with many others. The Soul Waltzes [S: 132] show that hard driving
rhythms need not be confined to 4

4
time signatures. Atonal Soul [S: 100], Noisy

Souls [S: 93], and Frozen Souls [S: 120] demonstrate the removal of all tonal
material, the elaboration of the noise component, and textural changes due
to spectral freezing. The effects of the processing on Beil’s voice are often
remarkable: sometimes silly and sometimes frightening. These examples give
only a taste of the possibilities.
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Visualizing and Conceptualizing Rhythm

There are many different ways to think about
and notate rhythmic patterns. Visualizing and
Conceptualizing Rhythm introduces the notations,
tablatures, conventions, and illustrations that will
be used throughout Rhythm and Transforms. The
distinction between symbolic and literal notations is
emphasized.

Rhythmic notations represent time via a spatial metaphor. There are two ap-
proaches to the notation of rhythmic activities: symbolic and literal. Symbolic
approaches accentuate high level information about a sound while literal rep-
resentations allow the sound to be recreated. A good analogy is with written
(symbolic) vs. spoken (literal) language. Text presents a concise representa-
tion of speech but cannot specify every nuance and vocal gesture of a native
speaker. Similarly, symbolic representations of music present a concise descrip-
tion of the sound, but cannot specify every nuance and musical gesture that
a musician would naturally include in a performance. Standard musical nota-
tion, drum tablatures, and MIDI transcriptions are all examples of symbolic
notations. Literal notations allow a (near) perfect reproduction of a perfor-
mance. Somewhat paradoxically, by preserving all the information about a
performance, literal representations make it difficult to focus on particular
aspects of the sound that may be aurally significant. For example, while a
symbolic notation may show the fundamental timepoints on which the music
rests, these may not be discernible in a literal representation. Similarly, sym-
bolic representations of the pitches of musical events are easy to comprehend,
yet the pitch may not be easy to extract from a literal representation such as
a .wav file, a spectrogram, or a granular representation.

A third class might be called abstract notations, where the score itself is
intended to be a work of (visual) art. Several modern composers have created
idiosyncratic notations for particular purposes in individual pieces, including
Cage’s indeterminate notations, Crumb’s emulation of Medieval symbolic de-
signs, Penderecki’s ideograms, and Lutoslawski’s mobiles. These are certainly
interesting from an artistic perspective and may be quite instructive in terms
of the composer’s intentions for a particular piece. They are not, however, gen-
eral notations that can be applied to represent a large class of sound; rather,
they are designed for a unique purpose. A variety of visual metaphors are
described in Sect. 2.3.
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This chapter surveys the varieties of notations that have been used over the
centuries to represent rhythmic phenomena, beginning with symbolic methods
and then exploring various kinds of literal notations.

2.1 Symbolic Notations

From a near infinite number of possible timbres, rhythms, pitches, and sonic
gestures, symbolic notations extract a small number of features to emphasize
in pictorial, numeric, or geometric form. In many cases, time is viewed as
passing at regular intervals and this passage is depicted by equal divisions of
space. In other cases, time (and/or duration) is itself represented symbolically.

2.1.1 Lyrical Notation

One of the earliest forms of rhythmic notation were markings used to annotate
chants, though metrical symbols for syllables were well known to the ancient
Greeks. As codified in the anonymous Discantus Positio Vulgaris in the early
13th century, these were built on the distinction between long, strong, accented
syllables notated with a dash −, and short, weak, unaccented syllables labeled
�. Many of these terms, such as those in the prosodic notation of Table 2.1
are still used in the analysis of stress patterns in poetry.

Table 2.1. The five common elements (feet) of the metrical structure of English
verse

name stress pattern symbol examples

trochee long–short − � singing, pizza, rigid
iamb short–long � − appear, remark, event
dactyl long–short–short − �� tenderly, bitterly, specimen
anapest short–short–long �� − in the night, on the road, up a tree
amphibrach short–long–short � − � acoustic, familiar, Sethares

There are two parts to scansion, the rhythmic analysis of poetic meter.
First, partition the phrase into syllables and identify the most common metric
units from Table 2.1. Second, name the lines according to the number of feet.
The words monometer, dimeter, trimeter, tetrameter, pentameter, hexameter,
heptameter, and octameter, describe the names for one through eight feet per
line respectively. For example, Shakespeare’s witches sing

− �

Double
− �

Double
−

toil
�

and
− �

trouble

in trochee with four feet per line, hence in trochaic tetrameter. The lines
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�

For
�

the
−

moon
��

never
−

beams
� �

without
− �

bringing
�

me
−

Dreams
�

of
�

the
− � �

Beautiful
− � �

Annabel
−

Lee

from Edgar Allan Poe’s Annabel Lee are in regular anapestic heptameter,
while Christopher Marlowe’s line about Helen of Troy (from Dr. Faustus)

�

Was
−

this
�

the
−

face
�

that
−

launched
�

a
− �

thousand
−

ships

is iambic pentameter.
This kind of meter is an arrangement of primitive elements (such as those

in Table 2.1) into groups based on stress patterns, accented syllables, and
the number of syllables per line and defines the rhythmic structure of poetic
stanzas. Though such notation can be useful in following the metrical flow of a
poem, it is imprecise because it does not describe actual temporal relationships
such as the relative durations of the − and �s, nor how long pauses should
last.

In principle, the rhythm of chant is the rhythm of ordinary spoken Latin
since the intent of the recital is to make the meaning as clear as possible. In
practice, it may be desirable to standardize the chants so that important words
are emphasized. Guido D’Arezzo, a Benedictine monk working in the eleventh
century, invented the first form of chant notation that was able to notate both
pitch and rhythm using a four lined staff. This early musical notation (using
symbols such as the longa, the brevis, the maxima and the semibrevis as
shown in Fig. 2.1) allowed a notation where certain vowels could be elongated
and others abbreviated. Especially when wishing to notate nonlyrical music,
greater precision is needed. D’Arezzo’s system eventually evolved into the
modern system of musical notation.

longa brevis maxima semibrevis

Fig. 2.1. This small segment
of a chant from an illuminated
manuscript looks remarkably modern
with lyrics positioned beneath sym-
bols that indicate both pitch and du-
ration. But there is no clef and no
time signature, and there are only
four lines per staff.

Lyrically inspired notations also play a role in many oral traditions. For
example, Indian tabla players traditionally use a collection of bols (syllables
for “mouth drumming,” see Sect. 3.8) to help learn and communicate complex
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drumming patterns. During the Renaissance, articulation techniques such as
the tonguing of recorders and cornets and the bowing of violin were conceptu-
alized syllabically. Ganassi’s Fontegara [B: 69] shows three major kinds of ar-
ticulations: taka, tara, and lara, which embody hard-hard, hard-soft, and soft-
soft syllables. Such (sub)vocalizations are particularly useful when a recorder
attempts to mimic the voice. Lyrical notations have also had impact on mod-
ern theories of rhythmic perception such as that of Cooper and Myers [B: 35],
which use the five prosodic rhythmic groups of Table 2.1 as a basis for metrical
hierarchy. This is discussed further in Sect. 3.2.

2.1.2 Musical Notation

Modern musical notation is, at heart, a set of instructions given by a composer
(or arranger) to a performer for the purpose of describing how a piece should
be performed. Since performers typically create sound by playing notes on
an instrument (or using their voice), it is natural that the notation should
be written in “notes.” Standard notation contains two parts, a staff that
represents the pitches and a method of specifying the duration of each note.
The discussion here focuses on the rhythmic portion of the notation.

whole note    1
half note  1/2
quarter note  1/4
eighth note  1/8
sixteenth note 1/16
thirty-second note 1/32

name         symbol  relative duration

whole rest   1
half rest  1/2
quarter rest 1/4
eighth rest  1/8
sixteenth rest  1/16
thirty-second rest  1/32

name symbol   relative duration

slurs: dotted notes:  tuplets:

1/8+1/8=1/4  1/4+1/4=1/2 3/8 = 1/4+1/8  3/4=1/2+1/4

Fig. 2.2. There are six common kinds of notes and six kinds of rests (silences),
each with a different duration. The whole tone has a duration of one time unit and
all others are specified as fractions of that time. Thus if the whole tone represents
one second, the quarter note represents 250 ms. In addition, if a note is followed by
a small dot or period, its duration is increased by half. Thus, if the above quarter
note were dotted, it would represent a duration of 375 ms. Two notes connected
by a slur � are played as a single note with duration equal to the sum of the two
notes. Tuplets allow the specification of durations that are not factors of 2; in one
example a half note is divided into three equal parts while in the other a quarter
note is divided into three equal parts.

Figure 2.2 shows the various kinds of note symbols and their relative dura-
tions. By definition, the whole tone represents a time duration of one time unit,
and the others are scaled accordingly. Besides the notes themselves, standard
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notation also specifies a time signature that looks something like a fraction,
for example 4

4
and 6

8
. The bottom number specifies the note value that defines

the beat (4 specifies a quarter note beat while 8 specifies an eighth note beat).
The top number states how many beats are in each measure.1 Thus in 4

4
time,

the length of a measure is equal to the time span of a whole note (since this
has the same duration as four quarter notes). In practice, this can be divided
in any possible way: as four quarter notes, as four eighth notes plus a single
half note, as eight eighth notes, etc. Similarly, in 6

8
time, there are six eighth

note beats in each measure. Again, any combination is possible: six eighth
notes, two quarter notes plus two eighth notes, one quarter note plus four
eighth notes, etc.

To be concrete, Fig. 2.3 shows the first four measures of Scott Joplin’s
Maple Leaf Rag. The time signature is 2

4
. A quarter note receives one beat

and there are two beats per measure. The bass in the lower staff moves along
with complete regularity, each measure containing four eighth notes (notes are
played simultaneously when they are stacked vertically). In the treble (top)
staff, the division is more complex. The first measure contains five sixteenth
notes, one eighth note, and one sixteenth rest (totalling two beats). The second
measure, in contrast, is divided into a quarter note and four sixteenth notes.2

Overall, the piece moves at the rate of the sixteenth note, and this forms the
tatum of the piece. The complete musical score for the Maple Leaf Rag is
available on the CD in the files folder [B: 107]. The piece itself can be heard
in [S: 5].

1 2 3 4

Fig. 2.3. The first four measures of the Maple Leaf Rag by Scott Joplin. The full
score, drawn by J. Paterson, may be found on the CD [B: 107].

In principle, the same musical passage can be written with different time
signatures. The Maple Leaf Rag, for instance, can be notated in 4

8
since two

quarter notes per measure is the same as four eighth notes per measure. It
could also be notated in 4

4
by changing all the sixteenth notes to eighth notes,

1 Measures are typically separated by vertical lines.
2 One of the sixteenth notes is tied to the quarter note (by the slur) so that there

are actually only four notes played in the measure. The three sixteenth notes are
followed by a single note with duration 1

4
+ 1

16
. The complete measure is again

two beats.
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all the eighth notes to quarter notes, etc., and requiring four beats per measure
instead of two. Indeed, some MIDI transcriptions represent the meter this way.

Another example is the rhythm represented in Fig. 2.4(a). This rhythm
is popular throughout much of Africa; it is typically notated in 6

8
as shown.

Though it could logically be written in 3
4
, it is not. The time signature 3

4

is reserved for dances that have a “three” feel to them, like a waltz. The
difference between such equal-fraction time signatures is stylistic and infused
with history.

2.1.3 Necklace Notation

Representing temporal cycles as spatial circles is an old idea: Saf̂ı al-Din al-
Urmaŵı, the 13th century theoretician from Baghdad, represents both musi-
cal and natural rhythms in a circular notation in the Book of Cycles [B: 3].
Time moves around the circle (usually in a clockwise direction) and events
are depicted along the periphery. Since the “end” of the circle is also the
“beginning,” this emphasizes the repetition inherent in rhythmic patterns.

   q  q  e e   e q  q  e

q
q

e
q

q ee

e

] }68
timeline

timecycle

time time

timepoints

start
events

start

(a)

(b)

(c) necklace notation

1

2

3

4

5

6

Fig. 2.4. The rhythmic pattern (see also Fig. 1.3 and sound example [S: 2]) is
represented in musical notation (a) and then translated into the timecycle notation
(b) where the repetition is implicit in the circular structure. The necklace notation
in (c) replaces the redundant note symbols with simpler donut-shaped events, and
the beats are labeled inside the circle. In both (b) and (c), the twelve timepoints
define the tatum, a regular grid of time on which all events lie. The tatum must be
inferred from the 6

8
time signature in the musical notation.

Anku [B: 4] argues that African music is perceived in a circular (rather
than linear) fashion that makes the necklace notation particularly appropri-
ate. Performances consist of a steady ostinato against which the master drum
performs a series of rhythmic manipulations. The ostinato, visualized as a
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background of concentric circular rhythms each with its own orientation, re-
veal staggered entries that sound against (or along with) the regular beat.
The master drummer “improvises” by choosing patterns from a collection of
rhythmic phrases commonly associated with the specific musical style. “It is
in these complex structural manipulations (against a background of a steady
ostinato referent) that Africa finds its finest rhythmic qualities” [B: 4].

The necklace notation is useful in showing how seemingly “different”
rhythms are related. Part (a) of Fig. 2.5 shows traditional rhythms of the
Ewe (from Ghana), the Yoruba (from Nigeria) and the Bemba (from Central
Africa). All three are variants of the “standard rhythm pattern” described
by King [B: 111]. In (b), the Yoruba pattern (called the Kànàngó) is shown
along with the accompanying Aguda, which can be rotated against the primary
rhythm for variety.

time

Ewe (Ghana)

Yoruba (Nigeria)

Bemba
(Central Africa)

time

(a) (b)

time

(c)

Fig. 2.5. Three traditional rhythms of Africa are variants of King’s “standard pat-
tern.” They are the same as the rhythmic motif of Figs. 1.3 and 2.4 but interpreted
(and perceived) as having different starting points. (b) demonstrates how two drums
may play with each other, and in (c) the same pattern appears in both the inner
and outer necklace, though rotated in time. These are demonstrated in [S: 9].

In (c), the same Kànàngó rhythm is played on the drum and sung, but
the two are out of phase with each other. This technique of playing a rhyth-
mic pattern along with a time delayed version of itself can provide “a strong
sense of driving forward through the time continuum” [B: 140]. This tech-
nique is called a “gap” (zure) in Japanese folk music. Similarly, Sachs [B: 187]
comments on the use of a rhythmical shift between a singer’s melody and
the accompaniment that may last for long stretches as the instrument keeps
slightly ahead of the singer “by an eighth note or less.”

2.1.4 Numerical Notations

Perhaps the simplest form of rhythmic notation begins with a time grid in
which each location represents a possible note event. If a note is present at
that point in time, the location is labeled “1” while if no event occurs it is
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labeled “0.” The points of the underlying time grid are assumed to be fixed and
known. For example, one cycle of the Ewe rhythm of Fig. 2.5(a) is represented
as

1 0 1 0 1 1 0 1 0 1 0 1

in the binary notation. One cycle of the two simultaneous rhythms in Fig. 2.5(b)
(starting at the arrow) is

1 0 1 0 1 1 0 1 0 1 1 0
0 0 1 1 0 1 0 0 1 1 0 1 .

Some authors use a variant in which different numbers may appear in the
timeslots, depending on some attribute of the instrument or of the event: its
volume, the type of stroke, or its duration. For example, Brown [B: 21] weights
the amplitude of the note events by the duration, which may be useful when
attempting automatic meter detection. In this scheme, the Ewe rhythm is

2 0 2 0 1 2 0 2 0 2 0 1.

More sophisticated weighting schemes exploit the results of psychoacoustic
experiments on accents. Povel and Okkerman [B: 175] study sequences com-
posed of identical tones. Individual tones tend to be perceptually marked (or
accented) if they are

(i) relatively isolated
(ii) the second tone of a cluster of two
(iii) at the start or end of a run (containing three or more elements)

For example, consider the rhythm shown in Fig. 2.6, which compares Brown’s
duration-weighted scheme with Povel’s accent-weighted scheme. Along with
the binary notation, these are examples of what Jones [B: 106] calls patterns
in time, sequences that are defined element by element within the flow of time.

Another kind of numerical notation translates each musical note into a
number specifying the duration as an integer multiple of the underlying tatum.
For the rhythm in Fig. 2.6 this is the eighth note, and the “duration notation”
appears just below the musical notation. Jones [B: 106] calls these patterns
of time, because each element represents the temporal extent of an event.

time

e e e q . e q   e e e h

1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0binary:
1 1 1 3 0 0 1 2 0 1 1 1 4 0 0 0duration-weighted:
2 1 1 2 0 0 1 2 0 2 1 1 2 0 0 0accent-weighted:

1   1   1   3   1   2   1   1   1   4durations:

musical:patterns
of time

patterns
in time

Fig. 2.6. Several different numerical notations for the same rhythm, which is shown
in musical and necklace notations and is performed in [S: 10]
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time

A

C

B

Fig. 2.7. The three functions representing the three
rhythms A, B, and C are identified as elements of the
same equivalence class under the shift operator

2.1.5 Functional Notation

The binary notation can also be translated into the form of mathematical
functions. This is probably the most abstract of the notations, yet it allows the
mathematician to demonstrate certain properties of repeating (i.e., rhythmic)
patterns. Suppose first that there is an underlying beat (or tatum) on which
the rhythm is based and let the integers Z label the timepoints in the tatum.
Following Hall [B: 87], define the function f : Z → {0, 1} by

f(k) =
{

1 if is there is a note onset at k
0 otherwise .

The function f represents a periodic rhythm if there is a p such that f(k) =
f(k + p) for all k ∈ Z. The smallest such p is called the period of the rhythm.
A rhythm cycle is defined to be an equivalence class of all p-periodic functions
f modulo the shift operator s, which is defined as (s · f)(k) = f(k − 1).

This shift property captures the idea that the rhythm is not just a vector
of timepoints, but one that repeats. The equivalence property implies that
the 8-periodic functions corresponding to sequences such as A = {10010010},
B = {01001001}, and C = {10100100} all represent the “same” underlying
cyclical pattern, as is demonstrated in Fig. 2.7.

Using such functional notations, it is possible to investigate questions
about the number of possible different rhythm patterns, to talk concretely
about both symmetric and asymmetric rhythm patterns, and to explore tiling
canons (those that “fill” all possible timepoints using a single rhythm cycle
with offset starting points, see [B: 87]).

2.1.6 Drum/Percussion Tablature

Drum and percussion tablature is a graphical form of the binary representation
in which each possible location on a two-dimensional grid is filled to represent
the presence of an event or left empty to indicate silence. Time is presented
on the horizontal axis along with verbal directions for counting the beat. The
instruments used are defined by the various rows of the grid. For example,
Fig. 2.8 shows a two measure phrase played on a full drum kit.

The drum and percussion tablature shows when and how to strike the
instruments and there are archives of such tablature available on the web
[W: 13]. Percussion grids such as in Fig. 2.8 are also a popular interface for
programming drum machines such as Roland’s TR-707.
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1 + & + 2 + & + 3 + & + 4 + & +

Cymbal
Hi-Hat
Snare Drum
Bass Drum

1 + & + 2 + & + 3 + & + 4 + & +

x

o

x
x f

x x

x

x o x x x x x x o x x
x

x

Fig. 2.8. Drum tablature lists the various percussion instruments on the left. The
time grid shows when each drum should be hit and the numbering below shows how
to count the time. In this case, each of the two measures is counted one-ah-and-ah
two-ah-and-ah three-ah-and-ah four-ah-and-ah. The type of stroke is also indicated:
‘x’ means a normal hit, ‘o’ means an open hi-hat, and ‘f’ means a flam on the snare.
Typically, there is a legend describing the symbols used on any given tablature. This
example is performed in [S: 11].

2.1.7 Schillinger’s Notation

Joseph Schillinger [B: 189] (1895–1943) proposed a graphical technique for
picturing musical composition that he hoped would one day replace musical
notation. In this notation, a grid of squares represents time moving in the
horizontal direction; one square for each timepoint. The vertical dimension is
pitch, typically labeled in semitones. Figure 2.9, for instance, shows the start
of Bach’s Two-Part Invention No. 8 [S: 12]. The contour of the melody line
is immediately apparent from the graphical representation, and Schillinger
considered this an important step in helping to create a scientific approach
to melody. Schillinger showed how to modify the musical work graphically
through variation of its geometrical properties, and how to compose directly
in the graphical domain. Other factors than pitch may also be recorded anal-
ogously, for example, a curve might show the loudness at each grid point, the
amount of vibrato, or various aspects of tone quality.

==============

se
m

ito
ne

s

sixteenth notes

Fig. 2.9. The first two measures
of Bach’s Two-Part Invention No.
8 are shown in musical notation
and in Schillinger’s graphical no-
tation. In the grid, each horizon-
tal square represents one time unit
(in this case, a sixteenth note)
and each vertical square represents
one semitone. The contour of the
melody is immediately apparent
from the contour of the curve.

Schillinger’s theory of rhythm merges this graphical notation with the
idea of interference patterns. When two sine waves of different frequencies
are added together, they alternate between constructive and destructive in-
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terference. This alternation is perceived as beats if the differences between the
frequencies is in the range of about 0.5 to 10 Hz. Schillinger schematizes this
idea using square waves in which each change in level represents a new note.
When two (or more) waves are combined, new notes occur at every change
in level. This allows creation of a large variety of rhythmic patterns from
simple source material, and the Encyclopedia of Rhythms [B: 190] provides a
“massive collection of rhythm patterns.”

Two examples are shown in Fig. 2.10. In part (a), a square wave with two
changes per unit time is combined with a square wave with three changes
per unit time. Overall, changes (new notes) occur at four of the six possi-
ble times. The resulting rhythm is also given in standard musical notation,
and in the necklace notation. Similarly, part (b) shows a four-against-three
pattern, which results in a more complex polyrhythm. Schillinger’s system is
a method of generating polyrhythms (see also Sect. 3.9), that is, a method
of combining multiple steady pulse trains, each with its own period. When
played simultaneously, the polyrhythm is sounded.

+ =

q .   q .   q .    q .
q .  eq  q  eq .

h       h       h

(a) (b)

+ =

q .        q . 
q      q     q
q    e e q

Fig. 2.10. (a) One wave repeats every three time units and the other repeats
every two time units. Combining these leads to a three-against-two polyrhythm.
(b) One wave repeats every four time units and the other repeats every three time
units. Combining these leads to a four-against-three polyrhythm. Both are shown in
Schillinger’s graphical notation, in musical notation, and in the necklace notation.
Dots represent the steady pulse. These and other polyrhythms are demonstrated in
[S: 27].

2.1.8 MIDI Notation

In 1982, a number of synthesizer manufacturers agreed to a common specifica-
tion for the transfer of digital information between electronic musical instru-
ments. While originally conceived as a way to synchronize the performance
of multiple synthesizers and keyboards, the MIDI (Musical Instrument Dig-
ital Interface) specification is flexible enough to allow computers to interact
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with electronic keyboards in many ways. Since then, MIDI has been adopted
throughout the electronic music industry.

An outgrowth of the MIDI protocol is the Standard MIDI File (SMF)
format [W: 49], commonly indicated by the file extension .mid, which allows
computer programs to store and recall MIDI performances. While not origi-
nally intended as a method of notation, the SMF has become a common way
of transferring and storing musical information and hence a standard way of
representing musical scores and keyboard performances.

Raw MIDI data is difficult to parse directly. For example, the list of num-
bers in Table 2.2 represents a single note (number 53 = F2, the F just below
middle C) played on channel 1 (MIDI allows 16 simultaneous channels of in-
formation). The note is struck with a “velocity” of 100 (out of a maximum of
127). Time passes (represented by the variable length “delta time”) and then
the note is turned off. Fortunately, the computer can be used to aid in the
organization and visualization of the MIDI data.

Table 2.2. The right table shows the MIDI event list for the five note pattern in
Fig. 2.11. The left table shows the raw MIDI data for the first note alone.

MIDI Data Comment

144 note on channel 1
53 note number 53 (F2) – bell
100 note velocity
129 delta time
112 delta time continued
128 note off channel 1
53 note number 53 (F2)
64 note off velocity

Time Note Velocity Duration

1|1|000 F2 ↓100 ↑64 1|000
1|2|000 F2 ↓64 ↑64 1|000
1|3|000 F2 ↓64 ↑64 0|240
1|3|240 F2 ↓64 ↑64 1|000
1|4|240 F2 ↓64 ↑64 0|240

For example, the right hand side of Table 2.2 shows an “event list,” a
way of organizing the MIDI data. The first row in this table represents the
same information as the previous column of numbers. Each of the other rows
represents a subsequent note event, and the five notes are shown in timeline
notation in Fig. 2.11. They can be heard in [S: 13]. Observe that the SMF data
incorporates information about the metric structure (the time signature) of
the piece. For example, the first note occurs at measure 1, beat 1, tick 0. By
default, there are four beats in each measure and each beat has 480 ticks.
These defaults can be changed in the file header. The duration of the first
note is given on the right as 1|000, which specifies the duration as one beat).
Similarly, the third and fifth notes have a duration of 0 beats and 240 ticks
(1/2 of a beat). This representation makes it easy for software to change
the tempo of a MIDI performance by simply redefining the time span of the
underlying tick.
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q  q  e q   e44
Even more useful than event lists, however, are visualizations of MIDI data

such as the piano-roll of Fig. 2.12. In this representation, the vertical axis rep-
resents MIDI note numbers (such as F2 = 53 above) and the corresponding
notes of the piano keyboard are shown graphically on both sides of the figure.
Time moves along the horizontal axis, marked in beats and measures. When
representing percussion, each row corresponds to a different instrument (in-
stead of a different note). In the general MIDI drum specification, for instance,
the row corresponding to C1 is the bass drum with MIDI note number 36,
D1 = 38 is the snare, and F�1 = 42, G�1 = 44, and A�1 = 46 are various kinds
of hi-hat cymbals. These are labeled in the figure along with the corresponding
MIDI note number. The drum pattern is played in [S: 14].

measures1 2 3 4

bass
snare

closed
pedal
open

hi-hats:

bell

36
38

42
44
46

53

C1
D1

F#1
G#1
A#1

F2

Fig. 2.12. A standard MIDI drum track is shown in piano roll notation. Each of
the four measures is divided into four equal beats. The first measure represents the
same five notes (performed with a bell sound in [S: 13]) as are given in Table 2.2
and shown in the timeline of Fig. 2.11. The final four measures represent a common
“rock” oriented drum pattern, and can be heard in [S: 14].

More common than using the piano-roll for notating percussion is to notate
complete musical performances. The first four measures of the Maple Leaf Rag
by Scott Joplin are displayed in MIDI piano-roll notation in Fig. 2.13. This
can be readily compared to the musical score from Fig. 2.3 and is performed
in [S: 5]. Thus standard MIDI files, like all the notations discussed so far, are
a symbolic representation of the music rather than a direct representation
of the sound. When using software to play standard MIDI files, it is easy to
change the “sound” of the piece by assigning a different synthesizer “patch,”

Fig. 2.11. This measure appears as a MIDI event list in

Table 2.2 and as the first measure in the piano-roll notation

of Fig. 2.12. It is performed using a bell sound in [S: 13].
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for example, to play the Maple Leaf Rag with a violin sound or a xylophone
sound instead of the default piano. If you are not familiar with this technique,
you may want to experiment with the MIDI file of the Maple Leaf Rag, which
is available on the CD [B: 107], or download some standard MIDI files from
the Classical Music Archives [W: 9].

measures1 2 3 4

Fig. 2.13. Joplin’s Maple Leaf Rag is sequenced in MIDI form on the CD (see
[B: 107]) and a piano performance can be heard at [S: 5]. Shown here are the first
four measures for easy comparison to the standard musical notation in Fig. 2.3.

2.1.9 Harmonic Rhythm

When a rhythmic pattern is played sufficiently rapidly, it becomes a tone. For
example, sound example [S: 33] plays a regular sequence of identical clicks
separated in time by N milliseconds. When N is large (N = 500), it is per-
ceived as a steady rhythm at a rate of two clicks per second; when N is small
(N = 10) it is perceived as a tone with a pitch that corresponds to a frequency
of 1

10 ms per pulse = 100 Hz.
Suppose that the rhythm consists of two pulse trains sounding simultane-

ously. Cowell [B: 37] draws a parallel between the ratio of the pulse rates and
the interval between the pitches of the resulting tones. Suppose that the pulses
in the first rhythm are separated by N1 ms and those in the second rhythm
are separated by N2. Each will have a pitch corresponding to the inverse of
the pulse rate, and so the interval (ratio) between the two tones is N2

N1
. For

example, with N1 = 10 and N2 = 20 ms, the two pitches are in a 2:1 ratio.
Thus they are an octave apart. If N2 were 15 ms, then the ratio would be 3:2,
corresponding to a musical fifth.

This is shown in Fig. 2.14, which lists the first six harmonics of a C note.
The ratio formed by successive harmonics and the corresponding musical in-
tervals appear in the next columns. If the period of the fundamental is one time
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unit, then the time occupied by each of the harmonics is shown graphically.
Finally, the ratios are expressed in terms of musical (rhythmic) notation.

1   C    fundamental  1:1               w

2   C    octave    2:1             h   h

3   G    fifth     3:2            h  h  h

5   E    major third   5:4                q  q  q  q q

6   G    minor third   6:5               eeeeee

4   C    fourth     4:3           q  q  q  q3

5

overtone  note    interval              ratio             relative period      musical notation

==
==

1

1/2 1/2

1/31/31/3

1/4 1/4 1/4 1/4

1/51/51/51/51/5

1/6 1/6 1/6 1/6 1/6 1/6

&
? w

ww
www

Fig. 2.14. A complex musical tone with fundamental C has six harmonics. The
intervals formed by successive overtones and the corresponding ratios are shown.
These ratios correspond to the period of vibration of the overtone, which are shown
schematically. These periods are translated into musical notation in the final column.

This provides an analogy between the harmonic overtones of musical
sounds and the simple-integer relationship found in certain rhythmic patterns.
For example, the perfect fifth is represented by a frequency ratio of 3:2, hence
it is analogous to a pair of rhythmic pulses with periods in the ratio 3:2. This
is the same three-against-two polyrhythm as in Fig. 2.10(a). The polyrhythm
in part (b) is in a 4:3 ratio and thus corresponds to a perfect fourth. Simi-
larly, the major and minor thirds correspond to 5:4 and 6:5 polyrhythms. Not
shown are the 5:3 (major sixth) and 8:5 (minor sixth) rhythms.

Using this kind of argument, Jay [W: 20] states that harmony and rhythm
are different aspects of the same phenomenon occurring at radically different
speeds. If a harmony is lowered several octaves, pitches become pulses, and the
more consonant harmonic intervals become regularly repeating rhythms. The
greater the consonance, the simpler the rhythm. On the other hand, rhythm
is converted into harmony by raising it five to ten octaves. Thus harmony is
fast rhythm; rhythm is slow harmony.

Stockhausen [B: 224] takes an analogous view in “. . .How Time Passes. . . ”
where he argues that pitch and rhythm can be considered to be the same
phenomenon differing only in time scale. Stockhausen makes several attempts
to create a scale of durations that mirrors the twelve notes of the chromatic
scale. These include:

(i) a series of durations that are multiples of a single time unit: T ,
2T , . . . , 12T
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(ii) subdividing a unit of time T into twelve fractions T , T
2 , T

3 , . . . ,
T
12

(iii) dividing time into twelve durations that are spaced logarithmically
between T and 2T : T , αT , α2T , α3T , . . . , 2T , where α = 12

√
2

It is not easy to construct a scale of durations that makes sense both logically
and perceptually. The idea of a fundamental relationship between harmony
and rhythm is enticing and the logical connections are clear. Unfortunately,
our perceptual apparatus operates radically differently at very slow (rhythmic)
and very fast (pitched) rates. See Sect. 3.9 for sound examples and further
discussion.

2.1.10 Dance Notation

Labanotation serves the art of dance much as music notation serves
the art of music. Ann Hutchinson [B: 100].

Music is but one human rhythmic activity, and there are a wide variety of
notations and conventions that describe dance, juggling, mime, sports (such
as gymnastics, ice skating, and karate), and physical movements (such as
physical therapy and body language). In [B: 99], Ann Hutchinson reviews
a number of dance notations, beginning with the 15th Century Municipal
Archives of Cervera, Spain, where various steps are notated by collections of
horizontal and vertical lines and a series of abbreviations. Raoul Feuillet’s
“track drawings” show a floor plan annotated with foot and arm movements.
Theleur’s method uses stick figures to show leg, body, and arm motions. Saint-
Léon’s stenochorégraphie places symbolic stick figures (showing motion) on
a musical staff (indicating time). Margaret Morris observed that “all human
movements take place around an imaginary central axis,” and used abstract
symbols placed on a pair of three-lined staves to express various movements:
gestures of the head and arms on the upper staff, activities of the legs and
feet on the lower staff, and movement of the body in between.

Perhaps the most common dance notation today is Labanotation, named
after the Hungarian Rudolf von Laban (1879–1958). Laban conceived of his
“kinetographi,” which combines the Greek words kinētikos (to move) and
graphos (writing), as an attempt to analyze and record every aspect of human
movement [W: 24]. Like musical notation, Labanotation is based on a series of
regular beats, which are typically displayed running vertically from bottom to
top. A vertical center line divides two columns that represent the left and right
sides of the dancer. Motions occurring to the left (or right) side of the body are
thus sensibly displayed on the left (or right) side of the center line. Symbols
are placed in the columns: rectangles are altered in shape to indicate direction,
color and/or shading are used to show level, and length is used to indicate
duration. Special symbols are used to represent the joints (shoulders, knees,
fingers), for surfaces of the body (palm, face, and chest), and special signs
can be used for a wide variety of actions such as touching, sliding, stamping,
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clapping, etc. A readily accessible introduction to Labanotation can be found
at the Dance Notation Bureau [W: 12].

For example, Fig. 2.15 shows two measures of a tango in Labanotation,
as recorded by Andreas Maag [W: 25]. There are two columns because there
are two dancers, and the notation is augmented with verbal descriptions of
unusual or characteristic motions. Different dance styles have different sets of
specialized symbols.
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Fig. 2.15. Two measures of a
tango notated in Labanotation by
Andreas Maag [W: 25]. The two
dancers perform somewhat dif-
ferent actions and their motions
are notated in separate columns
that are synchronized (vertically)
in time. The annotation reads, in
part: Normal salida (2 steps) then
step to change feet (R.F. behind
the L.F., do not turn the pelvis); 2
steps. Entrada (footstop) and sand-
wich (R.F. of the hombre between
the feet of the mujer). Bow, hombre
R.F. touches mujer feet (but not
on top). The hombre leads a turn
and interrupts it right away (beat
7) with R.F. Pulls R.F. back and
leads ocho to finish. The figure is re-
drawn and annotated with permis-
sion. The circles representing the
beat locations are added to empha-
size the similarities with beat-based
musical notations.

2.1.11 Juggling Notation

Juggling is the action of repeatedly tossing a number of objects (typically
balls) into the air and catching them again. It requires skill and agility because
no hand holds more than one ball at a time and there are typically more balls
than hands. Like music, the actions must be performed rhythmically. Like
dance, the actions must respect gravity.
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Over the years, jugglers have developed a variety of ways to notate their
art. Some notations are more flexible (can describe a large variety of different
patterns) and some are more compact. One recent innovation is the “beat-
based juggling notation” of Luke Burrage (described at the Internet Juggling
Database [W: 19]), which notates what each hand is doing at every beat in
time. Beever’s comprehensive Guide to Juggling Patterns [B: 10] written for
“jugglers, mathematicians and other curious people,” gives a rich overview
of juggling techniques and notations (“like sheet music for jugglers”), and
demonstrates a variety of related mathematical results.

Perhaps the most popular notation is the siteswap notation (see [B: 227],
[W: 48]), which represents throws by integers that specify the number of beats
in the future when the object is thrown again. Because there are many con-
straints (no hand holds more than one ball, balls must return to a hand after a
short time in flight) these integer patterns represent juggling patterns. Beever
[B: 10] builds up a logical description of the process that includes the time,
site (e.g., left or right hand, elbow, knee), and position (to the left, right or
right side of the body) of the throw, the position and site of the catch, and the
airtime of the flight. From these, and under nominal assumptions, he derives
the siteswap base which provides a shorthand notation for general use.

For example, Fig. 2.16 shows the schematic “ladder” notation of the cas-
cade, a standard three-object juggling pattern. Time moves vertically from
the bottom to the top. Beats occurring at roughly equal timepoints are repre-
sented by the small circles. The location of each of the three balls is indicated
by its horizontal position: held in the left hand, in the air, or held in the right
hand. At each beat timepoint, one ball is being thrown, one is being caught,
and one is in flight. Since there are three balls and since each ball is thrown ev-
ery three beats, this pattern is represented succinctly as “3.” Except for trivial
changes (such as starting with a different hand), this completely specifies the
cascade.

By changing the number of balls and the order of arrivals and departures,
a large variety of different juggling patterns can be represented. For example,
the right hand part of Fig. 2.16 shows a four-ball juggling pattern notated
“534” in the siteswap notation. In this pattern, one ball moves regularly back
and forth between the two hands every three beats. The other three balls
follow a more complex pattern. Observe that odd numbers are always caught
by the opposite hand and even numbers are caught by the tossing hand. Hence
the five beat throw moves from one hand to the other while every four beat
toss is caught by the throwing hand. The throwing pattern of the three balls
repeats every 18 beats. The website at [W: 48] has a useful and entertaining
visualization tool that automatically simulates any legal siteswap pattern.

The beats (successive timepoints) in juggling are analogous to beats in
music since they provide a rhythmic frame on which all activity is based. All
of the well known juggling notations are symbolic since they specify only the
most important events (the throwing and catching of the balls) and do not
specify the exact hand positions, the activities of the hands (other than at
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Fig. 2.16. Each rung in the “ladder nota-
tion” (described in [B: 10]) represents one
(roughly equal) timepoint. The balls are
represented by the different lines and the
location of each ball is specified (in the
left hand, in the right hand, or in the air)
at each timepoint. The numbers indicate
how many beats must pass before the ball
can be thrown again. In the left ladder,
the standard three-ball cascade, this is al-
ways three beats and this pattern is “3”
in the siteswap notation. The “534” on
the right is a four ball juggling pattern
with one ball that changes hands every
three beats (like the cascade) and three
balls that follow a more complex pattern.
“345” and “453” represent the same pat-
tern with different starting hands.

the instants of catching and throwing) nor the actual trajectories of the balls
in flight. Nonetheless, there is enough information in the notation to allow
jugglers to learn and invent new patterns.

2.2 Literal Notations

The great strength of symbolic notations for music is that they show the struc-
ture of a piece at a high level. The symbols (the notes, rests, MIDI events,
tablatures, etc.) represent the underlying structure of a piece by providing
instructions that can be readily translated by people or machine into perfor-
mances of the work. The weakness of symbolic representations is that they do
not specify many salient factors such as the timbre of the instruments or the
exact timing of the events. In short, they are not a literal record of the sound,
but a reminder of what the sound is like.

Literal notations allow full reproduction of a performance even though
important aspects of the sound may become lost among a flood of (near)
irrelevant data. For example, while pitch is clearly an important aspect of
musical performance, waveform representations (such as that in Fig. 2.17) do
not display pitch in an obvious way. Similarly, the fundamental timepoints
on which a rhythmic passage is built may not be clearly marked. Literal
notations are, by their nature, recordings of particular performances and not
representations of the underlying composition. This distinction is discussed
further in Sect. 12.3.
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2.2.1 Waveforms

The most common literal method of musical representation is direct storage of
the sound wave. Common analog storage mechanisms are cassette tapes and
LP records. Common digital storage techniques sample the waveform and
then store a representation of the samples on magnetic tape, in optical form
on a CD, or in the memory of a computer. All of these technologies record
the variations in a sound pressure wave as it reaches a microphone. Larger
numbers (greater deviations) indicate higher pressures, and sound is perceived
when the fluctuations in the waves are between (about) 20 and 20,000 cycles
each second. When stored digitally, this requires thousands of numbers per
second (88,200 numbers for each second of stereo music). The most common
way to view the data is to plot the values vs. time, as is done in Fig. 2.17.

0 1 2 3 4 5 6
time (seconds)
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de

1 2 3 4 5
measures

Fig. 2.17. This is a plot of the raw sound wave data for the first six seconds of
Joplin’s Maple Leaf Rag. The larger blobs represent louder passages. The measures
and beats are also notated, though these are not directly present in the data, they
have been added to help orient the reader and to enable comparison with the musical
score Fig. 2.3 and the MIDI notation Fig. 2.13. It is not easy to see individual notes
in this representation.

Playing back a sound file such as a .wav or a .mp3 allows a listening
experience that is much like that experienced near the microphone at which
the recording was made. The timbre of the instruments and the timings are
reproduced in (nearly) unaltered form. The performance is fully specified by
the sound file. What is not obvious, however, are the higher level abstractions:
the notes, the beats, the melodies. Indeed, it is very difficult to determine such
high level information directly from a waveform. This problem in musical
processing is analogous to the well known problem of creating a computer
program that can understand connected speech.

Waveform representations typically represent time linearly, but they may
also use other geometrical constructions. Analogous to the necklace notation
for symbolic cyclical patterns, the waveform can be plotted around a circle.
Figure 2.18, for instance, shows the first two measures of the Maple Leaf
Rag. The progress of time is specified in beats, which are indicated by the
small circles. Such a representation is particularly appropriate when the music
repeats regularly at the specified interval.
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Fig. 2.18. The first two measures of the Maple Leaf
Rag are displayed in a polar (circular) plot. Time
moves in a clockwise direction and the beats are
indicated by the small circles.

It is common to use the waveform representation as a method of stor-
ing music (this is what CDs do) but it is not common to compose directly
with waveforms. In one approach, the composer chooses a collection of indi-
vidual time points and amplitudes, and then invokes a computer program to
algorithmically interpolate the intermediate samples [B: 242]. The algorithms
may generate the intervening data using a nonlinear dynamical system, via
some kind of random process, or via a process of hierarchical construction.
Wavetable synthesis directly generates short snippets of waves that are used
as building blocks for larger sound structures. By creative looping and moving
the loop points, it is possible to create ever-changing waveforms from a small
number of specified tables. This synthesis technique was used in the PPG
synthesizers and in the more modern Waldorf wavetable synthesizers.

2.2.2 Spectrograms

The spectrum looks inside a sound and shows how it can be decomposed into
(or built up from) a collection of sinusoids. For example, guitar strings are
flexible and lightweight, and they are held firmly in place at both ends under
considerable tension. When plucked, the string vibrates in a far more complex
and interesting way than the simple sine wave oscillations of a tuning fork or
an electronic tuner. Figure 2.19 shows the first 3

4 second of the open G string
of my Martin acoustic guitar. Observe that the waveform is initially very
complex, bouncing up and down rapidly. As time passes, the oscillations die
away and the gyrations simplify. Although it may appear that almost anything
could be happening, the string can vibrate freely only at certain frequencies
because of its physical constraints.

For sustained oscillations, a complete half cycle of the wave must fit exactly
inside the length of the string; otherwise, the string would have to move up
and down where it is rigidly attached to the bridge (or nut) of the guitar. This
is a tug of war the string inevitably loses, because the bridge and nut are far
more massive than the string. Thus, all oscillations except those at certain
privileged frequencies are rapidly attenuated. This is why the spectrum shows
large peaks at the fundamental and at the integer harmonics: these are the
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Fig. 2.19. Waveform of a gui-
tar pluck and its spectrum. The
top figure shows the first 3

4
second

(32,000 samples) of the pluck of a
G string of an acoustic guitar. The
spectrum shows the fundamental
at 196 Hz and evenly spaced over-
tones at 384, 589, 787, etc. These
are called the harmonics of the
sound; they occur near simple in-
teger multiples of the fundamental
since 384 ≈ 2×196, 589 ≈ 3×196,
and 787 ≈ 4 × 196. More than
twenty harmonics are clearly dis-
tinguishable.

frequencies that “fit” inside the length of the string. Spectra such as Fig. 2.19
are typically calculated in a computer using the Discrete Fourier Transform
(DFT) and its numerically slicker cousin, the Fast Fourier Transform (FFT).

Spectrum plots are useful when studying the composition of isolated
sounds (such as a guitar pluck) and more generally to sounds that do not
change over time. But they are not typically useful for complex evolving
sounds such as a rendition of the Maple Leaf Rag. In this case, it is common to
use a sequence of short spectral snapshots called a spectrogram, which shows
how the spectrum changes over time. Figure 2.20 shows the waveform and
spectrogram of the start of the Maple Leaf Rag.

Spectrograms are built by partitioning a sound into small segments of
time called frames and then applying the FFT to each frame. All the FFTs
are placed side-by-side; large values are represented by dark coloration, small
values are shaded lightly. Thus time is represented on the horizontal axis,
frequency is represented on the vertical axis, and energy (or loudness) is rep-
resented by darkness of the shading. In addition it is possible to create spectro-
grams dynamically and in other geometrical arrangements. See, for instance,
[W: 52].

Since a spectrogram is a visual representation of a sound, it is possible to
synthesize sound from an image, and to manipulate the sound graphically. The
“image synthesizer” in Eric Wenger’s Metasynth [W: 31] transforms images
into sound by translating each pixel into a short fragment of sound based
on its horizontal location (mapped to time), vertical location (mapped to
frequency), and color (mapped to stereo placement). Both the vertical and
horizontal scales are flexible; frequencies can be specified in almost any scale
and time can move at any rate. Using default parameters, the stretched girl
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Fig. 2.20. Waveform and spectrogram of the first 6.5 seconds of the Maple Leaf
Rag

in Fig. 2.21 has a duration of about 24 seconds. She may be heard in sound
example [S: 15].

The pictorial representation encourages manipulation of the picture using
the kinds of tools familiar from graphics and drawing programs: cutting and
pasting, selecting ranges, inverting colors, and drawing with various shaped
“pens.” Metasynth also contains a number of uniquely music-oriented tools:
pens that draw the shape of a harmonic series, grid lines that mark off the
time axis in a rhythmic pattern, tools that sharpen attacks by emphasizing
edges, spray brushes that splatter tiny fragments of sound across the pallette,
and tools that add a haze after each sound (reverb) or before each sound
(pre-verb).

Another innovation in Metasynth is the use of images as filters. The filter
palette uses the same mapping (horizontal for time, vertical for frequency) as
the image synthesizer, but is not heard directly. Rather, the filter image is ap-
plied point-by-point to the sound image. This allows the creation of arbitrarily
complex filterings that can be different at each time instant. Figure 2.22, for

Fig. 2.21. Metasynth can transform
images into sound: this stretched pic-
ture can be heard in sound example
[S: 15]
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instance, shows two image filters in (a) and (c). These are applied to the first
few seconds of the Maple Leaf Rag and result in the spectrograms shown in
(b) and (d). The vertical stripes of (a) suggest a stuttering effect, and this is
borne out the sound examples [S: 16]. Similarly, the graceful sweeping arch of
(c) suggests a lowpass effect that slowly changes to highpass and back.

(a) (b)

(c) (d)

Fig. 2.22. Metasynth uses one image to filter another. The two filters in (a) and (c)
are applied to the first few seconds of the Maple Leaf Rag. The resulting spectrograms
are shown in (b) and (d), and may be heard in sound example [S: 16].

Such graphically oriented sound manipulation represents a change in
paradigm from conventional methods of creating and modifying sounds. In
the standard method, musical instruments are used as the sound source, and
these are orchestrated using symbolic notations such as a musical score. In
contrast, Metasynth generates its sound directly from a picture, directly in
its literal notation. The strength of the system is that the composer is sup-
plied with a large variety of perceptually meaningful tools for changing and
rearranging the basic sound material. The high level abstractions of the mu-
sical score include the pitch of notes and the regular time unit defined by
the measure. The high level abstractions in spectrogram “scores” include the
frequency content of a signal as displayed in the image and time-grids that
can be arbitrarily specified.

2.2.3 Granular Representations

Any signal can be be represented by a collection of (possibly overlapping)
acoustic elements called grains (see Fig. 2.23). Though each individual grain
sounds like a brief click, aligned masses of grains can represent familiar sounds
and make it easy to specify certain kinds of complex sound clouds and auditory
textures. This decomposition of sound into quanta of acoustical energy was
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first proposed by Gabor [B: 68] in 1947, but was popularized in the 1970s by
Xenakis [B: 247] and Roads [B: 181], who were among the first to exploit the
power of computer-based synthesis using a granular technique.
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envelope waveshape
Fig. 2.23. Sound grains are charac-
terized by their duration, amplitude,
envelope, and waveshape. If the en-
velope is a Gaussian curve and the
waveshape is a sinusoid (as shown),
then it is a “Gabor grain.” Other kinds
of grains use different waveshapes, en-
velopes, and durations.

Each grain is characterized by its duration, envelope, amplitude, and wave-
shape. In Gabor’s original work, the envelope had a Gaussian (bell curve)
shape (because this provides an optimal trade-off between spread in frequency
and spread in time) and the waveshape was sinusoidal. Since the durations are
very short, individual grains sound like short clicks, though longer duration
grains may give a pitch sensation as well. In the two examples [S: 17], both
individual grains and small clouds of grains are clearly audible. [S: 18] is built
from a variety of different grain shapes synchronized to a shuffle pattern.

Grains become useful when many are clustered together. Xenakis pictures
each grain as a small dot, and places the dots onto a “screen” whose axes
specify the frequency and intensity of the grain. A collection of screens (called
a “book”) is then played back over time (like the individual still frames of
a movie) in order to create complex evolving sound textures. Figure 2.24
illustrates.

For example, in Xenakis’ piece Concret PH, which premiered at the Brus-
sels World’s Fair in 1958, the grains were drawn from recordings of a crackling
wood fire that were cut into one-second fragments. They were then recombined
using tape splicing techniques. In Analogique B, Xenakis created grains from
the output of an analog sine wave generator by cutting the tape recording into
short sections. The grains were then combined by placing them on screens with
probabilities drawn from an exponential distribution. The “degree of order”
was controlled by random numbers drawn from a first-order Markov chain.

Because so many grains are needed, specifying all the information is a
nontrivial task. Roads [B: 181] (and others [B: 41], [B: 231]) have developed
sophisticated ways to use stochastic procedures (random numbers) to choose
from among the most salient variables. In these schemes, the composer chooses
a collection of parameters that specify the probabilities that certain kinds of
grains occur at certain times. The computer then generates the bulk of the
actual data and realizes the composition. Typical parameters that might be
controlled are:

(i) the density of the grains (number of grains per second)
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Fig. 2.24. Each grain of sound is repre-
sented as a single dot sprayed out onto a
grid or screen with differing frequencies
and intensities. Collections of screens (a
“book of screens”) defines the evolution
of a complex sound through time.

(ii) the durations of the grains
(iii) the waveshapes within the grains (sinusoid, square wave, noise,

impulsive, sampled from a given source, etc.)
(iv) intensity/amplitude of each grain
(v) temporal spacing between grains
(vi) grain envelopes
(vii) frequencies of the grains (e.g., limits on the highest and lowest

frequencies)
(viii) frequencies: scattered or aligned
(ix) timing (whether the grains are synchronous or asynchronous)
(x) placement in the stereo field

This represents another conception of musical composition. Rather than
working with “notes” and “instruments,” the composer specifies a method,
or an algorithm for choosing parameters within that method. Rather than
conceiving the piece as fixed in a musical score which requires musicians for
performance, it is fixed in a computer program which requires appropriate
software and hardware for its realization. Granular synthesis is a method of
composition in a literal notation (that of sound grains) rather than a method
that operates at the symbolic level. Perhaps the most important part of any
such method is that the control possibilities provided to the composer must
make perceptual sense. They must impose some kind of (relatively) high level
order on the literal representation so that it is comprehensible. The list of
parameters (i)–(x) above can thus be viewed as an attempt to allow the com-
poser direct control of certain high level variables. These primitives are quite
different from the standard idea of a musical “note,” with its pitch, volume
and timbre, but it is not hard to gain an intuitive feel for parameters such as
density, opacity, and transparency.

For example, a cloud containing many 100 ms grains might be perceived
as continuous and solid, whereas if it were created from 1 ms grains the cloud
would be thin and transparent. If the waveshapes are sinusoids then the sound
mass might appear sparkling and clear, while if the waveshapes are jagged and
noisy the cloud would occupy more of the spectrum. One of the strengths of
sound clouds is that they can evolve over time: in amplitude, density, internal
tempo, harmonicity, noise, spectrum, etc. The waveshape might be chosen
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a priori, generated by an algorithmic process, or perhaps harvested from a
sound file.

Computer programs that implement granular synthesis include Road’s
Cloud Generator, Erbe’s Cornbucket (used in conjunction with Csound),
Bencina’s Audiomulch, and McCartney’s SuperCollider. See [B: 181] and
[B: 54]. A variety of experiments with grainlets, pulsars, and glissons are doc-
umented in Roads Microsound. Kyma [W: 23] is a mixed hardware/software
package that implements granular synthesis along with a variety of other syn-
thesis techniques.

There are a number similarities between granular techniques and the spec-
trogram approach of the previous section. Indeed, if the windows used in par-
titioning the signal are chosen to be the same as the envelope of the grain, and
if the waveshape is a sinusoid, then the two representations are logically equiv-
alent. However, there are differences. Grains tend to be of very short duration,
while the window length in the FFT-based methods is typically large enough
to allow representation of low frequencies (limitations of the spectral methods
are discussed further in Chap. 5). The granular technique allows any wave-
shape within its envelope, while the spectrogram requires the use of sinusoids.
Moreover, as we have seen, the spectrogram and the granular communities
have developed different kinds of high level abstractions that help to make
composition and sound manipulation more transparent for the composer.

As will become apparent in Sect. 5.4, there are also close similarities be-
tween granular methods and wavelet transforms. Wavelets also have short
“grains,” though they are not called this. One difference is that wavelets are
not all the same duration; low frequency wavelets are longer and high fre-
quency wavelets are shorter. This helps to make wavelet representations more
efficient.

2.3 Visual and Physical Metaphors for Rhythm

Rhythm refers to orderly recurrence in any domain. Visual rhythms may in-
volve alternations of light and dark, of up and down, of colored patterns, or of
symbols. Tactile rhythms may involve alternations between strong and weak
or may lie in the motion of our bodies. Architectural rhythms may be built
from repeated structural or decorative elements such as windows, columns,
and arches. Interestingly, we do not appear to be able to sense rhythmic phe-
nomenon directly in either the olfactory or the gustatory senses [B: 65].

For example, Figs. 2.25 and 2.26 show two artistic conceptions of rhythm
inspired by Matisse’s Two Dancers and Mondrian’s Rhythm of Black Lines.
These provide an artistic representation of two fundamental aspects of rhythm:
motion and repetition. Like Matisse’s famous Two Dancers, Fig. 2.25 shows a
collection of disembodied shapes that can be seen as representing two people
dancing. The darker figure (with disembodied head) is poised to catch his
partner after flinging her into the air. Or does this show a flying warrior
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Fig. 2.25. Rhythm as motion: like Matisse’s
Dancers paintings, this tries to capture the idea of
motion. An instability (the person in the air) drives
these figures towards resolution. “Dance,” Matisse
said, means “life and rhythm.”

pouncing on his beheaded victim just as the prey begins to topple? There are
several illusions associated with these shapes: why they appear to be people
when in reality they are collections of blobs, why they appear to be in motion
when in reality the blobs are utterly fixed on the page. Whether dancers or
warriors (and other interpretations are possible), the essence of the motionless
figure is motion!

Like Mondrian’s well known Rhythm of Black Lines, Fig. 2.26 shows a col-
lection of crosshatched black lines that repeat at regular intervals. The lines
are punctuated by shaded regions and small variations in the lengths and con-
nections of the lines. This is a visual representation of the kinds of repetition
with variation that is so common in musical phenomenon. A completely reg-
ular structure might represent the unchanging beat or the metrical level; the
idiosyncratic lengthenings and shortenings correspond to the variations that
make the work interesting and exciting.

One of the best known examples of proportion and balance in classical
architecture is the Parthenon, the crown of the Acropolis. Built as a temple
to Athena around 440 BC, its massive columns, ornamental friezes (showing
processions of men and Gods), metopes (representing battles between good
and evil, between the Greeks and their enemies) and pediments (with dozens
of statues representing stories of various Gods, especially Athena) are elegant,
detailed, and exemplify the flowing kinds of elements associated with architec-
tural rhythm. Many of its features are in the proportion of the golden section.

Fig. 2.26. Visual rhythms unfold in space while
auditory rhythms evolve over time. Repetition plays
a key element in both visual patterns and temporal
rhythms.
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Figure 2.27 shows the facade, the floor plan, and a small piece of the frieze, all
of which demonstrate a mastery of variety within repetition. Goethe refers to
such repetitive architectural structures as “frozen music,” though a modern
view of architecture as “people moving through light filled spaces”3 suggests
a closer analogy with musical improvisation.

Fig. 2.27. The Parthenon shows the kinds of proportion and balance achieved in
classical architecture. The facade, floor plan, and a section of the frieze sometimes
called the Elgin marbles (currently in the British museum) all show clear rhythmic
features.

Among the oldest metaphors for rhythm are the motions of the bodies of
the solar system such as the daily path of the sun, the monthly waxing and
waning of the moon and the cyclical behavior of the planets. Many plants have
rhythmic behaviors and rhythmic structures: the daily opening and closing of
a flower, the yearly cycles of a tree shedding and regrowing its leaves, the bam-
boo plant with its long stalk punctuated at semi-regular intervals by knots. A
necklace of beads provides an analogy in which the beads represent the regular
beats while the circularity represents the repetitive metrical structure. Each
sand grain dropping through a sand clock is metaphorical of a tiny grain of
sound, and the regularity of sand grains passing through the neck represent
the regularity of the musical experience. Zuckerkandl [B: 250] suggests that a
(water) wave provides a powerful analog of rhythm: the repetitive feeling of
relaxation, rising tension, approach to a climax, and then the final ebb.

Rhythm and Transforms deals primarily with the steady recurrence of au-
dible impressions, with rhythmical sounds that represent the organization of
time into parts that are perceptible to the ear. Though visual representations
and physical metaphors are often useful (especially in a format such as a paper-
bound book), the subject matter is sound. Accordingly, the sound examples
on the CD represent the most important part of the argument. Visualizations
provide analogies or metaphors; sound examples are the real thing.

3 Roger Tucker, private correspondence.
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Varieties of Rhythmic Experience

Surveying the musics of the world shows many different
ways of conceptualizing the use of rhythmic sound.

Rhythmic music occupies a large part of the traditions of Asia, Africa, and
India, and may play an even larger role in these traditions than in the West.
In his overview of World music, Sachs [B: 187] states:

What harmony means to the West, the almost breathlike change from
tension to relaxation, is in the East provided by the rhythm. In avoid-
ing the deadly inertia of evenness, rhythm helps an otherwise au-
tonomous melody to breath in and out – just as harmony does in the
West.

That rhythm is a key element of Indian music is suggested by the makeup of
temple and imperial orchestras. Sachs cites two examples: the Rajarajeśvara
temple at Tanjore, which in AD 1051 had 72 drummers (of 157 musicians), and
Emperor Akbar’s band, which in the 16th century had 23 wind instruments
and 42 drums.

Even in traditions without large imperial bands, rhythm provides the glue
that holds music together. And there are a surprising number of ways that
it can be sticky: the Western conception of a metrical hierarchy, the African
notion of the recurring timeline, the “inner melody” of the gamelan, the circu-
lar conception of the Indian tala, the “groove” of modern funk. This chapter
presents concrete examples of a variety of different kinds of rhythmic thought,
including standard Western practice in Sects. 3.2–3.3, the timecycles of Africa
and its Latin descendants in Sects. 3.4–3.7, the tala of the Indian subcontinent
in Sect. 3.8, polyrhythms in Sect. 3.9 and polymeters in Sect. 3.13, the cyclic
conceptions of Indonesian gamelan music in Sect. 3.10, and modern dance
styles such as funk (Sect. 3.11) and hip-hop (Sect. 3.12). In all of these musics
and in all known dance music, there is an underlying beat. Sometimes the
music proceeds in synchrony with the beat, sometimes it moves against the
beat, and sometimes the beat provides a temporal framework on which more
complex units are hung.

Though these conceptions represent a large part of the World’s music,
they are not exhaustive. Indeed, the next section discusses music that does
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not utilize a foot-tapping beat. Instead, the rhythms are conceptualized as
being based on poetry or on metaphors with rhythmic breathing.

3.1 Fluid, Unmeasured, and Beatless

Music among the ancient Greeks was primarily a vocal art. In the Principles
and Elements of Harmonics, Aristoxenes equates the organization of music
with the organization of impassioned speech. He classifies rhythmic patterns
of poetry into a series of long and short syllables, much as in Sect. 2.1.1. Plato
states in the Republic that rhythm and melody are regulated by language.
In the Ethos of Rhythmic Modes, rhythms are classified by their effects on
the soul. Thus rhythms have intrinsic qualities: some are stable, others are
emotional, some are vulgar and others induce calm. Of course, we do not
really know exactly what music sounded like in Plato’s day.

Fortunately, parts of the modern worlds repertoire may be best thought
of as extensions of poetry, and these may provide a reasonable analogy with
the concept of music as the Greeks might have conceived it. In these lyrically
inspired traditions, melodies and rhythms are typically used as an aid for
memory and not (primarily) as an end in themselves. For example, many
Maori traditional songs are strongly word-oriented and many have no meter.
Malm [B: 140] calls this heterometric, meaning that the accent (and hence
metric structure) continually shifts to maintain alignment with the text. The
Orthodox church has a long tradition of chanting in which text takes priority
over melody. The most important aspect of the chant is to retain intelligibility
of the words; emphasis and stress must agree with those of the lyrics, and a
regular rhythmic form is only of secondary concern. Similarly, the word avaz is
used to describe an unmeasured rhythmic style that revolves around classical
Persian poetry.

The gagaku, literally “elegant music,” is a tradition of the Japanese Impe-
rial Court more than 1100 years old. The music makes use of rhythms based
on the principle of elastic or flexible breathing. In these styles the melody
moves from beat to beat as if the beats were the three parts of breathing: a
deep inhalation, a momentary pause while holding the breath, and then a slow
exhalation. The music moves slowly with a focus on the detailed expression
of tonal quality.

In contrast, the bulk of this chapter explores the wide variety of world
music which is built upon and organized around a steady pulsation.

3.2 Meter

Rhythm typically occurs at several different levels simultaneously. For exam-
ple, the beat defines the basic “foot-tapping” time scale on which rhythmic
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and dance music are constructed. The tatum (recall Fig. 1.9 on p. 15) rep-
resents the fastest pulsation present in the music. Both beat and tatum are
examples of regular successions, grids of equal time durations. The beat and
the tatum form a (two level) metrical hierarchy because the beats coincide
with the timepoints of the tatum.

Meter concerns larger groupings at multiple levels. Western music theory
and practice views these levels as a hierarchy of regular successions. Just as
audible events that form the tatum are clustered into beats, beats can be
grouped into measures, measures collected into phrases, and so on up through
the highest levels of organization. Meter is typically characterized as a periodic
alternation between strong accented beats and weak unstressed beats. A beat
is accented when it is aligned with events from levels above and/or below it
in the metric hierarchy. A beat is unstressed when it does not coincide.

What does this mean in a practical sense? How might such hierarchies
arise? Consider the single unaccompanied melody shown schematically by the
black dots in Fig. 3.1. Time is marked out at the most rapid level by the tatum
which occurs at twice the rate of the beats labeled 1-2-3-4. The tatum arises
from the melody because it is defined by a grid of the fastest note events,
which occur in the groups marked II, V, and VII.

temporal
gap

tatum

leap in
pitch

change in
loudness

I
II V

III
IV

similarity
by repetition

VI

change in
duration

VII

similarity
by repetition

21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4beats

Fig. 3.1. The higher (measure) level is formed by a clustering of the melody at
the beat level. Many features can cause clustering: separation in time, separation in
pitch, changes in loudness or duration, and the perception of repetitive figures. One
possible realization of this melody can be heard in [S: 19].

But the melody also defines groupings at a higher level. Several clusters of
notes are shown, each cluster separated from its neighbors by some feature.
The grouping labeled I is separated from grouping II because there is a pause.
Group II is separated from III because the melody jumps to a higher pitch.
Group III is separated from IV because the first note is louder (indicated
by the larger black dot). Groups V and VI are set off from their neighbors
because they are recognizable as repetitions of II. Group VI is distinct because
its durations are longer (represented by the elongated dots).

Essentially any feature that can be used to group or cluster sounds (the
psychoacoustics of clustering will be discussed further in Chap. 4) can be used
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to partition the melody into groups. Because the groups themselves form a
regular succession of equal length durations, they form the next level of the
metric hierarchy, in this case, the measures. Thus the accents are aligned with
the cues that allow the grouping to take place and help to define the higher
level of the hierarchy.

This can be carried out almost any number of times, creating ever larger
sonic structures. Figure 3.2 shows the next level, where four-measure phrases
are clustered by their internal similarities and distinguished by their differ-
ences. The first phrase A is separated from B by transposition of pitch. B is
distinguished from C by the more rapid pace near the boundary. Of course,
any feature of the sound that causes segmentation can help to distinguish
phrase boundaries: common techniques involve changes of instrumentation or
timbre, changes of tonal center (chord), changes of loudness, etc. Since all the
phrases are of equal duration, they also form a regular succession, the next
highest level in the hierarchy. And so on. . .

21 3 4
21 3 4

21 3
21 3 4 21 3 4

21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4 21 3 4beats
measures
phrases

tatum

I
II

III
VI

I

II

III

VI

II

I III

VI
A

B
C

Fig. 3.2. The phrase level groupings are formed by clustering the measures in the
same ways that the measures are formed by clustering the beats. Any feature that
causes clustering can help segment the piece into ever higher levels.

Accents vs. Groups

Do accents cause perceptual groupings, or do perceptual groupings cause ac-
cents? Various writers have taken both sides of this chicken-and-egg issue.

Cooper and Meyer [B: 35] focus on internal perceptual features to define
accent as “a stimuli (in a series of stimuli) which is marked for consciousness in
some way.” Cooper and Meyer observe that each of the five prosodic rhythmic
groups (iamb, anapest, trochee, dactyl, and amphibrach, recall Table 2.1 on
p. 24) consist of one or two unaccented beats grouped with one accented beat.
They then show how these basic rhythmic groups can be clustered together
into ever-higher levels to form a metrical hierarchy. In this view, the basic
rhythmic groups form a set of recurrent accents that allow meter to measure
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the passage of time. For Cooper and Meyer, then, the rhythmic groupings
cause the accents. Others, such as Berry [B: 14], use meter to mean the par-
titioning of music’s time by accent. Benjamin [B: 11] wrestles with this issue
at length.

Any such discussion hinges on exactly what is meant by accent. An early
definition is due to Hornbostel [B: 97]: accent is “any quality that differenti-
ates one tone from another.” This is what Lerdahl and Jackendoff [B: 128] call
a phenomenal accent: “any event at the musical surface that gives emphasis or
stress to the musical flow.” Included in such accents are features of a perfor-
mance such as attacks of pitch events, sudden changes in timbre or dynamics,
long notes, leaps in pitch, harmonic changes, and so on. They distinguish two
other kinds of accent. Rhythmic accents are points of stability in a melodic
or harmonic phrase such as occurs in a cadence. Metric accents denote beat
locations (timepoints) that occupy strong metrical positions, for instance, the
start of a measure. Thus Lerdahl and Jackendoff distinguish grouping (an or-
ganization of auditory intervals) from meter (an organization of durationless
time points).

3.3 Additive vs. Divisive

The various classes of rhythms represent different ways of conceptualizing
rhythm and they correspond to different ways of perceiving the rhythm. Ad-
ditive rhythms begin with short segments that are added together, while divi-
sive rhythms begin with a whole and successively divide it into smaller pieces.
Thus additive rhythms are constructed and understood from the “bottom
up,” while divisive rhythms are constructed and understood from the “top
down” [B: 131].

Western notions of measure and meter are often thought of as divisive.
The measure is the primary unit which is then subdivided in various ways
into various patterns and motifs, typically either in groups of three, four, six
or eight. In this framework, it is common to think of meter as a grouping
mechanism (i.e., the number of beats in a measure) but also as a fixed hi-
erarchy of accents (for example, in 4/4, the first beat is accented the most
followed by the third, lastly the fourth).

During the Renaissance, being able to clearly articulate multiple divi-
sions of a passage was considered crucial to musicianship. Ganassi’s Fonte-
gara [B: 69] instructs recorder players in the “art of playing divisions,” and
observes that divisions may be either simple or compound in three aspects: in
time, rhythm, or melody.

(i) Simple in time: each time interval (such as a measure) is divided
into n equal parts

(ii) Compound in time: n may change as the piece develops
(iii) Simple in rhythm: within each division, all note values are the

same (e.g., all quarter notes or all eighth notes)
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(iv) Compound in rhythm: different note values occur within a single
interval

(v) Simple in melody: the melodic contour is the same for each interval
(vi) Compound in melody: the melodic contour may vary from interval

to interval

Several of these are illustrated in Fig. 3.3. Different performers may choose to
subdivide a melody differently and the rhythmic complexities associated with
multiple simultaneous subdivisions are a driving force in these musical styles.
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Fig. 3.3. The basic melody (a)
is divided in several ways: (b)
is simple in time, rhythm, and
melody, (c) is simple in rhythm
and melody, but compound in
time, while (d) is simple in time,
and compound in melody and
rhythm. Sound example [S: 20]
plays (a), (b), (c) and (d) in suc-
cession.

In the additive perspective, there is a regular grid of short equidistant
segments of time called the tatum. Notes are felt against the tatum by adding
together the total number of tatum elements in the duration of the note.
Consider, for example, the rhythm shown in Fig. 2.4 on p. 28. The tatum
consists of the twelve timepoints dotting the circle. The rhythm is expressed
additively as the collection of notes with durations 2+2+1+2+2+2+1. The
tatum in the Maple Leaf Rag of Fig. 2.3 (on p. 27) occurs at the speed of a
sixteenth note, at a rate of eight per measure. This forms a regular temporal
grid on which all notes in the piece are sounded, though not all the grid
positions are used.

The divisive perspective emphasizes the relationship between the notes of
the rhythm and the perceptual beats. In the case of the rhythm of Fig. 2.4,
the beats occur every two timepoints, as labeled inside the circle. The rela-
tionship is that the first three notes of the rhythm occur “on” the beat (i.e.,
synchronized with the beat timepoints) while the remaining notes occur “off”
the beat (i.e., at timepoints between the beat locations). Thus the “same”
rhythm can be thought of as either additive or divisive.

3.4 Timelines

Anku [B: 4] argues that there is a “recurrent rhythm” that underlies acts of
both performance and listening in African music. This is typically associated
with the role of the bell pattern found in many West and Central African drum
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ensembles. However, this “controlling structural concept is not always exter-
nalized along with the music.” In other words, it may sometimes be sounded
and sometimes be implicit. Waterman [B: 237] calls this the “subjective beat,”
which is supplied by the listener and around which the musician elaborates.
Similarly, Chernoff [B: 30] quotes Abraham Adzenyah, a Fanti drum master,
who “always keeps in mind a ‘hidden rhythm’ within his improvisations.”

Some of these basic bell patterns have already appeared in Figs. 2.4 and
2.5. Figure 3.4 elaborates on the basic 12-timepoint bell pattern by showing
the supporting drum patterns for the Slow Agbekor as reported by Chernoff.
Each individual pattern is quite simple. What gives the rhythm its complexity
and drive is the way that the parts fit together. Indeed, African musicians and
listeners do not locate themselves in the music by counting from the main beat.
Rather, they find their entrances in relation to the other instruments, that is,
in relation to the cross-rhythmic fabric of the complete cycle.

time

1

2

3

4

time

(b)(a)

Fig. 3.4. (a) Supporting drums for the Slow Agbekor include the bell (outer circle),
the rattle, the kagan, the kidi, the totogi and the kroboto on the inner circles. (b) The
second, third, and fourth circles show three possible cross-rhythms. The different
points of unity between the cross-rhythms and the agbekor bell pattern suggest
different accents, and different possible ways of hearing the bell. See [S: 21].

One fascinating aspect of rhythmic patterns such as Figs. 3.4 (and 3.5
below) is that points on the cycle that seem to require the most emphasis (such
as the “one” and the “three” in (a)) are often marked least by the instruments.
The four shakes of the rattle are the basic beats to which spectators clap hands
and to which dancers move. Part (b) (adapted from [B: 30]) shows how various
accents (shown in the figure by the completely regular patterns on the various
inner circles) can establish a number of different cross-rhythms. When playing
different rhythmic patterns simultaneously, each rhythm helps to determine
the way that the others are perceived. Chernoff comments:
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The establishment of multiple cross-rhythms as a background in al-
most all African music is what permits a stable base to seem fluid.
Stable rhythmic patterns are broken up and seemingly rearranged by
the shifting accents and emphases of other patterns.

Like many of the rhythmic styles throughout Africa, Gahu drum music
(of the Ewe of Ghana) is typically performed by a group of musicians. The
percussionists play distinct and contrasting patterns that, when sounded si-
multaneously, interweave to form a complex whole. Rather than concentrating
on their own individual drum line, performers “hear” and synchronize to the
whole pattern. One rhythm means nothing without the others.

There are several instruments that typically define the time cycle in drum
Gahu. The gankogui is a pair of hand-held iron bells with two contrasting
pitches. The gankogui pattern is shown in the outer circle of Fig. 3.5. The
rhythm may be conceptualized in the additive framework with durations 3 +
4+4+2+3. When hearing this divisively, the tension between the notes and the
four beats (three of which fall off the beat) helps to drive the rhythm forward.
The axatse is a kind of rattle made with a large number of beads woven
in a fishnet design around a hollowed out gourd. It emphasizes the implicit
polyrhythm between the gankogui and the beat as it plays the rhythm in the
middle circle of Fig. 3.5. The kaganu is a narrow drum that is open at the
bottom which plays the rapid off-beats shown in the inner circle, increasing
the density of the pattern.
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Fig. 3.5. The basic time of drum Gahu. The
outer circle shows the high (H) and low (L)
pitches of the gankogui bells. The axatse rat-
tle (middle circle) makes different sounds on
its downstroke (D) and its upstrokes (U).
The kaganu drum plays the off-beat pattern
in the inner circle. The four (implicit) beats
are marked 1-2-3-4. Sound example [S: 22]
demonstrates.

If a simple regular beat can be heard in different ways, then it should
not be surprising that an intricate sound mass like the drum Gahu may be
heard in different ways. Locke details five possible rhythmic modes, one for
each of the possible starting points. For example, the second, third and fourth
strokes all lie one timepoint behind the beat. If these become accentuated,
they may cause the beat to “turn around” and rotate one timepoint coun-
terclockwise. Though the notes and durations remain the same, the musical
function changes; the upbeats in one interpretation are the downbeats in an-
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other. This is an example of how a continually repeating cyclical phrase can
be mentally reordered.

In performance, the gankogui, axatse, and kaganu act as the basic time
keepers while a variety of other drums implement a call and response that
exploit a large number of techniques of rhythmic variation [B: 130] including:

(i) dynamics: varying the intensity or loudness of strokes
(ii) bending time: slight purposeful deviations in timing
(iii) displacement: shifting the placement of a motif in time
(iv) ornamentation: grace and/or ghost notes that may occur slightly

before or slightly after a given stroke
(v) repetition: repeating a given phrase or motif
(vi) segmentation: partitioning long phrases into shorter ones
(vii) augmentation: combining smaller phrases into larger ones
(viii) doubling: hitting two strokes where normally one would occur
(ix) pausing: resting when normally there would be a stroke
(x) substitution: exchanging one kind of stroke for another

Many scholars who write about African music observe that musical train-
ing, and in particular rhythmic training, typically begins at an early age.
Agawu [B: 1] transcribes a Northern Ewe children’s game-song which accom-
panies a two measure clap pattern. The interesting feature of the four-bar
melody, as schematized in Fig. 3.6, is that it can begin on either the first
or the second bar of the clapping pattern. By varying the length of the last
note in the melody, or by resting longer or shorter times, the performers may
switch from one mode to another. Even here in a simple children’s game
there is a tension between the steady background repetition (the regularity
of the clapping) and the perceptual changes in metric and rhythmic weight
that characterize the content of the music. Blacking [B: 16] reports a similar
phenomenon among the Venda of the Transvaal.

(a)

phrase phrase phrase(b)

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

rest rest rest

. . .

. . .

Fig. 3.6. The clapping in a children’s game repeats in steady two bar phrases as
schematized in (a). The melody is sung in four bar phrases as shown in (b), followed
by a long held note (rest) that can be either one or two bars long. The relationship
between the clapped pattern and the singing changes, since sometimes the singing
begins on the first measure of the clapped pattern and sometimes on the second.

Agawu [B: 1] (like Hornbostel [B: 97] and Nketia [B: 155] before him)
draws a distinction between “free” and “strict” rhythms. Free refers to mu-
sic lacking a clear sense of periodicity and meter, and is typically associated
with songs that reproduce the rhythms of speech. Strict rhythm, in contrast,
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“refers to the presence of a tactus, a palpable metric structure, and a resultant
periodicity.”

3.5 The Clave

The popularization of latin dances such as the salsa, the rumba, the mambo,
the merengue, and the cha cha chá (among others) has brought Western musi-
cians into direct contact with a different way of conceptualizing rhythm. The
focus of the salsa, for instance, is on a rhythmic unit called the clave that
forms a backbone around which the music is structured. In simplest form, the
clave is a two measure pattern in 4

4
time, containing three pulses in the first

measure and two in the second. The clave forms a point of reference in the
sense that singers, horns, pianos (and other instruments) either play “along”
with the clave or “against” it. Figure 3.7(a) shows the clave rhythm in the
necklace notation. The beats of the two measures are indicated inside the
circle.
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Fig. 3.7. The son clave rhythm is arranged in necklace notation; the 3-2 clave begins
at the larger arrow while the 2-3 clave begins at the smaller arrow. (a) The beats
of the two 4

4
measures are indicated inside the circle along with the 16 timepoints

that represent the tatum. (b) repeats the basic clave in the outer circle and shows
how various other rhythmic parts complement, augment, and can substitute for the
straight clave pattern. The middle circle shows the cáscara. The inner circle shows
a bell pattern with low (L) and high (H) bells. (c) shows the guanguancó (rumba)
clave. These are performed in [S: 23].

The clave is a two measure pattern, but it can “start” on either measure.
If the melody begins on the first measure then it is called a 3-2 clave (because
the three strikes occur in the first measure while the two strikes occur in
the second measure) [B: 233]. Similarly, if the melody starts on the second
measure, then it is called the 2-3 clave. Sheller comments [B: 71], “Once the
song begins and the clave starts, the clave never changes. But the ‘one’ may
change.” Thus a melody may begin in the first measure in one part of a song
and it may begin in the second measure in the another part of the song.
Geometrically, the melody may rotate against the fixed clave.
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The clave rhythm is sometimes played on a pair of rounded wooden sticks
(called claves). Sometimes, one of the other rhythm instruments (such as the
cáscara or bell of Fig. 3.7(b)) plays a complementary pattern. And sometimes,
the clave is not directly sounded at all. Whether it is played or not, the clave
is embedded in the music; it is an essential ingredient for the musician, for a
dancer, and for the listener. Here again is a phenomenon where the ear can
perceive pattern that may not be objectively present in the music.

3.6 Samba

Brazilian culture is a remarkable combination of African, Native American,
and Iberian influences, and the music is no exception. Samba refers to both a
dance and to the music that accompanies the dance. The first recorded samba
was Ernesto dos Santos’ Pelo telefone in 1917, and by the time of the New
York World’s Fair in 1939, the samba had become a popular ballroom-style
dance. The Bossa Nova (New Wave), a combination of samba and cool jazz,
arrived in America in the 1960s with the The Girl From Ipanema, a song by
Antonio Carlos Jobim that has become a classic. Modern Samba is a dance
and music style that can take many forms, from energetic Carnival dances to
relaxed song-sambas played on mellow acoustic guitars. The samba-schools of
Rio de Janeiro have helped to institutionalize samba as the national dance
of Brazil, and the schools are credited with bringing Afro-Brazilian musical
aesthetics to the cultural forefront. They present their music to the public in
huge parades at Carnival.

Sambas are in lively double meter, and are characterized by a number of
interlocking, syncopated lines. Two examples are given in Fig. 3.8. In both
cases, the primary rhythm is played by a hand drum, which can be performed
using a variety of articulations. The surdo is a large double headed drum
played with a felt covered mallet and the open hand. The ganza is a metal
shaker and the tamborim is a small frame drum played with a stick. The guiro
is a notched or ridged gourd scraper that alternates its up and down strokes
at each timepoint. The agogo is a pair of metal bells much like the gankogui
bells of Sect. 3.4.

3.7 Vodou Drumming

Haitian sacred drumming is another style of music that grew in the New
World from African roots. The music is governed by principles of interaction
such as the call and response structure and the emergence of complex pat-
terns from multiple interlocking rhythmic lines. Haitian music is rooted in the
slave experience, and it is tied very closely to a variety of deities [B: 241].
Besides strictly musical duties, drummers are key agents in spirit possession
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Fig. 3.8. Two versions of the samba. (a) is adapted from [W: 40]. Instrumentation
includes the surdo (a hand drum) in the outer circle that can be struck in several
ways: muffled with a stick M , softly with the fingers F , with the open hand O,
and with the palm P . The ganza in the middle is played on every timepoint, but
is accented in synchrony with the surdo. The tamborina plays the off beat accents.
(b) is adapted from [B: 82]. The hand drum can be struck in the center with the
left or right (D, G) palms, or with the fingers of the left or right hands (d, g). The
shaker plays a regular pattern of three out of every four timepoints, while the agogo
alternates its high H and low L bells. The inner circle is played on wooden clave
sticks. Both are demonstrated in [S: 24].

ceremonies; they must know how to respond during possession, and they must
not become possessed themselves.

The ogan, a kind of iron bell, plays a central role in the music of Haiti
in much the way that the clave forms a foundation in Latin music and the
gankogui grounds the Gahu timelines. Wilcken comments, “Even though the
ogan is not always physically present in the Vodou drum ensemble, musicians
and dancers feel its rhythmic pattern.” Only members of the priesthood play
the ason, a rattle that is typically used to set the tempo. The battery (drum
ensemble) consists of three conically shaped drums: the largest is the master
drummer’s maman, the segon is played with one hand and one curved stick,
while the smaller boula is typically played with two straight sticks.

Like other music with African origins, the rhythmic patterns move cycli-
cally through time. Figure 3.9 and sound example [S: 25] demonstrate a skele-
tal version of the rhythmic framework of two pieces from the traditional Vodou
rituals, the Parigol and the Zepol. The rhythms are not dissimilar to those
found in the African timelines of the Yoruba (recall Fig. 2.5), which makes
ethnographic sense since many of the early inhabitants of Haiti came from the
region around Nigeria.

In both pieces, the ogan plays the basic timeline and the ason directs
with purely off-beat strokes. The patterns set up a feeling of three-against-
two between (for instance) the segon and the maman and the ogan. This
opposition is strengthened when the singing is introduced, since it is most
strongly felt in terms of binary divisions. The songs may be notated in 4

4
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Fig. 3.9. Two pieces in the Haitian Vodou drumming repertoire contain rhythms
not dissimilar from those found in the African timelines of Fig. 2.5. (a) The Parigol:
drum parts are shown for the ogan (outer circle), the ason, the boula, and the
maman (inner circle). (b) The Zepol: patterns are shown for the ogan (outer circle),
the ason, the boula, and the segon (inner cricle). The L and H represent two different
articulations (low and high) of the drum. See [S: 25].

despite being sung against the 12
8

patterns above. A complete analysis of a set
of ritual pieces is given in [B: 241].

The drummers use a variety of hand and stick techniques to add variation,
changing both the envelope and the spectrum of the sound. The hand can
either strike the drumhead or slide across it. When striking, the hand can be
either cupped or flat, and the stroke can be either stopped (ending the strike
on the surface of the drum) or unstopped (to bounce back from the drumhead).
Similarly, when playing with sticks, the strokes can be either perpendicular to
the skin or slanted, and the strokes may be either stopped or unstopped. Any
of the strokes may hit towards the center or towards the rim of the drumhead,
and it is not uncommon to strike the side of the drum with sticks for added
variety.

3.8 Tala

The heart of the Indian musical theory of rhythm is the cyclical measure of
time called the tala, a rhythmic experience arranged so that there is a feeling
of return. The theory is particularly well developed by percussionists who
typically play a pair of small drums called the tablas. A tala is easily pictured
as an arrangement of equally spaced points around a circle, which may have
anywhere from 3 to 128 beats, though the most common are between about
7 and 24. The cycles are typically subdivided into small groups of beats and
are given names to aid in memorization [B: 72].

For example, in the jhaptal tala shown in Fig. 3.10(a), the ten beats of each
cycle are subdivided into four segments 2+3+2+3. The cyclical nature of the
tala gives special significance to the first beat; the sam is a point of convergence
between the drummer and the other musicians, when the cycle ends as well as
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when it starts. The tali (clap) mark the start of the subdivisions and the khali
(wave) indicate that the grouping is unstressed, providing a point of contrast.
Listeners and musicians will sometimes keep track of the tala by clapping on
the sam and tali, and waving their hand to the side on the khali. Observe that
the groupings marked out by the tali and khali need not be isometric.
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Fig. 3.10. (a) The Hindustani jhaptal tala from Malm [B: 140] is 10-beat cycle. The
remaining tala are from [B: 36]: (b) the 16-beat tintal theka may be one of the oldest
tala, (c) the 12-beat choutal is one of the most popular, (d) the 14-beat jhumra tal
divides the cycle into 3 + 4 + 3 + 4 and (e) the ada choutal divides its 14-beat cycle
into seven equal segments, each with two beats. See [S: 26].

The syllables associated with each beat (Dhin, Dha, Na, etc.) are ono-
matopoeic mnemonics called bols that aid in the memorization of the tala.
The bols represent particular strokes on the tabla. For example, the Ga is a
left handed open stroke where the middle and ring fingers bounce from the
surface of the drum. The Na (and the Ta) are rim strokes produced by hit-
ting the index finger of the right hand against the rim while holding the last
two fingers lightly against the edge. The Ga and Ta, when played together,
form the Dha. The Ka is a left handed open slap. The Tin is a soft and
delicate form of Na, and the combination of Tin and Ga forms the Dhin.
Courtney [B: 36] provides a thorough catalog intended to help the beginning
tabla player learn the traditional drum strokes and rhythmic patterns. North-
ern Indian (Hindustani) and Southern Indian (Karnatic) musics are different
and the nomenclature for the tala and bols may vary significantly by region
[B: 110].

Figure 3.10 shows several different tala with varying numbers of beats per
cycle and varying numbers of subdivisions. In (c) there are several double-
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syllable beats such as KaTa and GeNa. These indicate that the beat is to be
evenly subdivided into two strokes. Similarly, the TiRaKiTa of (d) and (e)
divides the beat into four equal parts. Thus the Indian tala are additive at
the level corresponding to the measure (the various tali and khali segments)
and may be divisive at the level of the individual beat (recall the discussion
in Sect. 3.3).

There are many ways that tala may be varied in performance. Bols may be
substituted for each other. Multiple bols such as DhaNa may replace a single
Na stroke to increase the density. Bols may be eliminated and replaced with
silence. For example, the silence (indicated with −) immediately following the
first beat in Fig. 3.10(b) helps to emphasize the sam.

Indian percussionists are well aware that perceptual shifts are sometimes
needed when playing the “same” tala at widely different tempos. Some pieces
may have a tempo so slow that it is difficult to conceptualize the rhythm.
Strokes, numbers, or syllables can be mentally inserted to raise the tempo. At
high speeds it may be necessary to conceptually shift the tempo downwards
by factors of two until a more moderate tempo is achieved.

Malm comments on the differences between Indian and Western musicians:

It would seem that the Western fascination with harmonic structures
and the South Asian enchantment with melodic and rhythmic systems
propelled these two grand traditions in very different directions. West-
ern musicians need to sing solfège and recognize chord progressions by
ear in order to feel and understand their past tradition; Indian musi-
cians need to. . . beat and wave the divisions of the basic tala in order
to be a true part of their musical world. Whereas the Western pro-
fessional becomes aware of subtle variations in harmonic structures,
the Indian becomes equally sensitive to the rhythms that tend to have
become characteristic of each tala.

From the Indian’s point of view, the “science of tala” is a medium for
expressing rhythm in a logical and systematic way [B: 72]. Each tala represents
a unique circular rhythmic structure that helps make time comprehensible
through musical expression. According to Sen [B: 193], “music without tala is
like a face without a nose.”

3.9 Polyrhythms

Polyrhythms are the simultaneous sounding of two (or more) pulse trains
where the tempos are not integer multiples of each other. The simplest
such pattern is two-against-three, which appears in necklace notation in
Fig. 3.11(a). This is performed at a tempo of 1.2 s per cycle in sound ex-
ample [S: 27](i).

In principle, there are two tempos present. Yet when confronted with such
patterns, listeners do not tend to sense ambiguity, rather, they quickly focus
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Fig. 3.11. Three simple polyrhythms are shown. In (a) the standard three-against-
two rhythm is shown, and may be heard in sound example [S: 27](i). Observe that
the rhythm is resolvable at the simplest level into six equal timepoints. In (b),
the inner rhythm is rotated by 30 degrees, requiring twelve timepoints to represent
all possible time intervals in each cycle. This variant is presented as [S: 27](v). (c)
diagrams the four-against-three polyrhythm which can be heard in [S: 27](vi). Other
more complex polyrhythms are performed in [S: 27](vii)–(x).

attention on one or the other tempo and hear that as the implied beat. Perhaps
even more striking is that these polyrhythms tend not to be perceived as two
separate “lines” at all. Rather, they are heard as a single chunk of rhythm.
Thus three-against-two is more clearly described as “long-short-short-long” or
− �� − in the lyrical notation of Sect. 2.1.1, than in terms of its constituent
parts.

Blacking [B: 16] argues that an anthropological approach to musical sys-
tems (one that focuses on the behaviors of people as they perform and listen
to music) makes more sense than an analysis based ultimately on the resulting
sound. Any music is based on the human abilities to discover and interrelate
ordered patterns in sound and there are often several possible structural expla-
nations of any musical passage. Blacking provides several examples where the
same surface structure (the 3-2 polyrhythm of Fig. 3.11(a)) can be produced
by either one, two, or three performers among the Venda of the Transvaal.
Though the sound is the same, the meaning of the passages is very different
in each social context.

Blacking compares the rhythmic complexity of African music to the har-
monic complexity of Western music

The polyphony of early European music is in principle not unlike
the polyrhythm of much African music; in both cases, performance
depends on a number of people holding separate parts within a
framework of metric unity, but the principle is applied “vertically”
to melodies in polyphony and “horizontally” to rhythmic figures in
polyrhythm.

Cowell [B: 37] draws an analogy between the ratios of rhythmical beats
and the ratios of musical tones, as discussed in Sect. 2.1.9. For example, the
ratio between the fundamental frequencies of two notes that are separated by
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a musical fifth (say C and G) is 3
2 . In terms of the periods, the lower tone

repeats twice in the same time span that the upper note repeats three times,
analogous to the 3

2 polyrhythms in Fig. 3.11(a). Similarly, other familiar mu-
sical intervals correspond to various polyrhythmic timings: the major third
to a time ratio of 5

4 and the minor third to a time ratio of 6
5 . This idea of

equivalence at different time scales is explored in sound examples [S: 27](i)–
(iv) where the three-against-two polyrhythm is performed at different speeds:
at 12 ms, 120 ms, 1.2 s, and 12 s per cycle. At 120 ms, the individual drum
strokes of the drum merge and the rhythmic percept is lost. The sound be-
comes a rapid trilling, the chirping of a motorized cricket. At 12 ms, the drum
character has disappeared completely and is replaced by a pair of pitches sep-
arated by a fifth, just as Cowell posits. When the cycle is stretched to 12 s,
all perceptual connection between the drum hits is lost, and there is only a
series of disconnected events.

Of course, the analogy cannot be pushed too far. As Cowell points out,
there are few melodies that repeat the same note over a whole work, while
there are many pieces in which the same metric structure repeats throughout.
Perhaps more fundamental is that the perception of events at a 12 ms repeti-
tion rate is quite different from the perception of the “same” events at a 1.2 s
repetition rate. It is this perceptual discontinuity that disrupts the unification
of the rhythmic and tonal levels.

Many musicians and composers have explored the use of polyrhythms.
Jacky Ligon [B: 129] comments about a group of frame-drummers where
“everyone is playing in a number of simple patterns, all in different time-
signatures. . . the “dum” strokes appear to be passed around between the
drummers as the meters cause continuous new alignments of the strokes. . . it’s
a wonderful experience.” My own polyrhythmic attempt can be heard in Per-
sistence of Time [S: 28]. The tonal material, which uses an adaptive tuning to
manipulate the pitches of the sounds, is documented elsewhere [B: 196], but
it is laid on top of a strict three-against-two rhythmic bed.

3.10 Inner Melody and the Gamelan

The last several sections demonstrate that at least part of the human expe-
rience of rhythm is a psychological ordering of sensations that may not be
present in the sound itself: the beat may not be played, the clave may be
implied, the timeline may not be expressed in sound. Sorrell [B: 221] makes
the parallel argument that Indonesian gamelan music is based on the concept
of an “inner melody” which forms the common basis of all parts in a perfor-
mance, yet which may never be literally played by any instrument. If, asks
Sorrell, the inner melody. . .

is not played as it is conceived, where is it? The answer is: in the
minds of the musicians. . . the ‘inner melody’ is not played by any single
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instrument but is a kind of intuitive melodic core which influences the
movement and direction of the whole ensemble. . . [the] inner melody
is the melody that is sung by musicians in their hearts.

The gamelan “orchestras” of Java and Bali consist of a large family of met-
allophones that play exotically tuned phrases that repeat over and over, with
variations that slowly evolve throughout pieces of near symphonic length. Sor-
rell gives several examples of the balungan, the melodic core around which a
gamelan piece is structured. For example, the outer ring of Fig. 3.12(a) shows
the four note balungan 2 − 7 − 2 − 3, where the numbers refer to notes of
the pelog scale (a seven-tone scale that is unique to each gamelan). A typical
realization of the piece plays this skeletal melody at differing rates and with
different ornamentations and embellishments as in [S: 29].
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Fig. 3.12. Adapted from Sorrell [B: 221], part (a) shows a possible rendition of the
balungan in the outer ring using the three inner instruments (which are played by the
peking, the demung and the slenthem respectively). Part (b) schematizes the irama,
the gamelan concept of tempo relationships based on ever faster binary divisions of
the time cycle.

The irama, an important organizational principle in gamelan music, is
shown schematically in Fig. 3.12(b), which is adapted from Malm [B: 140].
For instance, the gong may sound once per cycle. The kenong (labeled N) may
sound twice per cycle, equally dividing the gong strokes. The kempul (labeled
P ) may sound four times per cycle, equally dividing the kenong strikes. The
kethuk may then sound eight times per cycle, evenly dividing the strokes of
the kempul. Thus the complete cycle is divided again and again into two even
parts, until the fastest instruments may play at dizzying speed.

One of the first Europeans to document the extraordinary sounds of the
gamelan was Jaap Kunst [B: 121], who coined the phrase colotomic motion
to describe the style of music in which sections are marked by the entrance
(and exiting) of various instruments. In gamelan performance, instruments
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generally enter and leave at the start or end of cycles which are typically
punctuated by strokes of the largest gongs.

3.11 Funk

One of the quintessential “funk” performers is James Brown, whose songs
are “all about grooves.” Growing out of the “Rhythm & Blues” of the 1950s,
Brown and his rhythm section sculpted a number of popular and influential
songs over several decades. While each individual instrument in the rhythm
section may only contain a few notes or a few hits, it is the interplay between
the instruments that sets the “groove.”

Figure 3.13 shows the basic rhythmic patterns in two of Brown’s early
songs, Out of Sight and Papa’s Got A Brand New Bag [D: 8], both of which
follow a standard twelve bar blues pattern. Both are grounded by Melvin
Parker’s drumming, which combines a regular eighth note hi-hat with a char-
acteristic bass and snare. Tightly coupled with the drums is Sam Thomas’s
bass guitar, which is the most active and varied part in the rhythm section.
The guitar parts (played by Les Buie and Jimmy Nelson) accent each hit of
the snare. In addition, the horn section provides active and driving rhythmic
accents and stabs throughout. These patterns repeat throughout the songs ex-
cept for the “turn-around,” the last two measures of each twelve-bar phrase.
A single cycle of each is excerpted in [S: 30].
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Fig. 3.13. Basic rhythm patterns in (a) Out of Sight and (b) Papa’s Got A Brand
New Bag. The drum kit is shown in the outer circle with the bass drum © and snareN

. The hi-hat (not shown) is hit at each timepoint. The bass guitar (inner circle)
plays the most active line with the most variation. The guitar plays chord “stabs”
at regular intervals, accenting the two and four of the snare drum. The analysis is
adapted from [B: 213].

The funk style can be interpreted as a melange of two musical practices. In
the cyclical performance suggested by the timecycles of Fig. 3.13, in the use
of simple interlocking elements to create a complex motive musical force, and
in the use of two-bar phrases with shifting accents, the music resembles the



72 Varieties of Rhythmic Experience

traditional timelines. Where the traditional music is orchestrated with bells
and drums, funk is orchestrated with basses, drum kits, horn stabs, and the
occasional guitar.

The second influence appears in the harmonic motion driven by the twelve
bar blues pattern:

E�7 E�7 | E�7 E�7 | A�7 A�7 | E�7 E�7 | B�7 A�7 | E�7 E�7

Since each cycle in Fig. 3.13 represents two measures, the blues structure
imposes a larger cycle: after every five cycles, there is a two-bar break.

3.12 Hip-Hop

The recent emergence of hip-hop (and its lyrical cousin “rap”) presents an
interesting mix of highly inflected vocalizations superimposed on a bed of
tightly metric rhythms. Much of the academic interest in this music relates to
the (sub)cultural contexts in which the artists work, though analysts such as
Krims [B: 119] have begun looking more carefully at the structure of the music.
Krims distinguishes three vocal styles: the “sung” style close to popular music,
the “percussive-effusive” style (where the voice is used to accent the musical
texture and/or subdivide regular metrical units) and the “speech-effusive”
style in which the rhythm of the voice mimics that of spoken language.

In stark contrast to the elaborate and nuanced timing of the vocals, the
instrumental parts are often created using electronic percussion (“drum ma-
chines”), “scratching” (playing short snippets, usually from vinyl records), and
“looping” (the process of layering many short phrases of pre-recorded sam-
ples). Common to all these techniques is the idea of combining pre-existing
sounds (loops, samples from CDs, synthetic patterns from drum machines)
into a rhythmic bed. Though any given element of the rhythm may be simple,
by layering different rhythmic motifs, unpitched noises, exploiting electronic
timbral distortions, combining sequences in different meters and different keys,
the overall effect can be hypnotically complex. Krims calls this the “hip-hop
sublime.”

Figure 3.14 schematizes the sublime in a rap song by Ice Cube. The in-
strumentation includes several synthesizer parts, two basses (bass guitar and
a synthesized bass) and drums. This pattern repeats between measures 1–56
of the song, and returns during later verses. Consider the bass guitar, which is
one of the most prominent lines (shown on the outer circle). Observe that this
is the same pattern (except for a rotation) as is played by the gankagui bell
of Fig. 3.5. The sounds represented on the inner circles provide interlocking
rhythmic motifs that help provide rhythmic force. The hip-hop sublime ac-
complishes some of the same musical tasks as the basic timelines of the earlier
styles; where the traditional timeline is orchestrated with bells and drums,
the sublime is orchestrated with samples and loops.
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Fig. 3.14. The “hip-hop sublime” occu-
pying measures 1–56 (and others scattered
throughout) of The Nigga Ya Love to Hate
by Ice Cube [D: 27]. Shown are the bass
guitar (outer circle), bass drum, bass synth
(with a chord stab indicated by ⊗), synth
whoosh (plus cowbell ⊕), and snare drum
(inner circle). The analysis is adapted from
[B: 119] and a single cycle is excerpted in
[S: 31].

In traditional African drumming, the timeline is used as a rhythmic base
on which the master drummer improvises and on which dancers (and others)
base their participation. The sublime provides a rhythmic base on which the
rapper improvises with stylized vocal nuances and practiced rhymes. Table 3.1
emphasizes the analogy between the rapper and the master drummer by dia-
gramming a single verse of a rap song and showing where (in the 4

4
measures)

the singer accents syllables.
Though there is no melody in the classical sense, the lyrics are placed

rhythmically within the sublime as Table 3.1 shows. The first three lines be-
gin on the second beat, and there are numerous regularities of accent and
stress. The end-rhyme finalizes the couplet and then leads into a repeat of
the line “Premier’s on the breaks.” This is closer to the singing style than to
the speech-effusive style. The master drummers of Africa are often cited for
drumming so as to imitate speech. It is an interesting irony that in the new
style, the rapper has adopted the role of the drummer.

Table 3.1. The opening four lines of KRS-One’s [D: 29] MCs Act Like They Don’t
Know. Analysis adapted from [B: 119].

1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

x x x x x x x Clap your hands, everybody
x x x x x x if you’ve got what it takes
x x x x x x x x x ‘Cause I’m K-R-S, and I’m on the

x x x x x x x mike, and Premier’s on the breaks!

In certain syncopated styles, the beat is not heard but implied. Nelson
[B: 154] comments: “For African-American musicians who improvise when a
rhythmic beat is already established, their challenge is to express knowledge
of the beat by not playing it. . . a show of motility or skill by playing around
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the beat instead of playing on the beat. . . to illustrate mastery over time by
playing against time.”

3.13 Simultaneous Tempos

With polyrhythms, while each line is playing a different speed, all the lines are
related to each other and typically the complete rhythm is heard as a new form
rather than as a superposition of independent elements. Sachs [B: 187] points
out that in some North American Indian music the drum accompaniment
is played at a tempo that is independent of the tempo at which the voice
sings. He gives several examples, including a Chippewa song where the singer
proceeded in a steady rate of 168 beats per minute while the drummer played
a more stately 104. In one extreme case the drum and voice are at nearly the
same tempo. At the beginning,

the drumbeat is slightly behind the voice, but it gains gradually until
for one or two measures the drum and voice are together; the drum
continues to gain, and during the remainder of the record it is struck
slightly before the sounding of the corresponding tone by the voice.
[B: 42]

This concept of drumming can be understood two ways. First, it may be that
the two meters are perceived as separate streams, and hence are intention-
ally unrelated (other than by providing a background against which the other
is performed). Another possibility is that this is a way of introducing vari-
ety despite the repetition of parts. . . at each repeat the individual parts are
the same, but their relationship changes over time. This is schematized in
Fig. 3.15.

Fig. 3.15. Two steady pulses, each at a slightly different tempo, are sounded si-
multaneously. The top pulse train precesses against the bottom. For a perceptual
discussion of this phenomenon, see Fig. 4.16 on p. 101.

3.14 Synthesis

The discussion in Sects. 1.3 and 1.4 argued that at least part of the human
experience of rhythm is a mental phenomenon or ordering that is not explicit
in the sound. The beat, for instance, may or may not be physically present,
even when it is readily perceptible. Similarly, in the dance music of Latin
America, the clave is often implicit in a song rather than directly sounded in
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the performance. The timelines of Africa serve a similar function by framing
the use of time, yet they may be unheard in the music. The inner melody of
the Indonesian gamelan emphasizes the importance of the unsounded mental
phenomenon. As Western musicians use meter, Indians use tala, Africans use
the timeline. Each provides an internalized frame on which repetition and
variation hang, for both listeners and performers. Thus rhythm is an emergent
property, a product of consciousness. Many of the most important rhythmic
structures are present only in the minds ear. Though they may be perceived
quite clearly, they do not exist objectively in the sound. All music has meaning
that goes beyond the sound.

This presents in stark form one of the major problems confronting any
nonhuman or “artificial” intelligence that attempts to parse a signal created
by humans for other humans. Only part of the information needed to under-
stand the meaning of the signal is actually included in the signal; the rest is
hidden in the social context of the communication, in the human perceptual
apparatus, or in some common web of meaning enabled by human biolog-
ical commonalities. Perhaps this is why computer-based speech recognition
has achieved only limited success even after concerted effort by the scientific
community for over half a century. It cannot be said that we have failed at
this task for lack of effort! Similarly, efforts to automatically parse an audio
performance and transform it into standard musical notation have not been
fully successful. There are many tasks that humans can solve effortlessly that
foil even the best efforts of the computational community.

What is universal in the human conceptualization and realization of mu-
sical rhythm? Surveying the musicological and ethnomusicological work sum-
marized in this chapter leads to the conclusion that the answer primarily
involves mental constructs. The listener is an active participant in a musi-
cal performance, often supplying an internal rhythm, beat, clave, timeline,
melody, etc., that makes the rhythm intelligible. Indeed, this is why listen-
ers may find music from other cultures confusing; they lack the appropriate
mental framework with which to hear the meaning that the performer can so
easily convey to the intended audience.

These cautionary notes show that from a computational point of view, it is
important to distinguish the portion of the human rhythmic experience that
is contained in the audio signal from the portion that is not. Those parts that
are available in the waveform will be the focus of the remainder of Rhythm
and Transforms. Those parts that are not resolvable without added cultural
or biological information will be left for another day. Clearly, the “musical
universals” discussed above are not part of the signal.

In order to focus on the possibilities for signal analysis, observe that almost
all of the rhythmic notations, perceptions, and conceptualizations involve an
underlying steady pulsation. This often occurs at a level below (faster than)
the nominal beat. This level appears in the timecycles of the necklace notation
as the equidistant timepoints arranged around the circles. It often appears in
the musical notation in the time signature, though it may also occur at a
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more rapid rate that is a factor of two multiple of this basic rate. In the
drum, binary, and functional notations, it appears as the fundamental time
rate represented by the symbols. The many examples from around the world
suggest that the kinds of music which are based on steady pulsation are a
common part of our musical heritage.

This does fall considerably short of universality, however. Indeed, music
that is fundamentally based on poetry, chant, or plain language tends to con-
tain very complex stress patterns that may not conform to an underlying
pulsation. Music that is built around “flexible breath” (such as the Japanese
gagaku and Buddhist chant) or music that is primarily poetic (such as litur-
gical chants, the Ancient Greek music discussed by Plato, and the speech-like
free rhythms of Africa) will not be good candidates for automated rhythmic
analysis. We must, therefore, approach such problems cautiously.



4

Auditory Perception

The auditory system is not simple. Underlying the
awareness of rhythmic sounds are basic perceptual laws
that govern the recognition of auditory boundaries,
events, and successions. Research into the mechanisms
of perception sheds light on the physical cues that inspire
rhythmic patterns in the mind of the listener. These
cues help distinguish features of the sound that are
properties of the signal from those that are properties
of the perceiving mind. The beat is not in the signal; it
is in your mind.

Auditory perception is the ability to make sense of sonic information, to or-
ganize successive sounds into coherent patterns. A sound begins as a physical
disturbance in the air which propagates to the ear. It is then transduced into
complex neural stimuli that are analyzed, selected and categorized into events
with meaningful properties. The events enter short term memory where they
can be related to other events and clustered into larger units and groups. Fig-
ure 4.1 shows the interactions between the various elements of the mind as it
tries to understand a sound.

pressure wave in air

stream of
incoming

stimuli selection and
filtering processes

organized patterns
and perceptions

short
term
memory

memory

expectation
and attention

long
term

Fig. 4.1. Perception of sound is not a simple process; it begins with a physical wave-
form and may end with a high level cognitive insight (for example, understanding
the meaning of a sound). There are constant interactions between long term mem-
ory, attention and expectation, and the kinds of patterns formed. There are also
constant interactions between memory, attention, expectation, and the ways that
the raw information is selected and filtered. The time span over which the short
term memory organizes perceptions is called the perceptual present.
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The selection and filtering operation takes a large amount of continuously
variable data and condenses it into a (relatively) small number of events from
a (relatively) small number of categories. Short term memory, where the pat-
terns and perceptions are organized, does not operate using only input from
lower level processing. Indeed, short term memory continually interacts with
longer term memory and with consciousness (which appears in the figure as
“attention” and “expectation”). Expectations and memories can influence the
formation of patterns. Moreover, memory and expectation continually interact
with the basic filtering and selection operations, and thus may influence what
kinds of events are forwarded to short term memory. For example, someone
expecting to hear a friend’s voice is more likely to perceive that voice in a
crowd. Someone anticipating a certain kind of musical phrase is more likely
to perceive it, whether it occurs in reality or not.

Observe that the arrows leading from the memory and attention processes
to the filtering and selection processes are unidirectional. Neither the conscious
mind nor the long term memory directly access the raw sensory data. Indeed,
we do not perceive a puff of air followed rapidly by a near sinusoidal tone; we
hear someone playing a flute. We do not perceive a steady stream of harmonic
tones passing through a time varying filter and punctuated with a series of
glottal stops; we perceive spoken words.

Thus perceptions of musical notes, spoken words, melodies, and rhythms
are acts of cognition, by-products of a listening mind; they are not direct
sensory inputs as they might naively appear. Since they all unfold over time,
they must involve some sort of memory. Since they are greatly simplified from
the raw sensory data, they must be filtered and categorized with some kind of
grouping or clustering mechanism. In addition, they influence and are influ-
enced by our attention. Expectation projects current sensory impressions into
the future. This anticipation is an act of (perceptual) imagination. Untangling
the complex web of dependencies in our perceptual mechanisms is one of the
great scientific adventures of our time.

4.1 How the Ear Works

The auditory system is a massively complex structure connected to an even
more sophisticated processing unit. This section gives a simplified view of the
operation of the ear that stresses some of the attributes that will be most useful
in subsequent chapters when parsing musical signals for rhythmic patterns.

To the physicist, sound is a pressure wave that propagates through an elas-
tic medium (i.e., the air). Molecules of air are alternately bunched together
and then spread apart in a rapid oscillation that ultimately bumps up against
the eardrum. When the eardrum vibrates, signals are sent to the brain, caus-
ing the perception of sound. Thus the word “sound” means one thing to the
physicist (a waveform propagating through air) and quite another to the psy-
chologist (a perception in the mind of a listener). As a practical matter, it is
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important to distinguish the physical attributes of a signal from the percep-
tions that the signal evokes:

(i) frequency is the physical correlate of the perception of pitch
(ii) sound pressure level (signal power) is the physical correlate of the

perception of loudness
(iii) waveshape is the physical correlate of the perception of timbre
(iv) a time interval is the physical correlate of the perception of dura-

tion

The physical attributes are measurable properties of the signal whereas the
perceptions are responses in the mind of the listener.

Sound waves can be pictured as graphs such as the sinuous oscillation in
the upper left part of Fig. 4.2 where high-pressure regions are depicted lying
above the nominal, and low-pressure regions are shown below. This particular
waveshape, the sine wave, is characterized by three mathematical quantities:
frequency, amplitude, and phase. The frequency of the wave is the number of
complete oscillations that occur in one second. For example, a sine wave with
a frequency of 100 Hz (short for Hertz, after the German physicist Heinrich
Rudolph Hertz) oscillates 100 times each second. In the corresponding sound
wave, the air molecules bounce back and forth 100 times each second.
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Fig. 4.2. The auditory system transforms a pressure wave into a frequency-selective
spatial array. Peaks in the sound wave represent the clustering of air molecules and
times when the pressure is high. Valleys represent lower than nominal pressure. The
wave pushes against the eardrum during times of high pressure and pulls (like a
slight vacuum) during times of low pressure, causing the drum to vibrate. A series
of mechanical linkages connect to the oval window, which sits on the surface of the
snail-shaped cochlea. As the window oscillates, fluid in the cochlea causes the basilar
membrane to vibrate and wiggle like a flag flapping in the wind. This in turn causes
tiny hair cells mounted on the membrane to vibrate and the waving of the hair cells
is translated into tiny electrical impulses that stimulate neurons in the brain. Hair
cells near the base of the membrane are perceived as having high pitch while those
near the wider end are perceived as having low frequency.
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Figure 4.2 shows a drastically simplified view of the auditory system.
Sound or pressure waves, when in close proximity to the eardrum, cause it to
vibrate. These oscillations are translated to the oval window through a me-
chanical linkage consisting of three small bones. The oval window is mounted
at one end of the cochlea, which is a conical tube that is curled up like a
snail shell (although it is straightened out in the illustration). The cochlea is
filled with fluid, and it is divided into two chambers lengthwise by a thin layer
of pliable tissue called the basilar membrane. The motion of the fluid rocks
the membrane. Tiny hair-shaped neurons sit on the basilar membrane, send-
ing messages toward the brain when they are jostled. The region nearest the
oval window responds primarily to high frequencies, and the far end responds
mostly to low frequencies. The high frequencies are perceived as having high
pitch and the low frequencies are perceived as having low pitch. The phase of
the sine wave essentially specifies when the wave starts with respect to some
arbitrarily given starting time. For single sine waves, the phase has little effect
on the sound.

4.1.1 Perception of Loudness

The ear reacts to variations about the nominal pressure (one atmosphere of
pressure at sea level). Waves with larger fluctuations are generally perceived
as louder, while waves with small deviations from nominal are heard as softer.
To a first approximation, the ear responds to the sound pressure level (SPL),
which is proportional to the average of the square of the pressure amplitude.
Thus, a crude measure of the “loudness” of a sound is to calculate the power

p =
1
T

∫ t+T

t

x2(t)dt ≈ 1
N

N∑
i=1

x2[i] (4.1)

where x(t) represents the amplitude of the waveform from time t to t+T and
the N values x[i] represent a sampling of this wave.

For example, Fig. 4.3 shows a waveform constructed by alternating be-
tween one second of random numbers drawn from a Gaussian distribution
and one second of random numbers drawn from a uniform distribution. The
two processes are scaled so that each has power p equal to one. Clearly, the two
look very different. But listen to sound example [S: 32]. It appears to contain
a single continuous noise. The amplitude differences that are so prominent to
the eye are inaudible to the ear.

Unfortunately, a complete characterization of loudness is not as simple as
[S: 32] suggests. First, loudness depends on frequency: a sinusoid at 50 Hz
must be much larger (be more powerful) than a sine wave at 500 Hz to be
perceived as equally loud. Similarly, at very high frequencies, greater power
is required. The “equal-loudness” contours of Fletcher and Munson [B: 183]
quantify these observations.
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Fig. 4.3. Each second, the distribution
of the noise changes, alternating between
Gaussian and Uniform. The amplitudes
are very different. This can be heard in
example [S: 32], which appears to the ear
as a steady undifferentiated noise.

4.1.2 Critical Band and JND

As shown in Fig. 4.2, sine waves of different frequencies excite different por-
tions of the basilar membrane, high frequencies near the oval window and
low frequencies near the apex of the conical cochlea. Early researchers such
as Helmholtz [B: 94] believed that there is a direct relationship between the
place of maximum excitation on the basilar membrane and the perceived pitch
of the sound. This is called the “place” theory of pitch perception. When two
tones are close enough in frequency so that their responses on the basilar
membrane overlap, then the two tones are said to occupy the same critical
band. The place theory suggests that the critical band should be closely re-
lated to the ability to discriminate different pitches. The critical band has
been measured directly in cats and indirectly in humans in a variety of ways
as described in [B: 168, B: 252]. The “width” of the critical band is roughly
constant at low frequencies and increases linearly at higher frequencies, as
shown in Fig. 4.4.
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Fig. 4.4. Critical bandwidth is plotted
as a function of its center frequency. Just
Noticeable Differences at each frequency
are roughly a constant percentage of
the critical bandwidth, and they vary
somewhat depending on the amplitude
of the sounds. The frequency difference
corresponding to a musical whole tone
(the straight line) is shown for compari-
son. Data for critical bandwidth is from
[B: 185] and for JND is from [B: 240].

The Just Noticeable Difference (JND) for frequency is the smallest change
in frequency that a listener can detect. Careful testing such as [B: 251] has
shown that the JND can be as small as two or three cents, although actual
abilities vary with frequency, duration and intensity of the tones, training of
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the listener, and the way in which JND is measured. For instance, Fig. 4.4
shows the JND for tones with frequencies that are slowly modulated up and
down. If the changes are made more suddenly, the JND decreases and even
smaller differences are perceptible. As the JND is much smaller than the
critical band at all frequencies, the critical band cannot be responsible for
all pitch-detection abilities. On the other hand, the plot shows that JND
is roughly a constant percentage of the critical band over a large range of
frequencies.

4.1.3 Models of the Auditory System

Computational models of the auditory system such as those of [B: 125, B: 146]
often begin with a bank of filters that simulate the action of the basilar mem-
brane as it divides the incoming sound into a collection of signals in different
frequency regions. Figure 4.5 schematizes a filter bank consisting of a collec-
tion of n bandpass filters with center frequencies f1, f2, . . . , fn. Typical models
use between 20 and 40 filters, and the widths of the filters follow the critical
bandwidth as in Fig. 4.4. Thus the lower filters have a bandwidth of about
100 Hz and grow wider as the center frequencies increase. A convenient way
of picturing the output of such a filter bank is in a spectrogram-style plot
which orients frequency on the vertical axis and the passage of time on the
horizontal axis. The energy in each critical band is shown by the darkness of
the shading.
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Fig. 4.5. The n filters separate the input sound into narrowband signals with band-
widths that approximate the critical bands of the basilar membrane. The output of
the filterbank can be pictured in spectrogram-style where the energy in each critical
band is indicated by the depth of the shading. Time evolves from left to right. This
example shows about two minutes of the Maple Leaf Rag. [S: 5].
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There are several reasons why the place theory cannot provide a complete
model for the perception of pitch. There are no more than about forty critical
bands on the basilar membrane. Yet even a piano has 88 keys, and it is obvious
that people can distinguish far more pitches than this. The place theory also
provides no possible explanation of phenomena like the missing fundamental
(recall this “illusion” was illustrated in Fig. 1.7 on p. 12).

An alternative hypothesis, called the “periodicity” theory of pitch percep-
tion suggests that information is extracted directly from the time behavior
of the sound. Neurons send electrical signals to each other in the form of se-
quences of pulses called spike trains. Detailed investigation into the neurons
of the auditory system (these experiments are often conducted in the brains
of anaesthetized cats, which have auditory systems similar to our own) show
that the spike trains can synchronize to the waveform. For example, Fig. 4.6
shows a spike train that is phase-locked to an intrinsic feature of the waveform,
in this case, the instantaneous peak values. This synchronization can occur
reliably for frequencies up to a few hundred Hertz, but drops off at higher
frequencies. Thus, the time interval over which a signal repeats is a feature
that the auditory system may use to determine frequency.

(a)

(b)

Fig. 4.6. The spike train (a), rep-
resenting the firing of neurons, is
synchronized to the maxima of the
sound waveform (b)

There are several kinds of models that try to exploit temporal relation-
ships between spike trains [B: 146, B: 159]. In reality, the pulses from individ-
ual neurons are erratic, but there are many neurons, and so it is common to
build models that rely on the distribution of populations of neurons. Among
the models that attempt to deduce pitch (and other) information from the
intervals between collections of spike trains are connectionist networks and
time-delay networks. Cariani [B: 26] has recently proposed neural timing net-
works such as in Fig. 4.7 as a possible structure.

Two spike trains pass in opposite directions. The nonzero time required
for the signal to pass between adjacent neural elements causes the signals to
be delayed. The coincidence detectors fire whenever spikes from both signals
are present simultaneously, and the output of each detector is another spike
train that moves downwards. Counting the spikes within any horizontal strip
gives the convolution of the two signals. Counting the spikes in any vertical
strip gives the cross-correlation at that delay time. Cariani observes that the
array acts as a “temporal sieve” that passes temporal patterns common to
both signals. The output is phase insensitive (like the ear) and can reproduce
pitches associated with the missing fundamental. In certain simple situations
it can recognize common pitches irrespective of the timbre, and recognize
common timbres (in this case, certain vowel sounds) irrespective of pitch. In
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addition, such period detection models can duplicate features of the auditory
system like the pitch associated with time delayed pulse trains [B: 216].

There is now, and has been for the past 100 years or so, considerable con-
troversy between advocates of the place and periodicity theories. It is probably
safe to say that there are some aspects of pitch perception better explained by
the place theory, and other factors better explained by the periodicity theory.
Indeed, Pierce [B: 164] suggests that both mechanisms may operate in tan-
dem, and a growing body of recent neurophysiological research reinforces this.
Whatever the ultimate resolution of this argument, both kinds of models pro-
vide useful insights into the operation of the perceptual apparatus. The next
sections turn to two central questions. What are the basic kinds of “events”
that perception decodes, and what are the properties of these events?

4.2 Auditory Boundaries

People can perceive a wide range of auditory phenomenon and can distinguish
many kinds of auditory stimuli. Moore [B: 150] points out that “the auditory
system seems particularly well-suited to the analysis of changes in the sensory
input.” The idea of a boundary between two sounds attempts to pinpoint
times at which changes are perceived in the audio stream.

An auditory boundary occurs at a time t when the sound stimulus in
the interval [t − ε, t] is perceptibly different from the sound stimulus
in the interval [t, t + ε].

Boundaries are quite general, and they may occur on different time scales
depending on the size of ε. For example, long scale auditory boundaries (with
ε on the order of tens of seconds) occur when a piece of music on the radio is
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interrupted by an announcer, when a car engine starts, and when a carillon
begins playing. Short scale auditory boundaries (with ε on the order of tenths
of a second) occur when instruments change notes, when a speaker changes
from one syllable to the next in connected speech, and each time a hammer
strikes a nail. At yet smaller values of ε (on the order of milliseconds) the
“grains of sound” [B: 181] occur too rapidly to be perceived individually. They
merge into a perception of continuity without boundaries.

Perhaps the most common examples of short time scale auditory bound-
aries involve changes in amplitude (or power) such as occur when striking a
drum. Before the strike, there is silence. At the time of the strike (and for
a short period afterwards) the amplitude rises sharply, causing a qualitative
change in the perception (from silence to sound). Shortly afterwards, the sound
decays, and a second, weaker boundary is perceived (from sound into silence).
Of course, other aspects of sound may also cause boundaries. For example,
pitch (or frequency) changes are readily perceptible. An auditory boundary
might occur when a sound changes pitch, as for example when a violin moves
from an A note to an A�. Before the boundary, the perception is dominated
by the violin at fundamental A = 440 Hz while after the boundary the per-
ception is dominated by the sound of the violin playing the A� = 466 Hz. On
the other hand, boundaries do not necessarily occur at all pitch changes. Con-
sider the example of a pitch glide (say an oscillator sweeping from 100 Hz to
1000 Hz over a span of thirty seconds). While the pitch changes continuously,
the primary perception is of the “glide” and so boundaries are not perceived
except for the longer scale boundaries at the start and stop of the glide.

The perception of a change that occurs at an auditory boundary is called
an auditory event, or, when the context is clear, an event. The preceding ex-
amples highlight several aspects of auditory boundaries and events. First, the
boundaries and their related events may be of different strengths. Second,
they may be caused by different kinds of physical phenomena which may cor-
respond to different aspects of perception. Finally, the key phrase “perceptibly
different” is not always transparent since exactly which aspect of perception
dominates at any given time is a complex issue that depends on the training
of the listener, on the focus of the listener’s attention, and on a myriad of
physical factors.

Isolated auditory boundaries divide time into before and after. They are
typically perceived as the starting or stopping times of large scale events. For
example, a refrigerator motor starts, creating a clearly perceptible boundary.
Over time, the ear acclimates and the sound recedes into the background.
When the motor stops, another boundary is formed and it is immediately
clear that there is no longer any sound. The two boundaries delineate regions
before the motor started, during the motors operation, and after the motor
has ceased. There is no direct perceptual connection between the events, nor
of the duration between the events, though of course it may be possible to
estimate the time interval based on other intervening factors.
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If a pair of events is separated by a shorter time interval (between about
100 ms and 3 s), then the interval is typically perceived as a duration; the
two events become “connected” and the time between is perceived as the
content of the duration. Durations may be empty (without sound) or filled
(with sound). Either way, the events are perceived as bound together. For
example, a drum hit twice in rapid succession; it is heard as a single entity
boom-boom rather than one boom followed by another. Similarly, a flute plays
a C note. The initiating event is the puff of air that begins the sound. The
ending event is the return to silence. The content of the duration is the tonal,
steady sound of the resonance of the flute body.

If the pair of events is separated by somewhere between 20 ms and 100 ms,
it is typically perceived as a single (more complex) event; though the events
are still distinguishable, there is no perception of duration, and it is often
impossible to tell reliably which event occurred first. Finally, if the separation
is less than 2 ms, then it becomes impossible to tell that two separate events
have occurred; they have merged into a single perception.

With a single event there is a partitioning of time into before and af-
ter. With two events the perception of duration arises. Something even more
amazing happens when there is a whole sequence of events!

4.3 Regular Successions

A new phenomenon emerges when auditory boundaries occur periodically or
in a regular sequence: the perception of succession. Fraisse comments [B: 65]:

The organization of successive elements into units of perception is such
a fundamental part of our experience that we no longer notice it. It is
the basis of our perception of rhythm, of melody, and even the sounds
of speech.

A regular succession is a sequence of auditory boundaries or events that recur
at (approximately) equal intervals of time. For example, suppose that a series
of audio boundaries occur at times

τ, τ + T, τ + 2T, τ + 3T, τ + 4T, . . . (4.2)

where T is the time between adjacent audio boundaries and τ specifies the
starting time of the first event. Actual sounds may not be so precise: T might
change (slightly) between repetitions, some of the τ + nT terms might be
missing, and there may be some extra auditory boundaries interspersed among
the T -width lattice. Thus, (4.2) is idealized and the term regular succession is
used to emphasize that a sequence of auditory boundaries need not be strictly
periodic.
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4.3.1 Perceptions of Rate

Musicians and listeners often tap their foot to a piece of music. The word beat
refers to times when the foot taps, and tempo refers to the rate at which the
beats recur. In a simple sound sequence like Regular Interval 750 [S: 3], each
click typically corresponds to a tap and hence to a beat. Since the interval
between beats is 750 ms, the tempo is 1.33 bps (beats per second) or 80 bpm
(beats per minute). In the faster Regular Interval 333 [S: 33], where the time
interval between clicks is 333 ms, listeners tend to tap their foot to every other
click, to cluster the clicks into pairs, and to count each pair as a single beat.
Perhaps the most common way to count this example is

1 & 2 & 3 & 4 &,

and to tap the foot on 1-2-3-4 (but not on the &s). Thus the click rate is
different from the tempo. A more extreme version is Regular Interval 100,
where the interval between clicks is 100 ms, corresponding to a rate of 10
clicks per second. Listeners may cluster the clicks together into groups of four
(or more) and so each beat lasts 400 ms (or more).

Even though the stimulus consists of exactly identical pulses following each
other at identical intervals, the sounds are perceived as if they are grouped,
usually in twos, threes, or fours. In the absence of any clearly articulated
meter, the ear creates one, highlighting the spontaneous and idiosyncratic
character of rhythmic groupings. Bolton [B: 17] showed that such subjective
rhythmization occurs when the pulses are separated by (approximately) 0.1
to 2 s. Outside of this range (more rapidly than 0.1 s and more slowly than 2
s) the pulses are heard as identical.

Thus the perception of even a simple periodic series of events can change as
the rate of presentation changes. What happens at even more extreme speeds?
This question is explored in sound examples Regular Intervals T [S: 33], where
T specifies the time interval between adjacent clicks for T between 2 ms and
5 s. Figure 4.8 shows that there are several perceptual regimes depending on
the rate at which the clicks recur.

(a) A pitch is heard when the distance between successive pulses is
less than about 50 ms.

(b) The clicks appear to be contiguous (no gap is heard between
them). The overall effect of the sound is like the fast chirping
of a cricket or the rapid ringing of an orchestral triangle.

(c) A rhythm is perceived between (about) 100 ms and 3 s. A gap is
heard between successive clicks. The primary perception is of the
regularity of a tatum, beat, or measure.

(d) There is no perceptual connection between the successive clicks
when the interval between sounds is greater than about 3 s. In
this region there is no direct perception of duration, though there
is a sense of the distance between past and present events.
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Sound example [S: 34] performs a slowly changing succession of clicks that
covers most of these perceptual regions. Depending on the scale of the time
parameter T , there are four different kinds of perceptions associated with reg-
ular successions: a sequence of disconnected events, perception of a rhythmic
beat (at its corresponding tempo), perception of fluttering (at its correspond-
ing rate), and the perception of a tone (at its corresponding pitch).

time interval between adjacent events

1 ms 10 ms 100 ms 1 s 10 s

perception
of regular
successions

perception
of irregular
successions

(a) tone
increasing pitch

(c) rhythm
increasing tempo

(b) contiguous stream
increasing density (d) disconnected

events

(e) noise
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(f) rain
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Fig. 4.8. Perception of a regular succession depends on the rate of repetition of the
events; sensations range from (a) pitches, (b) contiguous clicks (“fluttering”), (c)
beats, and (d) disconnected events. Perceptions of irregular successions also depend
on the average rate of repetition of the events; sensations range from (e) noise, (f)
“rain,” (g) arbitrary clicks, and (h) disconnected events at the slowest rates. Arrows
point in the direction of increasing pitch, speed, and density.

Regular successions are directly perceptible only within the perceptual
present. Nonetheless, once the perception of a succession is established, it
can readily extend beyond the present, both forwards and backwards in time.
Thus the perception of a regular succession implies both an anticipation of
future events (in particular, that the succession will continue) and it may
project back into the past by reinterpreting prior sensory impressions. Said
another way, once the “internal clock” of the listener has synchronized with
the succession, there is an expectation that it will continue into the future,
and previously occurring events may be retrospectively interpreted as leading
towards the succession.

There is an inherent ambiguity in any periodic signal. If the sequence can
be expressed as T periodic as in (4.2), then it is also 2T periodic (and nT
periodic for any integer n). At the time scale of the beat, this ambiguity is
the difference between the tatum, the beat and the measure (recall Fig. 1.9 on
p. 15). At the time scale at which the perception of pitch occurs, an ambiguity
of 2T corresponds to an octave jump.

What happens when the succession is not regular? Irregular successions
are also perceived differently at different speeds as shown in Fig. 4.8.
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(e) A noise is heard when the average distance between successive
pulses is less than about 50 ms.

(f) The clicks appear to be contiguous (no gap is heard between
them). The overall effect of the sound is like the sound of rain
pounding on the roof.

(g) A collection of arbitrarily spaced clicks is perceived when the aver-
age interval between clicks is 200 ms to 2 s. A gap is heard between
successive clicks.

(h) There is no perceptual connection between the successive clicks
when the interval between sounds is greater than about 3 s.

The various perceptual regions for irregular successions are demonstrated
in sound examples [S: 35] and [S: 36]. Observe that there is no perception of
either tempo or of pitch as the rate of the events increases and decreases.
Rather, the density of the sounds appears to increase and decrease. Thus
irregular successions evoke qualitatively different kinds of perceptions than
regular successions.

4.3.2 Regular Successions as a Single Perception

One of the most important forms of clustering is the ear’s penchant for or-
ganizing the sound of a periodic waveform into “single sound” with a single
pitch. Mathematically, a periodic sound is one which has all its overtones lying
in a harmonic series, that is, a series in which there is a fundamental f and
harmonics at 2f , 3f , 4f , 5f , etc. The perception when a sound changes from
nonperiodic to periodic can be quite dramatic.

This is demonstrated in sound example [S: 37] which plays three sine
waves, each sweeping linearly towards a harmonic series. The instantaneous
frequencies of the sinusoids are given in Fig. 4.9. During the sweep, there are
many complicated interactions between the sounds including difference tones
and beating. But when the frequencies come into alignment with the har-
monic series (with fundamental 200 Hz), the sound simplifies and merges into
a single coherent object of perception. Observe how complicated the sound
appears when the three sinusoids do not coalesce into a regular succession and
how simple the sound appears once they have merged into a single entity.
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Fig. 4.9. The frequencies of three sine
waves change linearly over time, moving
towards the harmonic series at 200, 400,
and 600 Hz. Many complex interactions
occur during the sweep, but when they
arrive at the harmonic series, they blend
into a single note-like entity. Listen to
[S: 37].
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Such “single objects” are often called “notes” even though, strictly speak-
ing, a “note” is a form of notation (recall Sect. 2.1.2) and not an auditory
event. Thus periodicity (with its perceptual correlate pitch) is a perceptual
cue that helps to glue auditory objects together. Even though a complex sound
may contain several different fundamentals each with its own harmonics, the
ear is often able to distinguish the number and pitches of the fundamentals.
For example, trained listeners can readily discern the number of instruments
playing at any moment in a string quartet.

Similar effects occur at different time scales, though they have different
names. Figure 4.10 shows three click trains proceeding at three different rates.
(a) begins at about 0.38 s per click, and, over the course of a minute smoothly
changes its rate to 0.33 s per click. Similarly, (b) begins at 0.44 s per click
and converges to 0.5 s, while (c) begins at 0.98 s per click and ends at 1 s.

Sound example [S: 38] performs four different versions of this. Each is 78
seconds long, and the synchronization (when all three rates have achieved their
final values) occurs two-thirds of the way through. In the first, the synchro-
nization occurs in both rate and phase, so that all three are aligned exactly as
shown in Fig. 4.10. In the second and third, the relative phases of the three are
arbitrary. In the fourth, the three sequences are performed on three different
instruments (stick, clave, and tube).

synchronization

(a)
(b)
(c)

...

...

...
one

rhythm
timemany

rhythms

Fig. 4.10. The rates of three sequences of clicks change slowly over time, moving
towards a single periodic repetition. Many complex interactions occur during the
sweep, but when they synchronize at the periodic rate, they blend into a single
rhythmic entity. Listen to [S: 38].

In all four cases, there is a qualitative change once synchronization occurs.
Before, the hits seem random and unpredictable (though occasional short seg-
ments may achieve interesting rhythmic properties). After synchronization,
there is a clear rhythmic pattern that repeats regularly. Again, the irregu-
lar successions correspond to complex perceptions where it is often not even
clear how many simultaneous patterns are playing. There are always exactly
three! When the periods align, the three patterns coalesce into a single readily
perceivable rhythm. The first (phase aligned) case is the same as the three-
against-two polyrhythm of Sect. 3.9 on p. 67 which can be heard in [S: 27]. The
others correspond to various “rotations” of the timecycles (recall Fig. 3.11).
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4.3.3 Perceptual Cues for Clustering of Notes

While periodicity is a strong factor, almost any perceptible feature of a sound
can act as a clue for perceptual grouping. Intensity, and the change of intensity
over time (often called the envelope of a sound) is also common. For example,
the strike of a single note on the piano (or the strike of a bell) followed by the
characteristic decay of the sound helps to fuse the partials of the string (or
of the bell) into a single auditory object. Over time and with practice, such
objects become familiar and easy to separate out from even a complex auditory
stimulus. For example, people can readily distinguish the sound of a piano even
when it is much quieter than an orchestra or band playing simultaneously.

Timbre is another factor that helps bind sounds together, and considerable
research has been conducted to determine objective, measurable properties of
signals that relate to the subjective notion of timbre. In a series of studies1

investigating timbre, researchers generated sounds with various kinds of mod-
ifications, and asked subjects to rate their perceived similarity. A “multidi-
mensional scaling algorithm” was then used to transform the raw judgments
into a picture in which each sound is represented by a point so that closer
points correspond to more similar sounds. The axes of the space can be inter-
preted as defining the salient features that distinguish the sounds. Attributes
include:

(i) Degree of synchrony in the attack and decay of the partials
(ii) Amount of spectral fluctuation (coherent changes in the spectrum

over time)
(iii) Presence (or absence) of high-frequency, inharmonic energy, espe-

cially in the attack
(iv) Bandwidth of the signal2

(v) Balance of energy in low versus high partials
(vi) Existence of formants3

One way to experiment with the perception of clustering is to generate
collections of partials and ask listeners “how many notes” they hear.4 Various
features of the presentation reliably encourage tonal fusion. For instance, if
the partials:

(vii) Begin at the same time (attack synchrony)
(viii) Have similar envelopes (amplitudes change similarly over time)
(ix) Are harmonically related (have the same fundamental period)
(x) Have the same vibrato rate (are modulated similarly)

1 See [B: 57, B: 84, B: 85, B: 167].
2 Roughly, the frequency range in which most of the energy lies.
3 Resonances, which may be thought of as fixed filters through which a variable

excitation is passed.
4 This is an oversimplification of the testing procedures actually used by Bregman

[B: 18] and his colleagues.
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then they are more likely to fuse into a single perceptual entity. Almost any
common feature of a subgroup of partials helps them to be perceived together.
Perhaps the viola attacks an instant early, the vibrato on the cello is a tad
faster, or an aggressive bowing technique sharpens the tone of the first violin.
Any such quirks are clues that can help distinguish one instrument from an-
other. Familiarity with the timbral quality of an instrument is also important
when trying to segregate it from the surrounding sound mass, and there may
be instrumental “templates” acquired with repeated listening.

The fusion and fissioning of sounds is easy to hear using a set of wind
chimes with long sustain. I have a very beautiful set made of hollow metal
tubes. When the clapper first strikes a tube, there is a “ding” that initiates
the sound. After several strikes and a few seconds, the individuality of the
tube’s vibrations are lost. The whole set begins to “hum” as a single complex
tone. The vibrations have fused. When a new ding occurs, it is initially heard
as separate, but soon merges into the hum. This can be heard in [S: 39]. The
same kind of separation can occur even for a single chime: [S: 40] repeats the
sound of one chime at random intervals.

This section has discussed the features of sounds that allow individual
auditory objects such as the notes produced by musical instruments or the
phonemes of speech to be perceived as single entities distinct from the sur-
rounding sound environment. The next section looks at the same kinds of
questions at a longer time scale.

4.3.4 Perceptual Cues for Clustering of Rhythms

Suppose that the repetitions in a succession are not identical. Almost any kind
of perceivable difference between the repetitions can induce a grouping effect.
For example, suppose every third pulse is louder. Then the listener perceives
the sequence as 1-2-3 1-2-3 1-2-3. If every fourth pulse is louder, the listener
perceives 1-2-3-4 1-2-3-4. Of course, volume is not the only kind of difference
that will effect grouping. Durations also play a role. For example, if every
third pulse is followed by a short pause then groups of three are formed. If
the pause occurs after every fourth pulse, groups of four are perceived. The
way a sequence appears to be organized can be influenced by changes in

(i) Intensity: an increase in the volume of a pulse tends to define the
start of a group

(ii) Duration (of the pulse): a lengthening of the pulse tends to define
the start of a group

(iii) Duration (between pulses): a lengthening of the interval between
two sounds tends to define the end of a group

(iv) Timbre: changes in tone quality (for example, changes in instru-
mentation) may signify key positions in the sequence

(v) Pitch: jumps in pitch tend to be heard as starting or ending points
(vi) Density: the number of events per second can signal a boundary
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At first glance, (ii) and (iii) may appear to be contradictory, but in (ii) the
increase in pulse length is perceived as analogous to an increase in intensity,
while in (iii) the increased duration is perceived as analogous to a pause.

Figure 4.11 shows an example of grouping induced by timbre: � represents
the tone of a synthetic trumpet while � is a synthesized flute. The example
can be heard in [S: 41]. When played slowly (one note per second), this sounds
like a three note ascending phrase that repeats regularly. But as it speeds up
the two timbres break apart, each forms its own perceptual stream. Each of
the melodies appears to be a descending pattern that occurs at half speed.
There is also an interesting tempo in between where the pattern can be heard
either way, depending on the focus of the listener. Similar examples of sound
patterns reconfiguring at different tempos can be constructed from any of the
kinds of features (i)–(vi) above. Important recent work in this area can be
found in [B: 18].

...

Fig. 4.11. The hollow squares and filled triangles represent two different timbres.
In sound example [S: 41] they are a synthetic trumpet and a synthetic flute. When
played slowly, the perception is just as it would appear: a repetition of an ascending
major chord. When played rapidly, the sound breaks into two perceptual streams
where each instrument plays it “own” descending melodic line. The line sounded by
the �s is emphasized by the arrows.

4.3.5 Filled vs. Empty Durations

There are two basic ways to interpret a rhythmic passage; as a sequence of
individual auditory boundaries (events) or as a sequence of durations. Though
logically equivalent (since a duration is defined between any two adjacent
events), it is important to ask if they are perceptually the same. This is
illustrated in Fig. 4.12.

In a regular succession of short clicks, the two interpretations are identical
since the time between the boundaries is empty, that is, the duration consists
solely of the silence between clicks. A regular succession of filled durations, on
the other hand, can be easily constructed using two different sounds A and
B (in the notation of Fig. 4.12). Are successions of durations different from
successions of events?

This question is explored in the sound examples Regular Durations T
[S: 42] where T specifies the lengths of the durations for a variety of T be-
tween 2 ms and 5 s. In the examples, sound A is the pluck of an electric



94 Auditory Perception
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Fig. 4.12. In (a), the dark circles represent clicks or pulses separated by T seconds
of empty (silent) time. In (b), A and B represent durations that are filled with
two different sounds. The horizontal axis represents the passage of time. Rhythmic
perceptions can be evoked by both filled and empty sound sequences.

guitar string and B is a note from a synthesizer. There are several percep-
tual regimes depending on T . These are the same as the regimes (a)–(d) of
Fig. 4.8 for the regular succession of clicks: pitch, fluttering, beats, and iso-
lated (disconnected) sequences. [S: 43] performs a slowly changing succession
of durations that cover most of the above perceptual regions in a single sound
example.

Thus, while the moment by moment perceptions are quite different when
comparing regular successions of events and regular successions of durations,
the kinds of rhythmic perceptions invoked are identical. It does not matter
what the time is filled with, it matters when changes (boundaries) occur.
Whether the duration consists of silence, a guitar pluck, a voice, or a synth,
the primary perception is of the succession itself, not the constituent elements.

The same is also true of irregular successions of durations; the perceptual
regimes mimic the regimes of irregular successions of events. As in (e)–(h) of
Fig. 4.8, it is the density of the sound that most obviously increases as the
lengths of the durations decrease. The various perceptual regions for irregular
successions are demonstrated in sound example [S: 44]. The normal probabil-
ity distribution is used to specify the durations of the events. The durations
begin with a large (average) time interval, speed up until they have achieved
an average rate of T durations per second, and then slow down again. T as-
sumes the values 40 (for an average of 25 ms between events), 400, and 4000
durations in each second.

Observe that there is no perception of either tempo or of pitch as the rate
of the durations increases and decreases. Rather, the density of the sounds ap-
pears to increase and decrease. As expected, irregular successions evoke qual-
itatively different kinds of perceptions from regular successions. But irregular
successions of durations evoke qualitatively the same rhythmic perceptions
as irregular successions of events. Again, it does not matter what the time
is filled with, it matters when changes (boundaries) occur and the primary
perception is of the succession itself, not the constituent elements.

4.3.6 Framework for Rhythm Perception

Regular successions provide the basis of Povel’s “framework for rhythm per-
ception” [B: 173] by assuming that listeners use an internal clock as a basis
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on which to build their perceptions. As expected from earlier studies (recall
the identical clicks of example [S: 3] on p. 6), the completely regular pattern
in Fig. 4.13(a) is heard (ambiguously) as grouped in twos, threes, fours, or
more, depending on the listener, the speed of presentation, and a variety of
other factors. When some of the hits are removed as in (b) and (c), the se-
quence disambiguates: (b) is heard as irrevocably grouped in threes while (c)
is unalterably perceived in groups of four. In contrast, the irregularities in (d)
cause it to be difficult for subjects to remember and reliably reproduce. Listen
for yourself in [S: 45].

(a)

(b)

(c)

...
...

(d) ...
...

Fig. 4.13. The completely regular succession (a) is grouped ambiguously. Removing
certain events as in (b) and (c) removes the ambiguity. Removing events as in (d)
leaves the sequence irregular and hard to accurately reproduce. These can be heard
in [S: 45].

Povel models this effect using regular successions as an organizing prin-
ciple. Of all possible temporal grids, the one with the “most economical de-
scription” is chosen as the best descriptor of the sequence. A grid is more
economical if it covers more taps, is less economical if it predicts taps where
none occur, and there is also a penalty for missed taps. For example, a grid
that hits every third element of (b) and one that hits every fourth element of
(c) do very well. These are indicated by the tiny black dots above the circles
in Fig. 4.13. On the other hand, there is no economical grid that captures the
essence of (d). When all goes well, the best grid corresponds to the regular
tapping of a person listening to the sequence. Unfortunately, a formal defi-
nition of “most economical” that captures all the desired features is trickier
than it might seem.

Povel and Essens [B: 174] hypothesize the presence of an internal clock
that measures the passage of time. When hearing a rhythmic passage, the
listener compares the sound to the beating of the internal clock. In this view,
the essence of the perception lies in the relationship between the sound and
the clock, between the regular succession within the sound and the regular
succession of the internal clock.

Similarly, Parncutt [B: 158] suggests a measure of pulse saliency that mod-
els how listeners tap when confronted with simple sound patterns that vary
in both rhythm and tempo. The salience of a single beat is proportional to its
perceptual significance, and the regular succession with the highest salience
is defined to be the beat (the rate at which a listener will tap) of the rhyth-
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mic sequence. Parncutt [B: 158] provides one of the clearest and most concise
definitions of musical rhythm in terms of regular successions:5

A musical rhythm is a sound that evokes the sensa-
tion of a regular succession of beats.

In this definition, rhythm is clearly a psychological phenomenon (a “sensa-
tion”) evoked by the perception of a regular succession at a time scale where
beats are perceived. Similarly, the American Standards Association [B: 7] de-
fines a tone as a sound that evokes the sensation of pitch. Since pitch is the
perception of a regular succession at small time intervals, the two definitions
are parallel, differing mainly in time scale. Moreover, both definitions agree,
roughly, with common usage. Like Povel and Essens’ model of clock induction,
this is an attempt to model rhythmic perception using a regular succession
(the clock) as a part of the cognitive (and/or perceptual) process. See [B: 202]
and [S: 60] for further discussion of the Povel and Essens model.

4.3.7 A Rhythmic Theory of Perception

Regular successions provide a concrete way to talk about the kinds of rhythmic
activities that Mari Riess Jones [B: 103] views as fundamental to the way
people interact with the world. In Jones’ view, people

possess their own temporal structures which are manifest psycholog-
ically in a series of tunable perceptual rhythms. . . by virtue of the
principle of synchronization, [these rhythms] can become locked into
corresponding periods in the time structure of world patterns.

Jones builds an axiomatic theory of perception which presumes that the
mind can synchronize internal regular successions with those that exist in the
world: fast successions synchronize with micropatterns (such as pitch percepts)
while slow successions synchronize with macropatterns (such as rhythms).
The rapid response of a listener (such as the ability to understand dozens
of phonemes per second) arises from a priming of the appropriate rhythmic
patterns. Moreover, since time intervals and durations cannot be judged apart
from the sounds used to delineate them, Jones couples pitch and loudness to
the temporal dimension. The resulting theory couples rhythmic activity to
the most basic processes of the mind: perception, expectation, and attention.

Thus Jones views perception as a dynamic process characterized by an
entrainment between the mind and the environment. This process defines
(and is defined by) sensations of regular motion, creates expectations of future
events, and allows continuity of perception through time spans larger than the
perceptual present. Rhythm imposes temporal structure on cognition.
5 Parncutt uses the word “pulse” instead of regular succession.
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4.3.8 Rhythm Without Notes

It is tempting to view musical notes as individual entities each with a start,
a steady state sustain, and a final decay into silence, since this is precisely
how a musician creates a musical phrase on an instrument or with the voice.
Everyday common sense suggests that loudness changes are a necessary part
of the structure of musical rhythm. The following examples show, however,
that rhythms can exist independently of loudness contours and of individually
identifiable notes. As we have seen, there are a great number of factors that
can cause sounds to cluster into perceptible entities.

Any factors that can create auditory boundaries can be
used to create patterns in time that can be perceived as
rhythmic.

The examples demonstrate auditory boundaries without loudness changes us-
ing a variety of perceptual clues such as pitch, noise bandwidth, and modula-
tions.

(i) Changing only Pitch: In [S: 46], the loudness is equal at all times.
Pitches change every 0.25 s.

(ii) Changing only Bandwidth: In [S: 47], white noise is passed through
a linear filter. The bandwidth of the filter changes every 0.25 s and
the loudness is equalized throughout. The three different versions
use different kinds of filters.

(iii) Amplitude Modulation: In the first part of [S: 48], a “rhythmic pat-
tern” uses a single pitch that is amplitude modulated at different
rates. The loudness of each 0.25 s interval is equalized, though am-
plitude modulations inherently involve changes in loudness within
the sound. The second example applies the amplitude modulated
contours to the pitches from [S: 46] and the noises from [S: 47].
These are called “smooth rhythms” in [B: 74].

(iv) Frequency Modulations: in [S: 49] the modulation on the carrier is
changed every 0.25 s, causing the perception of a rhythmic pat-
tern. The three examples use the same set of parameters but with
different carriers: sine, square, and sawtooth waves. All the carri-
ers are fixed at 300 Hz.

An extended exploration of these techniques is presented in Pulsing Silences
[S: 50], which is taken from Exomusicology [D: 43]. The piece begins with a rich
harmonic tone that is unvarying for three and a half minutes. A variety of time
varying filters and modulations are applied. Some fairly complex rhythmic
motifs appear. The CD booklet states: “A single note changes without moving,
grows while remaining still. Even if there were only one note, there would still
be music.”

From a common sense perspective, it is tempting to think of a regular
succession as a sequence of equidistant notes. This suggests, for example,
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that when searching a signal for the presence of a regular beat, it would be
necessary to first identify the locations (in time) of the notes, and to then parse
the note list to decipher the beat. This approach has figured prominently in
the literature (see Chap. 8), and tends to work very well in situations where
the notes can be accurately identified. Unfortunately, these methods tend to
fail when the notes are not easily identified. This may limit the applicability
of such systems to monophonic performances (where it is easy to identify note
events) and to situations where musical scores and/or MIDI data is available.

Somewhat counterintuitively, it may be easier to identify the presence
of a regular succession than to identify individual note events that define the
succession. The beat tracking problem requires finding the best regular lattice
of points (for instance, the τ and T in (4.2)) that fit the sequence of auditory
boundaries evoked by the performance of a particular piece of music. It does
not require the location of the individual note components.

To motivate this, Fig. 4.14 shows several seconds of a piano rendition of
the Maple Leaf Rag. The waveform looks much like any musical waveform;
it jiggles up and down in complex and mystifying patterns. Clearly, the eye
is impressed by different kinds of features than the ear. Nonetheless, some
aspects of the signal are easy to interpret. For example, some of the changes
correspond to notes, which are transcribed from the musical score. At each of
the three times labeled (a) there is a new note and there is a noticeable change
in the waveform: it gets larger, it becomes more (or less) dense, it changes
shape. But not all the notes are as clearly displayed. For example, the notes
at positions (b) and (d) are nearly indistinguishable from the waveform alone.

Figure 4.14 also shows a feature vector (in this case, based on the change in
the spectrum) that is calculated from the waveform. It has prominent values at
many of the most significant events in the passage. Each of the notes labeled
(a) has a large spike in the feature vector. Similarly, the note (d) appears
prominently in the feature vector even though there is little visual change
in the waveform. Perhaps even more importantly, points such as (f) and (c)
stand out significantly from the surrounding data. These occur at a beat and
a tatum point where there are no notes! Feature vectors can show aspects of
a performance that even the note list does not.

Of course, no feature vector is perfect. This one shows extraneous pulses
(at least from the point of view of notes, tatum and beats) at points such as
(e).6 While the feature vector does pinpoint the note (d) handily, the note (b)
remains invisible. This occurs in this case because (b) is exactly one octave
above the previous note (which is still sounding). (b) remains invisible among
all the simultaneously sounding harmonics. Feature vectors are discussed fur-
ther in Sect. 4.4.

Many auditory boundaries (and their related events) are apparent in this
feature vector, and it is not hard to imagine that it is possible to process
6 Careful listening reveals that the leftmost point (e) is caused by a soft click,

probably from the pedal of the piano.
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Fig. 4.14. The waveform shows about 3 s of the Maple Leaf Rag. The notes, as
marked in the score, are placed at the appropriate times and the foot-tapping beat
(marked with the down arrows) occurs at every other timepoint of the tatum. The
feature vector (in this case, a measure of the change between successive spectra)
succeeds in delineating many of the most important events; notes, times of beats,
and tatum timepoints. The feature vector also misses some important events such as
the note marked (b), and it reports other changes (e) that do not correspond to the
score or the metric pulse. Observe that the word duration refers to the perception
of a time interval, not to the time interval itself. Thus the beats may have equal
duration even though the elapsed times may vary.

the feature vector in order to locate the tatum and the beats; several such
approaches will be examined in Chaps. 5–7. In contrast, this feature vector is
inadequate for the purpose of reliable note identification.

4.3.9 Changes to Regular Successions

When two rays of colored light overlap, they appear to meld together into
a single beam with a new color. In contrast, when two pitched sounds occur
simultaneously, they typically appear to interpenetrate, each retaining its own
characteristic pitch and timbre. This difference is caused by the human per-
ceptual apparatus, and not by any intrinsic properties of light or sound waves
and is why there are harmonies in sound (where two or more notes can be
heard simultaneously), but not in light. Almost any piece of music provides
an example of the interpenetration of multiple layers of sound.

The most familiar example of the merging of regular successions into their
common period is when a collection of harmonically related sine waves merge
together to form the perception of a single tone with a complex timbre, as was
illustrated in sound example [S: 37]. At the level of notes (instead of partials)
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this same kind of reasoning leads to Rameau’s “fundamental bass” [B: 178],
the implied “root” or fundamental of all simultaneously occurring pitches.

Just as sounds may merge together when the periods align so that the
common period lies in the auditory region, a single sound may split into two
when the periods become misaligned. For example, by changing its frequency
slightly, a harmonic may stand out from (be separately perceptible from) a
complex tone.

There are three kinds of change that may occur to a regular succession:

(i) the instantaneous amplitude values may change from repetition
to repetition

(ii) the phase may shift
(iii) the period may increase or decrease

At a slow time scale, a pulse train that divides the measure into two equal
parts may be played simultaneously with a pulse train that divides the mea-
sure into three equal parts. The result is a “new” more complex rhythm,
the three against two polyrhythm, as shown in [S: 38] and as discussed in
Sect. 3.9. On the other hand, if the two rhythms can be segregated into sep-
arate perceptual streams, they remain perceptually distinct. Thus there are
two perceptual possibilities at each time scale: the sounds may merge or they
may superimpose. When tones merge together, they create a new tone with a
different (generally more complex) timbre.

Similarly, when two “rhythms” merge, they create a new (more complex)
rhythm. The simplest case occurs when both have the same period. Each row
of Fig. 4.15 shows two regular successions with period T . The parameter Δ

...

...

...

...

...

...(a) Δ=0
(b) Δ=2%
(c) Δ=10%
(d) Δ=20%
(e) Δ=30%
(f) Δ=50%

T time

Fig. 4.15. Several perceptual regimes occur when two periodic sequences, each
of period T , are sounded simultaneously. When Δ = 0, there is effectively only one
sequence of period T . At Δ = 50%, the sequences are evenly spaced and the net effect
is of a single sequence with period T

2
. In between are a flam effect (Δ = 2%), rapid

doublets (Δ = 10%), doublets (Δ = 20%), and a galloping rhythm at Δ = 30%.

specifies the phase offset, the percentage of T that the second sequence is
shifted relative to the first. At Δ = 0 the two are synchronous and the result
is indistinguishable from a single succession of period T . At Δ = 50%, the
two sequences are T/2 apart and the result is indistinguishable from a single
succession with period T

2 . For very small Δ, the two clicks overlap. In this
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“flamming” effect, only one sound is heard per period, but it has a greatly
changed character compared to the original clicks. Once the time interval
between the pulses is more than about 50 ms, the two clicks are perceived
separately, though they still appear connected: this might be called a rapid
doublet. As Δ increases further, the doublet effect eventually changes into
a new rhythmic effect: the gallop. The galloping rhythm persists through
approximately Δ = 45%, where it takes on the appearance of a more rapid
single succession. These can be heard in sound examples [S: 51] which plays
each of the rows in Fig. 4.15 for about ten seconds.

Suppose next that the two regular successions have almost the same pe-
riod. Even if they begin together, they will eventually drift apart, as shown
in schematic form in Fig. 4.16. Perhaps the simplest way to think of this is in
terms of an instantaneous phase shift Δ between two successions with equal
periods. Effectively, this is the same as beginning with (a) of Fig. 4.15, moving
to (b), through (c), (d), (e), and (f), and then returning (in reverse alpha-
betical order) back to (a). Thus the effective Δ between the two sequences
increases at a linear rate and the sound passes through all the possible percep-
tual regimes encountered above. This is performed in sound example [S: 52],
which clearly demonstrates the various rhythmic perceptions (a)–(f) possible
with two regular successions.

T1

T2

synchrony

flamming

doublet

galloping

synchrony

flamming

doublet

galloping

double
speed

(a) (c) (d) (d) (c) (a)

(b)(e)(f)(e)(b)

Fig. 4.16. Two periodic sequences with periods T1 ≈ T2 are sounded simultaneously.
Over time, the sound shifts through all the perceptual regimes of Fig. 4.15: flamming,
doublets, galloping, and double speed. For a more musical discussion of this effect,
see Sect. 3.13.

The idea of exploiting all the rhythmic complexities of a pair of regular
successions has been pursued by a number of composers in recent years. For
example, Steve Reich’s 1967 Piano Phase [D: 33] repeats a pair of simple piano
lines that retrogress against each other to create a fascinating panorama of
melodic and rhythmic patterns despite the simplicity of the source material.
The most obvious feature of Piano Phase is its repetitiveness since it contains
little or no variation in pitch, tempo, dynamics or timbre. This is a classic
example of what Kramer [B: 117] calls “nonlinear” music where the listener
is faced with a slowly evolving sonic structure that does not progress towards
a goal; rather, it simply is.
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4.3.10 Multiple Regular Successions

When there are three or more regular successions, the perceptions can become
very complex. Sound example [S: 53] explores the situation with three simulta-
neous sequences. In (a), the three rates are T1 = 0.5 s, and T2,3 = 0.5±0.003 s.
There are a number of sensible rhythms perceived over the course of a single
repetition. In (b) and (c), however, when the Ti differ by larger amounts, the
appearance rapidly becomes chaotic, losing the compelling rhythmic feel of
(a) and the earlier two-period examples.

Using computers allows careful control over the exact timing of rhythmic
parts. The idea of multiple near-equal periods is explored in Nothing Broken
in Seven [S: 54]. The melody in 7-tone equal temperament7 repeats the same
six notes throughout. Phase Seven [S: 55], also in 7-tone equal temperament,
uses an eight note melody. In both cases, the melody line is played against
itself at five different tempos, two of which are speeded up (by 1% and 2%)
and two of which are slowed down (also by 1% and 2%). This creates raw
material that repeats fully only after several days. In order to create pieces
of manageable size, selected bits are culled, orchestrated using various bell-
like sounds, and then rejoined. In both cases, although the original pattern is
monotonously simple, the result increases and decreases in complexity as the
melodies phase against themselves. When there are five phasing lines, a very
large number of “different” rhythms are perceptible.

4.3.11 One-hundred Metronomes

A striking experiment in multiple regular successions is György Ligeti’s Poeme
Symphonique [D: 31] which is performed by ten players each operating ten
metronomes. At the start of the piece, the players wind their metronomes,
and then set them in motion, each at a different tempo. The sound is rapid,
chaotic, and random. This is simulated in [S: 56], which plays 100 simultaneous
regular successions. Unlike Ligeti’s version, the example begins with a single
metronome, adds a second, then a third, until all 100 are sounding. The digital
metronomes do not wind down over time: instead, the piece ends once all 100
have entered.

The overall impression of 100 metronomes is not dissimilar from randomly
generated irregular successions. Compare, for example, [S: 56] with [S: 36].
The complexity of the intervals and durations along with the rapid arrival rate
becomes overwhelming. Too many regular successions become indistinguish-
able from randomly generated irregular successions with a similar density,
that is, a similar number of ticks per second.
7 A tuning where the octave is divided into seven equal parts instead of the standard

twelve.
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4.4 Feature Vectors: Perceptually Motivated
Preprocessing

A good feature vector highlights relevant properties of a signal and de-
emphasizes irrelevant aspects. For instance, the feature vector in Fig. 4.14
shows how note onsets, tatum timepoints, and beat locations can be empha-
sized while disregarding less interesting details of the signal. In perceptual
terms, this feature vector spotlights auditory boundaries and downplays the
perceptually static signal between.

This section presents two strategies for the creation of feature vectors.
The first exploits auditory models by simulating (part of) the behavior of the
auditory apparatus. For example, Fig. 4.5 filters the signal into a number of
channels corresponding to critical bands and this process can be mimicked
to construct feature vectors. The second strategy is based on the observation
from Sect. 4.3.8 that almost any factors that can create auditory boundaries
can be used to create rhythmic patterns. Similarly, almost any mathematical
operation that can extract auditory boundaries from a signal can be useful
as a feature vector. Section 4.4.3 suggests several feature vectors aimed at
extracting particular kinds of auditory boundaries.

The kinds of regularities associated with musical pulse, meter, and rhythm
occur on time scales between tenths of a second and tens of seconds. The
standard audio sampling rate of 44.1 kHz with its 22 kHz bandwidth is not
needed to capture such slow fluctuations, and some kind of data reduction can
be used to reduce the amount of data that must be processed. Accordingly,
all of the feature vectors are downsampled from the audio rate. The goal is to
drastically reduce the amount of data in a perceptually relevant way.

4.4.1 Critical Band Feature Vectors

In computational models of the auditory system such as those of Patterson
[B: 160] and Leman [B: 125], the operation of the basilar membrane is com-
monly modeled as a collection of bandpass filters that divide the sound into
(roughly) 1

3 -octave regions over the audio range. These filters simulate the
action of the critical bands (recall Fig. 4.4) and Fig. 4.17 shows one way to
customize the model to generate a collection of feature vectors that describe
the variation of energy in each critical band.

The signal s(k) is passed through a window and then transformed by an
FFT.8 The succeeding block calculates the RMS energy in each frequency
band by summing the appropriate terms in the magnitude spectrum.9 Both
the size of the window (which must match the size of the FFT) and the amount

8 The windowed short-time Fourier transform is discussed further in Sect. 5.3.3.
9 This FFT-based energy measure is functionally analogous to the energy accu-

mulation of the lowpass filtering of the rectification nonlinearity associated with
inner hair cell models [B: 160].



104 Auditory Perception
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Fig. 4.17. A set of feature vectors based on the idea that rhythmically important
events are correlated with repetitive variations of the energy in various frequency
bands. The sampled audio data is partitioned into frequency bands using the FFT.
The output is a collection of feature vectors (one for each critical band) representing
the energy fluctuations in each band. In a typical implementation, each feature vector
has an effective sampling rate between 50 and 200 Hz. Each feature vector contains
significantly fewer data points than the audio.

of overlap between successive blocks (which defines the “effective” resampling
rate) are free parameters. The derivative is used because the auditory system is
more finely attuned to changes in the signal than to the signal itself, though
in some applications it may be more effective to use the signal before the
derivative. Clearly, it is possible to replace the FFTs with a wavelet transform
or with a bank of bandpass filters.

4.4.2 Listening to Feature Vectors I

All feature vectors are not created equal; some reflect the underlying rhythm of
a piece more accurately than others. For instance, in the Maple Leaf Rag there
is only sporadic energy in the bottom two critical bands; these two feature
vectors are unlikely to be useful in subsequent processing. On the other hand,
many pop songs contain a repetitive bass drum that sits in the bottom two
bands. In this case. the two lowest feature vectors are ideal candidates for
further rhythmic analysis.

Scheirer [B: 188] creates a modulated noise signal from the amplitude en-
velopes of the outputs of a collection of filterbanks and observes that this
noise signal often elicits “the same rhythmic percept” as the original audio
signal. In essence, Scheirer suggests listening to the feature vectors and letting
the ear decide if the feature vector retains the desired rhythmic information.
Of course, it is not reasonable to listen to the feature vector directly as if it
were an audio signal. Rather, the feature vector can be used to define an am-
plitude envelope that modulates a noise. The simplest procedure is to “hold”



4.4 Feature Vectors: Perceptually Motivated Preprocessing 105

each value of the feature vector for the duration of the effective sampling
interval.10 Fig. 4.18 illustrates.

feature
vector

modulated
noise

noise

Hold X

Fig. 4.18. A feature vector is up-
sampled and then modulated with
noise. If the sound evokes the same
rhythmic feel as the original, the
feature vector has not lost the
“essence” of the rhythm. Listen
to a number of feature vectors in
[S: 57, S: 58].

For example, [S: 57] presents several individual feature vectors derived
from the Maple Leaf Rag. Examples (i) and (ii) demonstrate that individual
feature vectors can indeed retain the rhythmic feel of the original. Examples
(iii) and (iv) play the feature vector from the second critical band; as expected,
these do not evoke the original rhythm. Sound example [S: 58] plays all the
feature vectors together, that is, the method of Fig. 4.18 is applied to each
feature separately and the results are summed. The rhythmic feel is clear.
Of course, the tone quality of these examples has changed radically from the
original: all melody and harmony have been lost. Basic rhythmic information
(including the beat) remains intact.

4.4.3 Extracting Auditory Boundaries from a Signal

Another approach to generating feature vectors is to choose aspects of a signal
that directly reflect auditory boundaries. Typically, this involves segmenting
the signal and extracting a single number for each segment, a procedure shown
graphically in Fig. 4.19. A study of a wide variety of feature vectors along with
a technique for ascertaining their appropriateness in the beat tracking task
can be found in [B: 205]. This section details four simple methods.

Energy Measure: The simplest of the feature vectors is particularly appro-
priate for audio in which the envelope of the sound clearly displays the beat.
Let x(t) represent the audio waveform, which is sampled at a constant inter-
val to give the sequence x[k]. Group the sampled data into M overlapping
segments each containing N consecutive terms. Let xn[k] represent the kth
element (out of N) in the nth segment. The energy in the nth segment, which
is effectively a measure of the instantaneous loudness (recall (4.1)), is

e[n] =
N−1∑
k=0

x2
n[k], n = 1, 2, . . . , M. (4.3)

10 i.e., the number of samples between adjacent windows divided by the audio sam-
pling rate.
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original
signal

break into
segments

transform

feature
vector

3.0 2.7 5.1 4.9extract
feature

Fig. 4.19. The signal is parti-
tioned into (possibly overlapping)
segments which are processed in-
dependently. The output is a se-
quence (the feature vector) ex-
tracted from the segments.

Then the terms of the “energy” feature vector are defined to be the change
in (the derivative of) the e[n]. Though numerical derivatives can be poorly
conditioned, the action of the summing, combined with sensible overlapping,
ensures that the numerical problems do not overwhelm the data. An example
is provided in Fig. 4.20(b).

Group Delay: The remaining methods operate in the frequency domain and
share a common notation. With x(t), xn[k], N , M as above, let Xn[j] be
the FFT of xn. Each of the frequency domain methods processes Xn in a
different way to form a scalar value for each segment. The sequence of such
values defines the feature vector.

Structurally, the transform Xn consists of N complex numbers that are
most commonly represented as magnitude and phase pairs, with the phase
unwrapped (meaning that factors of 2π are added or subtracted so as to make
the phase angle continuous across boundaries at integer multiples of ±π). For
many musical waveforms, the unwrapped phase lies close to a straight line.
The slope of this line defines the “group delay” method of creating feature
vectors. An example is provided in Fig. 4.20(c). Appendix A of [B: 206] shows
how the slope is proportional to a time shifted version of the energy. It is not
dependent on the total energy in the window, but rather on the distribution
of the energy within the window.

Spectral Center: With notation inherited from the previous sections, the
“spectral center” method of creating feature vectors locates the frequency fc

where half of the energy in the spectrum lies below fc and half lies above.
This is ∫ fc

f=0

X2
n(f) df =

∫ ∞

f=fc

X2
n(f) df. (4.4)

The feature vector value is then defined as the change in (i.e., the derivative of)
fc from segment to segment. The spectral center is sensitive to pitch changes
and to changes in the distribution of energy such as might occur when different
instruments enter or leave, or when one instrument changes registers. Like the
group delay, it is insensitive to amplitude changes in the audio. A numerical
example is provided in Fig. 4.20(d).
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(a)

(b)

(c)

(d)

(e)

0 1        2        3 4 5 6        7 8 9 10

time in seconds

Fig. 4.20. The audio waveform of the first 10 seconds of a recording of Handel’s
Water Music is shown in (a). The various feature vectors are: (b) the energy method,
(c) the group delay, (d) the change in the center of the spectrum, and (e) the
dispersion of spectral energy. Tick marks emphasize beat locations that are visually
prominent.

Spectral Dispersion: The spectral dispersion gives a measure of the spread
of the spectrum about its center. Let

sd[n] =
N−1∑
j=0

X2
n[j]|j − fc| (4.5)

define the spectral dispersion sd[n] of the nth segment about the spectral
center fc. It weights energy at remote frequencies more than those close to
the spectral center. The feature vector is then defined as the change in (the
derivative of) sd[n]. This provides a crude measure of how the spectral energy
is distributed: small values mean that the energy is primarily concentrated
near the center while large values mean that the energy is widely dispersed.
For example, near the percussive attack of a violin the spectral dispersion
is large, while it is small in the (relative) steady state between attacks. An
example is provided in Fig. 4.20(e).
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4.4.4 Listening to Feature Vectors II

Feature vectors are much smaller than the audio files from which they are
derived. For example, 110 seconds of the Maple Leaf Rag contains 4,894,208
samples of audio; the corresponding feature vectors contain 9560 samples.11

After removing 99.8% of the information in a file, does anything remain?
Using the modulated noise technique of Fig. 4.18 shows that each of the four
feature vectors (energy, group delay, spectral center, and dispersion) clearly
evokes the rhythm of the rag. Listen to sound example [S: 59].

These are just four of the many possible low level audio features that
could be used in the creation of feature vectors. While these four do not enjoy
statistical independence, it is easy to see that they measure different features
of the underlying audio stream since it is possible to create a sound for which
any three of the feature vectors are (essentially) constant, but the fourth varies
significantly. For example, an idealized trill on a violin has constant energy,
constant dispersion, and constant group delay, but varying center. Similarly,
if a short sine wave burst alternates with a white noise burst, they can be
chosen so that the energy, group delay, and center remain the same but the
dispersion varies widely.

4.5 Perception vs. Reality

The auditory (and visual) illusions of the first chapter reveal that perception
is not a direct reflection of the external world. When trying to understand the
operation of the perceptual mechanism, scientists must simplify and isolate
particular aspects of sound in order to make progress. Real music is very
different from the “music-like” stimuli that scientists studying the human
auditory system typically use. Fraisse [B: 66] says that the fundamental laws
of perception. . . “do not explain music any more than gravity explains the art
of architecture. But there is not an architect who ignores gravity any more
than there is a musical rhythm that does not respect these perceptual laws.”
Meyer (as quoted in [B: 108]) says:

It is an inexcusable error to equate acoustical phenomenon with qual-
itative experiences. The former are abstract scientific concepts, the
latter are psychological perceptions. There is no one-to-one relation-
ship between an acoustical event and its concomitant perceptual ex-
perience.

Indeed, it would be foolish to believe that feature vectors directly reflect per-
ceptions. But it would be equally foolish to ignore what is known about the
mechanisms of perception in a machine intended to make music for beings lim-
ited to perceiving sounds through a sensory apparatus. One of the primary
11 The overlap of successive FFTs is 512 and the effective sampling rate is 86 Hz.
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goals of Rhythm and Transforms is to exploit the results of research into the
perception of rhythm in order to create machines that more closely reflect
our own abilities. The feature vectors of this chapter will play a key role in
the automatic location of auditory boundaries and in the subsequent task of
locating regular successions (beats) from a musical performance.



5

Transforms

Transforms model a signal as a collection of waveforms
of a particular form: sinusoids for the Fourier
transform, mother wavelets for the wavelet transforms,
periodic basis functions for the periodicity transforms.
All of these methods are united in their use of
inner products as a basic measure of the similarity
and dissimilarity between signals, and all may be
applied (with suitable care) to problems of rhythmic
identification.

Suppose there are two signals or sequences. Are they the same or are they
different? Do they have the same orientation or do they point in different
directions? Are they periodic? Do they have the same periods? The inner
product is one way of quantifying the similarity of (and the dissimilarity be-
tween) two signals. It can be used to find properties of an unknown signal by
comparing it to one or more known signals, a technique that lies at the heart
of many common transform methods. The inner product is closely related
to (cross) correlation, which is a simple form of pattern matching useful for
aligning signals in time. A special case is autocorrelation which is a standard
way of searching for repetitions or periodicities. The inner product provides
the basic definitions of a variety of transform techniques such as the Fourier
and wavelet transforms as well as the nonorthogonal periodicity transforms.

The first section reviews the basic ideas of the angle between two signals
or sequences in terms of the inner product and sets the mathematical nota-
tions that will be used throughout the chapter. Section 5.2 defines the cross-
correlation between two signals or sequences in terms of the inner product and
interprets the correlation as a measure of the fit or alignment between the sig-
nals. Section 5.3 shows how the Fourier transform of a signal is a collection
of inner products between the signal and various sinusoids. Some cautionary
remarks are made regarding the applicability of transforms to the rhythm-
finding problem. Two signal processing technologies, the short time Fourier
transform and the phase vocoder are then described in Sects. 5.3.3 and 5.3.4.
Wavelet transforms are discussed in Sect. 5.4 in terms of their operation as
an inner product between a “mother wavelet” and the signal of interest. The
final section describes the Periodicity transforms, which are again introduced
in terms of an inner product, and some advantages are noted in terms of
rhythmic processing.
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5.1 Inner Product: The Angle Between Two Signals

The angle between two vectors gives a good indication of how closely aligned
they are: if the angle is small then they point in nearly the same direction; if
the angle is near 90 degrees, then they point in completely different directions
(they are at right angles). The generalization of these ideas to sequences and
signals uses the inner product to define the “angle.” When the inner product
is large, the sequences are approximately the same (“point in the same direc-
tion”) while if the inner product is zero (if the two are orthogonal) then they
are like two vectors at right angles.

A common definition of the inner product between two vectors x and y is

〈x, y〉 =
∑

k

x[k]y[k]. (5.1)

The length (or norm) of a vector is the square root of the sum of the squares
of its elements, and can also be written in terms of the inner product as

||x|| =

(∑
k

x2[k]

) 1
2

=
√
〈x, x〉. (5.2)

For example, consider the two vectors x = (2, 1) and y = (1, 0) shown
in Fig. 5.1. The lengths of these vectors are ||x|| =

√
22 + 12 =

√
5 and

||y|| =
√

12 + 02 = 1 and the inner product is 〈x, y〉 = 2 · 1 + 1 · 0 = 2. The
angle between x and y is the θ such that

cos(θ) =
〈x, y〉

||x|| ||y|| . (5.3)

For the vectors in Fig. 5.1, cos(θ) = 2√
5

and so θ = 0.46 radians or about 26
degrees.

x=(2,1)

y=(1,0)

Project x 
onto yProject y 

onto x
θ

Fig. 5.1. The angle θ between two vectors x
and y can be calculated from the inner prod-
uct using (5.3). The projection of x in the
direction y is cos(θ)||x||, which is the same
as 〈x, y〉/||y||. This is the dotted line form-
ing a right angle with y. The projection of y
onto x, given by 〈x, y〉/||x||, is also shown. If
a projection is zero, then x and y are already
at right angles (orthogonal).

The inner product is important because it extends the idea of angle (and
especially the notion of a right angle) to a wide variety of signals. The defini-
tion (5.1) applies directly to sequences (where the sum is over all possible k)
while
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〈x(t), y(t)〉 =
∫ ∞

−∞
x(t)y(t)dt (5.4)

defines the inner product between two functions x(t) and y(t) by replacing the
sum with an integral.1 As before, if the inner product is zero, the two signals
are said to be orthogonal. For instance, the two sequences

x = . . . 1, 1,−1,−1, 1, 1,−1,−1, . . .

y = . . . 1,−1, 1,−1, 1,−1, 1,−1, . . .

are orthogonal, and

z = . . . 1, 1, 1, 1, 1, 1, 1, 1, . . .

is orthogonal to both x and y. Taking all linear combinations of x, y, and z
(i.e., the set of all a1x + a2y + a3z for all real numbers ai) defines a subspace
with three dimensions. Similarly, two sinusoids

x(t) = sin(2πf1t) and y(t) = sin(2πf2t)

with frequencies f1 and f2 are orthogonal whenever f1 
= f2. The set of all
linear combinations of sinusoids for all possible frequencies fi is at the heart
of the Fourier transform of Sect. 5.3 and orthogonality plays an important
role because it simplifies many of the calculations. If the signals are complex-
valued, then y(t) in (5.4) (and y[k] in (5.1)) should be replaced with their
complex conjugates.

Suppose there is a set of signals xi that all have the same norm, so that
||xi||2 = ||xk||2 for all i and k. Given any signal y, the inner product can be
used to determine which of the xis is closest to y where “closeness” is defined
by the norm of the difference. Since

||y − xi||2 = ||y||2 − 2〈y, xi〉 + ||xi||2 (5.5)

and since ||y|| and ||xi|| are fixed, the i that minimizes the norm on the left
hand side is the same as the i that maximizes the inner product 〈y, xi〉.

5.2 Correlation and Autocorrelation

The (cross) correlation between two signals x(t) and y(t) with shift τ can be
defined directly or in terms of the inner product:

Rxy(τ) =
∫ ∞

−∞
x(t)y(t + τ)dt

= 〈x(t), y(t + τ)〉. (5.6)
1 Observe that writing the t inside the inner product is an abuse of notation;

nonetheless, it is useful because there are many situations (such as (5.6)) where
the arguments of the x and y need to be distinguished.
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When the correlation Rxy(τ) is large, x and y point in (nearly) the same
direction. If Rxy(τ) is small (near zero), x(t) and y(t+τ) are nearly orthogonal.
The correlation can also be interpreted in terms of similarity or closeness: large
Rxy(τ) mean that x(t) and y(t+τ) are similar (close to each other) while small
Rxy(τ) mean they are different (far from each other). These follow directly
from (5.5).

In discrete time, the (cross) correlation between two sequences x[k] and
y[k + j] with time shift j is

Rxy(j) =
∞∑

k=−∞
x[k]y[k + j]

= 〈x[k], y[k + j]〉. (5.7)

Correlation shifts one of the sequences in time and calculates how well they
match (by multiplying point by point and summing) at each shift. When the
sum is small then they are not much alike; when the sum is large, many terms
are similar. Equations (5.6) and (5.7) are recipes for the calculation of the
correlation. First, choose a τ (or a j). Shift the function y(t) by τ (or y[k] by
j) and then multiply point by point times x(t) (or times x[k]). The area under
the resulting product (or the sum of the elements) is the cross-correlation.
Repeat for all possible τ (or j).

Seven pairs of functions x(t) and y(t) are shown in Fig. 5.2 along with
their correlations. In (a), a train of spikes is correlated with a Gaussian pulse.
The correlation reproduces the pulse, once for each spike. In (b), the spike
train is replaced by a sinusoid. The correlation smears the pulse and inverts
it with each undulation of the sine. In (f), two random signals are generated:
their correlation is small (and random) because the two random sequences are
independent.

One useful situation is when x and y are two copies of the same signal but
displaced in time. The variable τ shifts y and at some shift τ∗ they become
aligned. At this τ∗, x(t) is the same as y(t + τ∗) and the product is positive
everywhere: hence, when integrated, Rxy(τ∗) achieves its largest value. This
situation is depicted in Fig. 5.2(g) which shows a y that is a shifted version of x.
The maximum value of the correlation occurs at the τ∗ where x(t) = y(t+ τ),
where the signals are closest. Correlation is an ideal tool for aligning signals
in time.

A special case that can be very useful is when the two signals x and y
happen to be the same. In this case, Rxx(τ) = 〈x(t), x(t + τ)〉 is called the
autocorrelation of x. For any x, the largest value of the autocorrelation always
occurs at τ = 0, that is, when there is no shift. This is particularly useful
when x is periodic since then Rxx(τ) has peaks at values of τ that correspond
precisely to the period. For example, Fig. 5.2(c) shows a periodic spike train
with one second between spikes. The autocorrelation has a series of peaks that
are precisely one second apart. Similarly, in (d) the input is a sinusoid with



5.3 The Fourier Transform 115

x(t)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

y(t) Rxy(τ)

t=0 t=0 τ=0

Fig. 5.2. Seven examples of the
crosscorrrelation between two sig-
nals x and y. The examples con-
sider spike trains, Gaussian pulses,
sinusoids, pulse trains, and ran-
dom signals. When x = y (as in
(c) and (d)), the largest value of
the correlation occurs at a shift
τ = 0. The distance between suc-
cessive peaks of Rxx(τ) is directly
related to the periodicity in the in-
put.

frequency 0.5 Hz. The peaks of the autocorrelation occur 2 seconds apart,
exactly the periodicity of the sine wave.

5.3 The Fourier Transform

Computer techniques allow us to look inside a sound; to dissect it into its
constituent elements. But what are the fundamental elements of a sound?
Are they sine waves, sound grains, wavelets, notes, beats, or something else?
Each of these kinds of elements requires a different kind of processing to detect
the regularities, the frequencies, scales, or periods.

As sound (in the physical sense) is a wave, it has many properties that
are analogous to the wave properties of light. Think of a prism, which bends
each color through a different angle and so decomposes sunlight into a family
of colored beams. Each beam contains a “pure color,” a wave of a single
frequency, amplitude, and phase.2 Similarly, complex sound waves can be
decomposed into a family of simple sine waves, each of which is characterized
by its frequency, amplitude, and phase. These are called the partials, or the
overtones of the sound, and the collection of all the partials is called the
spectrum. Figure 5.3 depicts the Fourier transform in its role as a “sound
prism.”

This prism effect for sound waves is achieved using the Fourier transform.
Mathematically, the Fourier transform of a function x(t) is defined as

2 For light, frequency corresponds to color, and amplitude to intensity. Like the
ear, the eye is blind to the phase of a single sinusoid.
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Fig. 5.3. Just as a prism separates light into its simple constituent elements (the
colors of the rainbow), the Fourier Transform separates sound waves into simpler sine
waves in the low (bass), middle (midrange), and high (treble) frequencies. Similarly,
the auditory system transforms a pressure wave into a spatial array that corresponds
to the various frequencies contained in the wave, as shown in Fig. 4.2 on p. 79.

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt

= 〈x(t), ej2πft〉 (5.8)

for all real f . It is the inner product of the signal x(t) and the complex-valued
sinusoid3 e−j2πft.

Consider the meaning of the Fourier transform (5.8). First, X(f) is a
function of frequency: for each f the integral defined by the inner product is
evaluated to give a complex-valued number with magnitude m and angle θ.
Since X(f) is the correlation (inner product) between the signal x(t) and a
sinusoid of frequency f , m is the magnitude (and θ the phase) of the sine wave
that is closest4 to x(t). Since sine waves of different frequencies are orthogonal5

there is no interaction between different frequencies and m is the amount of
the frequency f present in the signal x(t). The Fourier transform shows how
x(t) can be uniquely decomposed into (and rebuilt from) sums of sinusoids.

Second, the Fourier transform is invertible. The inversion formula x(t) =∫ ∞
−∞ X(f)ej2πftdf = 〈X(f), e−j2πft〉 reverses the role of the time and fre-

3 Euler’s formula specifies the relationship between real and complex sinusoids:
e±jθ = cos(θ) ± j sin(θ).

4 Recall (5.5).
5 That is, the inner product of two sinusoids is 〈e−j2πf1t, ej2πf2t〉 = δ(f1−f2) where

δ(z) is the “delta function” that has unit area and is zero except when z = 0.
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quency variables and ensures that the transform neither creates nor destroys
information.

5.3.1 Frequency via the DFT/FFT

The spectrum gives important information about the makeup of a sound and
is most commonly implemented in a computer by the Discrete Fourier Trans-
form (DFT) or the more efficient Fast Fourier Transform (FFT). Standard
versions of the DFT and/or the FFT are available in audio processing soft-
ware and in numerical packages (such as MATLABR© and Mathematica) that
can manipulate sound data files.

Like the Fourier transform, the DFT decomposes a signal into its con-
stituent sinusoidal elements. Like the Fourier transform, the DFT is an in-
vertible, information preserving transformation. But the DFT differs from
the Fourier transform in three useful ways. First, it applies to discrete-time
sequences which can be stored and manipulated directly in computers (rather
than to functions or analog waveforms). Second, it is a sum rather than an
integral, and so is easy to implement in either hardware or software. Third,
it operates on a finite data record (rather than operating on a function that
must be defined over all time). Given a sequence x[k] of length N , the DFT
is defined by

X[n] =
N−1∑
k=0

x[k]e−j2πnk/N n = 0, 1, 2, ..., N − 1

= 〈x[k], ej2πnk/N 〉. (5.9)

For each value n, (5.9) multiplies each term of the data by a complex exponen-
tial and then sums. Compare this to the Fourier transform; for each frequency
f , (5.8) multiplies each point of the waveform by a complex exponential and
then integrates. Thus X[n] is a function of frequency in the same way that
X(f) is a function of frequency. Indeed, the term e−j2πnk/N is a discrete-time
sinusoid with frequency proportional to n.

A good example of the use of the DFT/FFT for spectral analysis appears
in Fig. 2.19 on p. 44 which shows the waveform and corresponding spectrum
of the pluck of a guitar string. While the time evolution of the signal is clear
from the waveform, the underlying nature of the sound as a sum of a number
of harmonically related sinusoids is clear from the spectrum. The two plots
are complementary and display different aspects of the same sound.

One potential source of confusion is that the frequency f in the Fourier
transform can take on any value while the frequencies present in (5.9) are all
integer multiples n of 2π/N . This “fundamental frequency” is precisely the
frequency of the sine wave with period equal to the length N of the window
over which the DFT is taken. Thus the frequencies in (5.9) are constrained
to a discrete set and the frequencies are separated by a constant difference.
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This resolution is equal to the sampling rate divided by the window size (the
number of samples used in the calculation), that is,

resolution in Hz =
sampling rate
window size

. (5.10)

For example, the window used for the guitar pluck in Fig. 2.19 contains 32, 000
samples and the sampling rate is 44.1 kHz. Thus the resolution is 1.38 Hz.
The peak of the spectrum occurs at entry n = 142 in the output of the FFT,
which corresponds to a frequency of 142 ·1.38 which is approximately (but not
exactly) 196 Hz, as annotated in the figure. Observe that the units of (5.10)
are inverse seconds (the units of the numerator are samples per second while
the denominator has units of samples). Thus an accuracy of 10 Hz requires a
duration of only 0.01 s and an accuracy of 1.38 Hz requires a time window of
0.72 s, as used with the guitar pluck. To achieve an accuracy of 1

10 Hz would
require a time window of at least 10 s, irrespective of the sampling rate.

Why not simply use long windows for increased resolution? Because long
windows do not show when (in time) events occur. For example, Fig. 5.4 shows
a signal that consists of two sinusoids: a sine wave with frequency 150 Hz is
followed by a somewhat larger wave with frequency 100 Hz. The magnitude
spectrum shows peaks near the expected values of 100 and 150 Hz. But it does
not show the order of the sine waves. Indeed, the magnitude spectrum is the
same if the sine waves are reversed in order, and even if they both sound for
the entire time interval.6 Thus, use of the FFT requires a compromise: long
windows are desired in order to have good frequency resolution while short
windows are desired in order to locate events accurately in time. This is a kind
of uncertainty principle in which it is necessary to trade off measurements of
the frequency and the temporal location.
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Fig. 5.4. A signal consists of two sine waves. The
first, at 150 Hz, lasts for 0.5 s and the second,
at 100 Hz, begins when the first ends. The mag-
nitude spectrum shows peaks corresponding to
both sine waves but does not show their tempo-
ral relationship. The magnitude spectrum would
look the same if the order of the sine waves
were reversed or if they occurred simultaneously
(rather than successively).

Windowing also influences the accuracy of frequency estimation through
the effect called “smearing.” Figure 5.5 shows two different analyses of the
6 The phase spectrum of the three cases differs, but the relationship between the

phase and the temporal order is notoriously difficult to decipher.
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same 200 Hz sine wave. In the top case, the window size is 0.5 seconds and
so exactly 100 repetitions of the wave fit into the window. Accordingly, all of
the inner products in (5.9) are zero except for one that has frequency exactly
equal to 200 Hz. The algorithms in MATLABR© report these values as less
than 10−14, which is numerically indistinguishable from zero. In contrast, the
bottom analysis uses a window of 0.503 s and so an integer number of waves
does not fit exactly within the window. This implies that none of the terms
in the inner product have frequency exactly 200 Hz. A large number of terms
become nonzero in order to compensate, to represent a frequency that falls
between the cracks of its resolution.7
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Fig. 5.5. A sine wave of frequency 200 Hz is an-
alyzed twice, resulting in two spectra. The win-
dow used in top spectrum is 0.5 s, and so an
integer number of periods of the signal fits ex-
actly. This means that one of the terms in the
inner product (5.9) has frequency exactly equal
to 200 Hz: this one is large and all others are
(numerically) zero. In the bottom spectrum, the
window width 0.503 does not support an integer
number of periods. No single term in the inner
product has frequency 200 Hz and the represen-
tation is “smeared.”

5.3.2 Three Mistakes

Over the years, the Fourier transform has found many uses throughout science
and engineering and it is easy to develop a naive overconfidence in its use.
In terms of the rhythm finding goals of Rhythm and Transforms, the naive
argument goes something like this:

The Fourier transform is an ideal tool for finding frequencies and/or
periodicities in complex data sets. The beat of a piece of music and the
larger rhythmic structures are, at heart, different frequencies and/or
periodicities that exist in the sound. Accordingly, it should be straight-
forward to apply the Fourier transform to find the beat and higher
metrical structures within a musical passage.

7 The effect of smearing can be studied by observing that the windowed signal is
equal to the product of the signal and the window. Consequently, the spectrum
of the windowed signal is equal to the convolution of the spectrum of the signal
(the spike as in the top part of Fig. 5.5) with the spectrum of the window (in
this case, the rectangular window has a spectrum that is a sinc function). Thus
the smearing can be controlled, but never eliminated, by careful choice of window
function. See [B: 170] for details.
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This section shows that this argument is fundamentally flawed in three sepa-
rate ways.

The first flaw is the easiest to see since it has been repeatedly emphasized
throughout the earlier chapters: rhythmic phenomenon are only partially de-
fined by the sound itself, they are heavily influenced by the perceptual ap-
paratus of the listener. Accordingly, it is only sensible to expect to be able
to locate the part of the rhythm that is in the sound itself using a technique
such as the Fourier transform.

The second flaw arises from a misunderstanding of the nature of rhythmic
phenomena. Consider naively applying the FFT to the first 100 s of an audio
CD in the hopes of finding “the beat” of a performance that occurs at (say)
two times per second. As shown in Fig. 1.5 on p. 7, the phenomenon of musical
beats occur at rates between about 0.2 Hz and 2 Hz. Formula (5.10) shows
that 100 s corresponds to a frequency resolution of 1/100 Hz which should
allow detection within the needed range with a fair degree of accuracy. But
surprise! The output of this FFT contains no measurable energy below 20 Hz.
How can this be? We clearly hear the beat at 2 Hz, how can the FFT show
nothing near 2 Hz?

The FFT says that there is no match between the signal (in this case the
sound) and sinusoids with frequencies near 2 Hz. This should come as no sur-
prise, since human hearing extends from a high of 20 kHz down to a low of
about 20 Hz and we cannot directly perceive a 2 Hz sinusoid.8 Yet we clearly
perceive something occurring two times each second. In other words, the per-
ception of rhythm is not a perception of sinusoids at very low frequencies.
Rather, it is a perception of auditory boundaries (such as changes in energy)
at the specified rate. Thus the “hearing” of a pitch at 200 Hz is a very differ-
ent phenomenon from the “hearing” of a rhythm at 2 Hz. While the Fourier
transform is adept at displaying the physical characteristics of the sine waves
associated with the perception of pitch, it does not straightforwardly display
the physical characteristics of patterns of auditory boundaries associated with
rhythmic perception.

Using this insight, it is easy to modify the sound wave so that the transform
does reveal something. The simplest approach is to take the FFT of the energy
of the sound wave (rather than of the sound wave itself). This is a primitive
kind of perceptually-motivated data preprocessing that might lead to better
replication of the ear’s abilities. But it is a slippery slope: what kind of criteria
will specify the best kind of preprocessing to use? Maybe it would be better to
take the absolute value of the sound wave? Or to take the percentage change
in the absolute value of the energy? There are many possibilities, and it is
hard to know what criteria for success look like.

The third flaw in the argument arises from the nature of the FFT itself.
Consider the simplest situation where a drum beats at a regular rhythm. Some
8 It is common practice to filter out all frequencies below about 20 Hz on recordings.

Even in live situations, music contains no purposeful energy at these frequencies.



5.3 The Fourier Transform 121

kind of simple preprocessing (such as taking the energy of the sound wave)
is applied. The input to the transform looks like a train of somewhat noisy
pulses. The output of the FFT is: a train of somewhat noisy-looking pulses.
Figure 5.6 shows three cases. In each case the signal is a set of regularly spaced
noises with period Ti seconds. The transform is a set of regularly spaced pulses
separated by 1

Ti
. As the time-pulses grow further apart, the frequency-pulses

grow closer together.

x(t) X(f)

(a)

(b)

(c)

Fig. 5.6. The FFT is applied to
a train of noisy pulses. The spec-
trum is again a train of noisy
pulses. Close pulses in time im-
ply widely separated pulses in
frequency and distant pulses in
time imply small separation in
frequency. Three cases are shown
with progressively longer period.

Students of the Fourier transform will recognize Fig. 5.6 as somewhat noisy
versions of a fundamental result from Fourier series. Let δ(t) represent a single
spike at time t. Then a train of such spikes with T s between spikes is the
sum s(t) =

∑
k δ(t − kT ). The Fourier transform of s(t) is9

S(f) =
1
T

∞∑
n=−∞

δ(f − n

T
)

which is itself a spike train in frequency. Thus the behavior in Fig. 5.6 is not
a pathology of deviously chosen numerical parameters: it is simply how the
transform works.

The goal of the analysis is to locate a regular succession within the input. In
the case of a pulse train this requires locating the distance between successive
pulses. As Fig. 5.6 suggests, it is no easier to locate the distance between pulses
in the transformed data than in the original data itself. Thus, at least in the
situation of simple regular inputs like the pulse train, there is no compelling
reason to believe that the transform provides any insight: it simply returns
another problem with the same character as the original.

To summarize: application of the Fourier transform to the problem of
describing rhythmic phenomena is neither straightforward nor obvious. First
is the problem that only part of the perception of rhythm is located in the
sound wave (this critique applies to all such signal-based approaches). Second
is the problem that some kind of preprocessing of the audio signal is required
9 This result can be found in most tables of Fourier transforms since it is the key

to the sampling theorem. See [B: 102].
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in order for the transform to show anything. Finally, even in the idealized
case where a rhythm consists of exact repetitions of a brief sound, the Fourier
transform provides little insight.

These critiques do not, however, mean that the Fourier transform is inca-
pable of playing a role in the interpretation of rhythmic phenomena. Rather,
they show that it is necessary to carefully consider proper uses of the FFT
within a larger system. For example, it can be used as part of a method of
preprocessing the audio so as to emphasize key features of a sound and to
locate auditory boundaries where the character of a sound changes.

5.3.3 Short-time Fourier Transform

The short-time Fourier transform (STFT) is often used when a signal is too
long to be analyzed with a single transform or when it is desirable to have
better time-localization. The idea is to use a window function w(t) that zeroes
all but a short time interval. All events in the FFT are then localized to that
interval. The windows are shaped so that when they are overlapped (shifted
by S samples and summed) their sum

∑
n w(t−nS) is constant for all t. This

is shown schematically in Fig. 5.7 where the windows are overlapped by half
their support.10
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... Fig. 5.7. A set of overlapping windows is used
to zero all but a short segment of the signal.
The FFT can then be applied to that segment
in order to localize events in time. An overlap
factor of 2 is shown; 4 might be more common
in applications.

Using the window functions, the STFT can be described mathematically
in much the same way as the Fourier transform itself

XSTFT (f, τ) = 〈x(t), w(t − τ)ej2πft〉.

Observe that XSTFT is a function of both time (τ specifies where the window
is nonzero) and frequency (f has the same meaning as in (5.8)). Similarly, the
discrete-time version parallels the definition of the DFT in (5.9)

XSTFT [n, i] = 〈x[k], w[k − i]ej2πnk/N 〉
10 Let W (f) be the Fourier transform of the window w(t) and X(f) be the transform

of the data within the time span of the window. Then the convolution of W (f)
and X(f) describes the effect of the windowing on the data analysis. See [B: 170]
or [B: 218] for a detailed comparison of various window functions.
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where n is the frequency variable and i specifies (via the window w[k − i])
where in time the FFT is taken. Thus the STFT provides a series of spectral
snapshots that move through time. Plotting the snapshots sequentially is like
looking at a multi-banded graphic equalizer. A common plotting technique is
to change the magnitude of the spectra into colors (or into grayscale). Placing
the frequency on the vertical axis and time on the horizontal axis leads to a
spectrogram such as that depicting the Maple Leaf Rag in Fig. 2.20 on p. 45.

The operation of an STFT-based signal processor is diagrammed in
Fig. 5.8. The signal is partitioned into segments by the windows. The FFT
is applied to each segment separately (only one processing path is shown).
The resulting spectrum may then be manipulated in any desired way; later
chapters demonstrate some of the possibilities. In the figure, no changes are
made to the spectrum and so the inverse transform (the IFFT block) rebuilds
each segment without modification. When summed together, the segments
reconstruct the original signal. Thus the STFT is invertible: it is possible
to break the signal into spectral snapshots and then reconstruct the original
signal from the snapshots.

In typical use, the support of the window (the region over which it is
nonzero) is between 512 and 4096 samples. Using a medium window of size
2048 and a sampling rate of 44.1 kHz, the resolution in frequency is, from
(5.10), about 21.5 Hz. The resolution in time is 2048

44100 ≈ 46 ms (about 1/20 of
a second). This may be adequate to specify high frequencies (where 21.5 Hz
is a small percentage of the frequency in question) but it is far too coarse at
the low end. A low note on the piano may have a fundamental near 80 Hz.
The resolution of this FFT is only good to within 25%! For comparison, the
distance between consecutive notes on the piano is a constant 6%. Musical
keyboards and scales are designed so that all equidistant musical intervals are
a constant percentage apart in frequency, mimicking the constant percentage
pitch perception of the auditory system.

This discussion raises two questions. First, is there a way to improve the
frequency resolution of the STFT without overly harming the time resolution?
The phase vocoder makes improved frequency estimates by using phase infor-
mation that the STFT ignores; this is explored in Sect. 5.3.4. Second, is there a
way to create a transform that operates at constant percentages (like the ear)
rather than at constant differences? Brown’s “constant-Q spectral transform”
[B: 20] uses variable length windows (small ones to analyze high frequencies
and large ones to capture low frequencies) that are tuned logarithmically like
the steps of the 12-tone equal tempered scale (the chromatic scale). But it
has not become popular, probably due to its noninvertibility (hence it cannot
be used in a signal processing system like the STFT of Fig. 5.8). Perhaps
the most successful method that can operate with constant percentages is the
wavelet transform, which is discussed in Sect. 5.4.
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Fig. 5.8. A short-time Fourier
transform (STFT) signal pro-
cessor is an analysis/synthesis
method that begins by windowing
a signal into short segments. The
FFT is applied to each segment
separately and the resulting spec-
tral snapshot can be manipulated
in a variety of ways. After the de-
sired spectral changes, the resyn-
thesis is handled by the inverse
FFT to return each segment to the
time domain. The modified seg-
ments are then summed. For the
special case where no spectral ma-
nipulations are made (as shown),
the output of the STFT is identi-
cal to the input.

5.3.4 The Phase Vocoder

Like the short-time Fourier transform, the phase vocoder (PV) is an analysis-
resynthesis technique based on the FFT. The analysis portion of the PV begins
by slicing the signal into windowed segments that are analyzed using the FFT.
If the PV used only the magnitude spectrum, the frequency resolution of each
segment would be dictated by (5.10). Instead, the PV compares the phases
of corresponding partials in successive segments and uses the comparison to
improve the frequency estimates. The gains can be considerable. The resyn-
thesis of the PV calculates a vector that can be inverted using the IFFT. The
resulting signal has the same frequency content as the original but can be
stretched or compressed in time.

Phase vocoders based on banks of (analog) filters were introduced by
Flanagan [B: 62] for the compression of speech signals. Portnoff [B: 171]
showed how the same idea can be implemented digitally using the FFT, and
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Dolson’s tutorial [B: 49] helped bring the method to the attention of the com-
puter music community. Recent work such as Laroche [B: 124] focuses on
fine-tuning the resynthesis portion of the algorithm for various applications
such as pitch shifting and time-stretching. Several MATLABR© implementa-
tions are currently available on the internet: see Brandorff and Møller-Nielsen’s
pVoc [W: 7] and Ellis’ pvoc.m [W: 14]. Also notable is Klingbeil’s graphical
interface called SPEAR (Sinusoidal Partial Editing Analysis and Resynthesis)
[B: 113] [W: 22]. There is also a version on the CD in the software folder.

Analysis Using the Phase Vocoder

To see how the analysis portion of the PV can use phase information to
make improved frequency estimates, suppose there is a sinusoid of unknown
frequency but with known phases: at time t1 the sinusoid has phase θ1 and at
time t2 it has phase θ2. The situation is depicted in Fig. 5.9. The sinusoid may
have a frequency that moves it directly from θ1 to θ2 in time Δt = t2 − t1.
Or it may begin at θ1, move completely around the circle, and end at θ2 after
one full revolution. Or it may revolve twice, or n times.11 Thus the frequency
must be

fn =
(θ2 − θ1) + 2πn

2πΔt
(5.11)

for some integer n. Without more information, it is not possible to uniquely
determine f , though it is constrained to one of the above values.

θ1

θ2

n=0

n=1

Fig. 5.9. The phases θ1 and θ2 of a sinusoid are known
at two different times t1 and t2. The frequency must then
fulfill fn of (5.11), where the integer n specifies the number
of revolutions around the circle (the number of periods of
the sinusoid that occur within the specified time Δt). The
two cases n = 0 (the lowest possible frequency) and n = 1
(one complete revolution) are shown.

The phase vocoder exploits (5.11) by locating a common peak in the mag-
nitude spectrum of two different segments. It then chooses the fn that is closest
to the frequency of that peak. This is shown diagrammatically in Fig. 5.10
where the signal is assumed to be a single sinusoid that spans the time in-
terval over which the calculations are made. The output of the windowing
is a collection of short sinusoidal bursts. The FFT is applied to each burst,
11 In other words, the frequency multiplied by the change in time must equal the

change in angle, that is, 2πf(t2 − t1) = θ2 − θ1 or some 2π multiple. Solving for
f gives (5.11).
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resulting in magnitude and phase spectra. For the case of a pure sinusoidal in-
put, the magnitude spectra of the successive spectra are the same (as shown).
But the phase spectra differ, and these provide the needed values of θ1 (the
phase corresponding to the peak of the first magnitude spectrum) and θ2 (the
phase corresponding to the peak of the second magnitude spectrum). The
time difference Δt can be determined directly from the window length, the
overlap factor, and the sampling rate. These values are then substituted into
(5.11) and the fn that is closest in frequency to the peak is the PVs frequency
estimate.
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Fig. 5.10. The analysis portion of the
phase vocoder rests on the assump-
tion that a sinusoid remains fixed in
frequency for the duration of the cal-
culation. The input (shown here as a
220 Hz sinusoid) is windowed and the
FFT is taken of the resulting bursts.
The common peaks in the magnitude
spectra are located (in this case at
215 Hz) and their phases recorded
(in this case, the phase correspond-
ing to the first and second bursts are
θ1 = 1.18 and θ2 = 1.87). Information
about sampling rate, window size, and
overlap factor specify the time inter-
val between the bursts (in this case,
Δt = 0.07). These parameters are en-
tered into (5.11) and the fn closest to
the frequency of the peak is chosen as
the frequency estimate. In more inter-
esting signals, when there are many
sinusoids, the method is repeated for
each peak in the magnitude spectrum.

To see the PV in action, and to give an idea of its accuracy, consider the
problem of estimating the frequency of a 220 Hz sinusoid using a 2K FFT
(assuming a sampling rate of 44.1 kHz). According to (5.10), the resolution
of the FFT is 21.5 Hz, that is, it is only possible to find the frequency of
the sinusoid to within about 10 Hz. Indeed, the nearby frequencies that are
exactly representable are 193.8, 215.3, and 236.9, as shown in the enlargement
of the magnitude spectrum in Fig. 5.10. Since the peak at 215.3 is the largest,
an actual error of 4.7 Hz occurs when using only the FFT magnitude. The
PV improves this by exploiting phase information. The phases corresponding
to the peaks at 215.3 are θ1 = 1.18 and θ2 = 1.87 and so
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fn =
(θ2 − θ1) + 2πn

2πΔt
=

(1.18 − 1.87) + 2πn

2π · 0.07

since12 Δt = 2048
2 · 1

44100 = 0.023. With these values, the first six fn are

47.7472, 90.8136, 133.8800, 176.94649, 220.01290, and 263.0793.

Clearly, the fifth term is closest to 215.3, and the error in the frequency esti-
mate is 0.0129 Hz, a vast improvement over 4.7 Hz. This kind of accuracy is
typical and is not just a numerical fluke. In fact, [B: 177] shows that, under
certain conditions (for a signal consisting of a single sinusoid and with a Δt
corresponding to a single sample) the phase vocoder estimate of the frequency
is closely related to the maximum likelihood estimate.

In more complex situations, when the input signal consists of many sine
waves, the phase manipulations are repeated for each peak individually, which
is justified as long as the peaks are adequately separated in frequency. Once
the analysis portion is complete, it is possible to change the signal in a variety
of ways: by modifying the rate at which time passes (spacing the output bursts
differently from the input bursts), by changing the frequencies in the signal (so
that the output will contain different frequencies than the input), by adding
or by subtracting partials.

Resynthesis Using the Phase Vocoder

Once the modifications are complete, it is possible to synthesize the output
waveform. One possibility is to use a straightforward additive-synthesis where
the partials (each with its desired frequency and amplitude) are generated
individually and then summed together. This is computationally intensive13

when there are a large number of partials. Fortunately, there is a better way:
the PV creates a complex-valued (frequency) vector. This is inverted using
the IFFT and the resulting output bursts are time-shifted and summed as in
the STFT.

Specification of the magnitude spectrum of the output is straightforward
since it can be inherited directly from the input. The phase values are chosen
to ensure continuity of the most prominent partials through successive bursts,
as shown in Fig. 5.11 for a single sinusoid. For each peak j in the magnitude
spectrum, the required phase can be calculated directly from the frequency
fj and the time interval Δt between frame k and frame k − 1. This is

θj
k = θj

k−1 + 2πf jΔt.

It is also necessary to choose the nearby phases (those under the same peak
in the magnitude spectrum). If these are chosen to be θj

k +mod(n, 2)π (where
12 The window width is 2048 with an overlap of 2, the sampling rate is 44.1 kHz,

and the second burst is one step ahead of the first.
13 There is still the problem of assigning appropriate phase values to the generated

sine waves, a problem that the phase vocoder handles elegantly.
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new sinusoidal burst

one frame

sum of previous bursts Fig. 5.11. Each new windowed sinusoidal ele-
ment (burst) is added in phase with the already
existing signal. The result is a continuous sinu-
soid of the specified frequency.

n is the number of bins away from the peak value), the burst generated by
the IFFT will be windowed with tapered ends, as in Fig. 5.11. For example,
in the phase spectrum plots of Fig. 5.10, the values to the left and right of θ1

and θ2 are (approximately) either π or 0 away.14 An implementation of the
phase vocoder called PV.m can be found in the MATLABR© folder on the CD.

5.4 Wavelet Transforms

In the STFT and the phase vocoder, sinusoids are used as basis functions
and windows are used to localize the signal to a particular time interval. In
the wavelet transforms, the windows are incorporated directly into the basis
functions and a variety of nonsinusoidal shapes are common. Several different
“mother wavelets” are shown in Fig. 5.12.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.12. There are many kinds of wavelet
basis functions, including the (a) Mexican
Hat wavelet, (b) complex Morlet wavelet,
(c) Coiflets wavelet, (d) Daubechies wavelet,
(e) complex Gaussian wavelet, and the (f)
biorthogonal spline wavelet. The wavelet trans-
form operates by correlating the signal with
scaled and shifted versions of a basis function.

The wavelet transform uses the mother wavelet much as the STFT uses
a windowed sinusoid: one parameter specifies where in time the wavelet is
centered (analogous to the windowing) and another parameter stretches or
compresses the wavelet. This latter is called the scale of the wavelet and is
analogous to frequency in the STFT.
14 A formal justification of this choice requires observing that the phase values of

a Bartlett (and a Parzen window) have exactly this pattern of values. Other
patterns of 0 and π, such as that in [W: 33], correspond to different choices of
output windowing functions.
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Let ψ(t) be the mother wavelet (for example, any of the signals15 in
Fig. 5.12), and define

ψa,b(t) =
1√
|a|

ψ

(
t − b

a

)
.

The parameter b shifts the wavelet in time while the parameter a scales the
wavelet by stretching or compressing it (and also by adjusting the amplitude).
Figure 5.13 illustrates the effects of the two parameters for several different
values.

-2-3 -1 0 1 2

ψ1,2(t)

ψ1,1(t)

ψ1,0(t)

ψ1,0(t)

ψ1/2,0(t)

ψ1/3,0(t)

ψ1,-1(t)

Fig. 5.13. The complex Morlet wavelet is a complex-valued sinusoid windowed by a

Gaussian envelope ψa,b(t) = 1√
3π|a|e

j2π2te−
(t−b)2

3a . These plots show the real part of

the Morlet wavelet for a variety of shifts b and scales a. As b decreases, the wavelet
moves to the right; as a decreases, the wavelet compresses and grows.

The continuous wavelet transform uses the shifted and scaled functions as
a basis for representing a signal x(t) via the inner product

W (a, b) = 〈x(t), ψ∗
a,b(t)〉. (5.12)

For every (a, b) pair, the coefficient W (a, b) is the inner product of the signal
with the appropriately scaled and shifted basis function ψa,b(t). Where the
signal is aligned with the basis function (when x(t) locally looks like the basis
function), the coefficient is large. Where the signal is very different from the
basis function (the extreme being orthogonal) then the coefficient is small.
As a and b change, the inner product scans through the signal looking for
places (in time) and values (in scale) where the signal correlates well with
the wavelet. This suggests that prior information about the shape or general
character of the signal can be usefully exploited by the wavelet transform by
15 To be considered a wavelet function, ψ(t) must be orthogonal to the function

x(t) = 1 and must have finite energy. Thus 〈1, ψ∗(t)〉 = 0 and 〈ψ(t), ψ∗(t)〉 < ∞.
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tailoring the wavelet to the signal. When the information is correct, the set
of parameters W (a, b) can provide a concise and informative representation
of the signal. When the information is incorrect, the wavelet representation
may be less useful.

When the wavelet is real-valued, W (a, b) is real; when the wavelet is
complex-valued (like the Morlet wavelet used in Fig. 5.13) then W (a, b) is
complex. It is common to plot the magnitude of W (a, b) (using a color or
grayscale mapping) with axes defined by the scale a and time b, much as the
STFT and the spectrogram are plotted with axes defined by frequency and
time. When W (a, b) is complex, it is also common to plot a similar contour
with the phase, though sometimes plots of the real and/or imaginary parts
are useful. For example, Fig. 5.14 shows separate plots of the magnitude and
phase when the complex Gaussian wavelet (from Fig. 5.12(e)) is applied to an
input that is a train of spikes separated by one second. The temporal locations
of the spikes are readily visible in both the magnitude and the phase plots
(the vertical stripes).

Magnitude

time (seconds)

sc
al

e

50 10

  1

  0.1

 10

100
Angle

time (seconds)
50 10

Fig. 5.14. The complex Gaussian wavelet is applied to an input spike train with
period one second. The left plot shows values of the magnitude of the wavelet coef-
ficients W (a, b) of (5.12) while the right hand plot shows the phase. The location in
time of the spikes is easy to see.

There is an interesting parallel between the wavelet transform of the spike
train in Fig. 5.14 and the corresponding Fourier transform of a spike train in
Fig. 5.6. In both cases, the transform returns a display (plot) that contains
data of the same general character as the input. The output of the FT is a spike
train; the output of the wavelet transform is a collection of regularly spaced
ridges in a two-dimensional field. This suggests that the wavelet transform is
not going to be able to magically solve the rhythm finding problem. In many
cases (such as the spike train) it is no simpler to determine regularity from
the output of the wavelet transform than it is to determine regularity directly
from the input itself. Again, as with the FT, this does imply that wavelet
transforms cannot play a role in rhythm analysis. Rather, it means that they
must be used thoughtfully and in proper contexts.
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This discussion has stressed the similarities between the STFT and the
wavelet transforms. There are also important differences. In the windowed
FFT and the granular techniques (such as the “Gabor grains” of Fig. 2.23 on
p. 47), the frequency of the waveform is independent of the grain duration.
In wavelets, there is an inverse relation maintained between the frequency of
the waveforms and the duration of the wavelet. Unlike a typical grain, most
wavelets contain the same number of cycles irrespective of the scale (roughly,
frequency) of the wavelet. Thus the duration of the wavelet window grows or
shrinks as a function of the scale; wavelets that capture low frequency informa-
tion are dilated (wide in time) while those that represent high frequencies are
contracted. This allows more precise localization of the high frequency com-
ponents. This can be seen in Fig. 5.13 where the Morlet wavelet maintains
the same number of cycles at all scale values.

5.5 Periodicity Transforms

The Periodicity Transforms (PT) decompose data into a sum of periodic se-
quences by projecting onto a set of “periodic subspaces” Pp, leaving residuals
whose periodicities have been removed. As the name suggests, this decomposi-
tion is accomplished directly in terms of periodic sequences and not in terms
of frequency or scale, as do the Fourier and Wavelet Transforms. In conse-
quence, the representation is linear-in-period, rather than linear-in-frequency
or linear-in-scale. Unlike most transforms, the set of basis vectors is not spec-
ified a priori, rather, the Periodicity Transforms find their own “best” set of
basis elements. In this way, it is analogous to the approach of Karhunen-Loeve
[B: 23], which transforms a signal by projecting onto an orthogonal basis that
is determined by the eigenvectors of the covariance matrix. In contrast, the
periodic subspaces Pp lack orthogonality, which underlies much of the power
of (and difficulties with) the Periodicity Transforms. Technically, the collec-
tion of all periodic subspaces forms a frame [B: 24], a more-than-complete
spanning set. The PT specifies ways of sensibly handling the redundancy by
exploiting some of the general properties of the periodic subspaces.

This section describes the PT and compares its output to other transforms
in a number of examples. Later chapters will detail how the PT may be applied
to the problem of detecting rhythmic patterns in a musical setting. Much of
this is based on the work with Tom Staley documented in [B: 207] and [B: 208],
which may be found on the accompanying CD.

5.5.1 Periodic Subspaces

A sequence of real numbers x[k] is called p-periodic if there is an integer p
with x[k + p] = x[k] for all integers k. Let

Pp be the set of all p-periodic sequences, and
P be the set of all periodic sequences.
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In practice, a data vector x contains N elements. This can be considered
to be a single period of an element xN ∈ PN ⊂ P, and the goal is to locate
smaller periodicities within xN , should they exist. The strategy is to “project”
xN onto the subspaces Pp for p < N . When xN is “close to” some periodic
subspace Pp, then there is a p-periodic element xp ∈ Pp that is close to the
original x. This xp is an ideal choice to use when decomposing x. To make
these ideas concrete, it is necessary to understand the structure of the various
spaces, and to investigate how the needed calculations can be realized.

Observe that Pp is closed under addition since the sum of two sequences
with period p is itself p-periodic. Similarly, P is closed under addition since
the sum of x1 with period p1 and x2 with period p2 has period (at most)
p1p2. Thus, with scalar multiplication defined in the usual way, both Pp and
P form linear vector spaces, and P is equal to the union of the Pp.

For every period p and every “time shift” s, define the sequence δs
p[j] for

all integers j by

δs
p[j] =

{
1, if (j − s) mod p = 0
0, otherwise . (5.13)

The sequences δs
p for s = 0, 1, 2, ..., p−1 are called the p-periodic basis vectors

since they form a basis for Pp.

Example 5.1. For p = 4, the 4-periodic basis vectors

j · · · −4 −3 −2 −1 0 1 2 3 4 5 6 7 · · ·
δ0
4 [j] · · · 1 0 0 0 1 0 0 0 1 0 0 0 · · ·

δ1
4 [j] · · · 0 1 0 0 0 1 0 0 0 1 0 0 · · ·

δ2
4 [j] · · · 0 0 1 0 0 0 1 0 0 0 1 0 · · ·

δ3
4 [j] · · · 0 0 0 1 0 0 0 1 0 0 0 1 · · ·

span the 4-periodic subspace P4.

An inner product can be imposed on the periodic subspaces by considering
the function from P × P into � defined by

〈x, y〉 = lim
k→∞

1
2k + 1

k∑
i=−k

x[i]y[i], (5.14)

for arbitrary elements x and y in P. For the purposes of calculation, observe
that if x ∈ Pp1 and y ∈ Pp2 , the product sequence x[i]y[i] ∈ Pp1p2 is p1p2-
periodic, and (5.14) is equal to the average over a single period, that is,

〈x, y〉 =
1

p1p2

p1p2−1∑
i=0

x[i]y[i]. (5.15)

The corresponding norm on P is called the Periodicity Norm

||x|| =
√

〈x, x〉. (5.16)
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These definitions of inner product and norm are slightly different from (5.1)
and (5.2). The extra term ( 1

p1p2
in the example above) ensures that the norm

gives the same value whether x is considered to be an element of Pp, of Pkp

(for positive integers k), or of P.

Example 5.2. Let x ∈ P3 be the 3-periodic sequence {· · · , 1, 2, 3, · · · } and
let y ∈ P6 be the 6-periodic sequence {· · · , 1, 2, 3, 1, 2, 3, · · · }. Using (5.16),
||x|| = ||y||.

As usual, the signals x and y in P are said to be orthogonal if 〈x, y〉 = 0.

Example 5.3. The periodic basis elements δs
p for s = 0, 1, ..., p − 1 are orthog-

onal, and ||δs
p|| =

√
1/p.

The idea of orthogonality can also be applied to subspaces. A signal x
is orthogonal to the subspace Pp if 〈x, xp〉 = 0 for all xp ∈ Pp, and two
subspaces are orthogonal if every vector in one is orthogonal to every vector
in the other. Unfortunately, the periodic subspaces Pp are not orthogonal to
each other.

Example 5.4. If p1 and p2 are mutually prime, then

〈δs
p1

, δs
p2
〉 = 〈δs

p1p2
, δs

p1p2
〉 =

1
p1p2


= 0.

Suppose that p1p2 = p3. Then Pp1 ⊂ Pp3 and Pp2 ⊂ Pp3 , which restates
the fact that any sequence that is p-periodic is also np-periodic for any integer
n. But Pp3 can be strictly larger than Pp1∪Pp2 .

Example 5.5. Let x = {· · · , 1, 2, 1,−1,−2,−1, · · · } ∈ P6. Then x is orthogonal
to both P2 and P3, since direct calculation shows that x is orthogonal to δs

2

and to δs
3 for all s.

In fact, no two subspaces Pp are linearly independent, since P1 ⊂ Pp for
every p. This is because the vector 1 (the 1-periodic vector of all ones) can be
expressed as the sum of the p periodic basis vectors

1 =
p−1∑
s=0

δs
p

for every p. In fact, P1 is the only commonality between Pp1 and Pp2 when
p1 and p2 are mutually prime. More generally, Pnp∩Pmp = Pp when n and
m are mutually prime. The structure of the periodic subspaces reflects the
structure of the integers.
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5.5.2 Projection onto Periodic Subspaces

The primary reason for formulating this problem in an inner product space is
to exploit the projection theorem. Let x ∈ P be arbitrary. Then a minimizing
vector in Pp is an x∗

p ∈ Pp such that

||x − x∗
p|| ≤ ||x − xp||, for all xp ∈ Pp.

Thus x∗
p is the p-periodic vector “closest to” the original x. The projection

theorem from Luenberger [B: 135], stated here in slightly modified form, shows
how x∗

p can be characterized as an orthogonal projection of x onto Pp.

Theorem 5.6 (The Projection Theorem). Let x ∈ P be arbitrary. A
necessary and sufficient condition that x∗

p be a minimizing vector in Pp is that
the error x − x∗

p be orthogonal to Pp.

Since Pp is a finite (p-dimensional) subspace, x∗
p will in fact exist, and

the projection theorem provides, after some simplification, a simple way to
calculate it. The optimal x∗

p ∈ Pp can be expressed as a linear combination of
the periodic basis elements δs

p as

x∗
p = α0δ

0
p + α1δ

1
p + · · · + αp−1δ

p−1
p .

According to the projection theorem, the unique minimizing vector is the
orthogonal projection of x on Pp, that is, x − x∗

p is orthogonal to each of the
δs
p for s = 0, 1, ..., p − 1. Thus

0 = 〈x − x∗
p, δ

s
p〉 = 〈x − α0δ

0
p − α1δ

1
p − ... − αp−1δ

p−1
p , δs

p〉.

Since the δs
p are orthogonal to each other, this can be rewritten using the

additivity of the inner product as

= 〈x − αsδ
s
p, δ

s
p〉

= 〈x, δs
p〉 − αs〈δs

p, δ
s
p〉

= 〈x, δs
p〉 − αs

p
.

Hence αs can be written as

αs = p 〈x, δs
p〉.

Since x ∈ P, it is periodic with some period N . From (5.15), the above inner
product can be calculated

αs = p
1

pN

pN−1∑
i=0

x[i]δs
p[i].

But δs
p is zero except when (s − i) mod p = 0, and this simplifies to
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αs =
1
N

N−1∑
n=0

x[s + np]. (5.17)

If, in addition, N/p is an integer, then this reduces to

αs =
1

N/p

N/p−1∑
n=0

x[s + np]. (5.18)

Example 5.7. With N = 14 and p = 2, let x ∈ P14 be the 14-periodic sequence

x = {· · · , 2,−1.1,−1.1, 2,−1.2,−1.2, 2,−1.1,−1.1, 2,−1.2,−1.1, 2,−1.1, · · · }.

Then the projection of x onto P2 is x2 = {· · · , 0.2,−0.228, · · · }.
This sequence x2 is the 2-periodic sequence that best “fits” this 14-periodic
x. But looking at this x closely suggests that it has more of the character of
a 3-periodic sequence, albeit somewhat truncated in the final “repeat” of the
2,−1,−1. Accordingly, it is reasonable to project x onto P3.

Example 5.8. With N = 14 and p = 3, let x ∈ P14 be as defined in
example 5.7. Then the projection of x onto P3 (using (5.17)) is x3 =
−0.2{· · · , 1, 1, 1, · · · }.
Clearly, this does not accord with the intuition that this x is “almost” 3-
periodic. In fact, this is an example of a rather generic effect. Whenever N
and p are mutually prime, the sum in (5.17) cycles through all the elements
of x, and so αs = 1

N

∑N−1
i=0 x[i] for all s. Hence the projection onto Pp is the

vector of all ones (times the mean value of the x). The problem here is the
incommensurability of the N and p.

What does it mean to say that x (with length N) is p-periodic when N/p
is not an integer? Intuitively, it should mean that there are �N/p� complete
repeats of the p-periodic sequence (where �z� is the largest integer less than
or equal to z) plus a “partial repeat” within the remaining N̄ = N − p�N/p�
elements. For instance, the N = 14 sequence

x1, x2, x3, x1, x2, x3, x1, x2, x3, x1, x2, x3, x1, x2

can be considered a (truncated) 3-periodic sequence.
There are two ways to formalize this notion: to “shorten” x so that it

is compatible with p, or to “lengthen” δs
p so that it is compatible with N .

Though roughly equivalent (they differ only in the final N̄ elements), the first
approach is simpler since it is possible to replace x with xÑ (the Ñ -periodic
sequence constructed from the first Ñ = p�N/p� elements of x) whenever the
projection operator is involved. With this understanding, (5.17) becomes

αs =
1

�N/p�

�N/p�−1∑
n=0

xÑ [s + np]. (5.19)
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Example 5.9. With N = 14 and p = 3, let x ∈ P14 be as defined in
example 5.7. Then the projection of x onto P3 (using (5.19)) is x3 =
{· · · , 2,−1.14,−1.125, · · · }.

Clearly, this captures the intuitive notion of periodicity far better than exam-
ple 5.8, and the sum (5.19) forms the foundation of the Periodicity Transforms.
The calculation of each αs thus requires �N/p� operations (additions). Since
there are p different values of s, the calculation of the complete projection
xp requires Ñ ≈ N additions. MATLABR© routines that carry out the needed
calculations are available on the CD.

Let π(x,Pp) represent the projection of x onto Pp. Then

π(x,Pp) =
p−1∑
s=0

αs δs
p (5.20)

where the δs
p are the (orthogonal) p-periodic basis elements of Pp. Clearly,

when x ∈ Pp, x = π(x,Pp). By construction, when x is projected onto Pnp

it finds the best np-periodic components within x, and hence the residual
r = x − Pnp has no np-periodic component. The content of the next result is
that this residual also has no p-periodic component. In essence, the projection
onto Pnp “grabs” all the p-periodic information.

Theorem 5.10. For any integer n, let r = x−π(x,Pnp) be the residual after
projecting x onto Pnp. Then π(r,Pp) = 0.

All proofs are found in [B: 207] which can also be found on the CD. The
next result relates the residual after projecting onto Pp to the residual after
projection onto Pnp.

Theorem 5.11. Let rp = x − π(x,Pp) be the residual after projecting x onto
Pp. Similarly, let rnp = x − π(x,Pnp) denote the residual after projecting x
onto Pnp. Then

rnp = rp − π(rp,Pnp).

Combining the two previous results shows that the order of projections
doesn’t matter in some special cases, that is

π(x,Pp) = π(π(x,Pp),Pnp) = π(π(x,Pnp),Pp),

which is used in the next section to help sensibly order the projections.

5.5.3 Algorithms for Periodic Decomposition

The Periodicity Transforms search for the best periodic characterization of
the length N signal x. The underlying technique is to project x onto some
periodic subspace giving xp = π(x,Pp), the closest p-periodic vector to x.
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This periodicity is then removed from x leaving the residual rp = x − xp

stripped of its p-periodicities. Both the projection xp and the residual rp may
contain other periodicities, and so may be decomposed into other q-periodic
components by projection onto Pq. The trick in designing a useful algorithm
is to provide a sensible criterion for choosing the order in which the successive
ps and qs are chosen. The intended goal of the decomposition, the amount
of computational resources available, and the measure of “goodness-of-fit” all
influence the algorithm. The analysis of the previous sections can be used to
guide the decomposition by exploiting the relationship between the structure
of the various Pp. For instance, it makes no sense to project xp onto Pnp

because xp ∈ Pnp and no new information is obtained. This section presents
several different algorithms, discusses their properties, and then compares
these algorithms with some methods available in the literature.

One subtlety in the search for periodicities is related to the question of
appropriate boundary (end) conditions. Given the signal x of length N , it is
not particularly meaningful to look for periodicities longer than p = N/2, even
though nothing in the mathematics forbids it. Indeed, a “periodic” signal with
length N−1 has N−1 degrees of freedom, and surely can match x very closely,
yet provides neither a convincing explanation nor a compact representation
of x. Consequently, we restrict further attention to periods smaller than N/2.

Probably the simplest useful algorithm operates from small periods to
large, as shown in Table 5.1. The Small-To-Large Algorithm is simple because
there is no need to further decompose the basis elements xp; if there were
significant q-periodicities within xp (where “significant” is determined by the
threshold T ), they would already have been removed by xq at an earlier iter-
ation. The algorithm works well because it tends to favor small periodicities,
to concentrate the power in Pp for small p, and hence to provide a compact
representation.

Table 5.1. Small-To-Large Algorithm

pick threshold T ∈ (0, 1)
let r = x
for p = 2, 3, ..., N/2

xp = π(r,Pp)

if
||r−xp||

||x|| > T

r = r − xp

save xp as basis element
end

end

Thinking of the norm as a measure of power, the threshold is used to insure
that each chosen basis element removes at least a fraction T of the power
from the signal. Of course, choosing different thresholds leads to different



138 Transforms

decompositions. If T is chosen too small (say zero) then the decomposition
will simply pick the first linear independent set from among the p-periodic
basis vectors

P2︷ ︸︸ ︷
δ1
2 , δ2

2 ,

P3︷ ︸︸ ︷
δ1
3 , δ2

3 , δ3
3 ,

P4︷ ︸︸ ︷
δ1
4 , δ2

4 , δ3
4 , δ4

4 , δ1
5 , δ2

5 , ...,

which defeats the purpose of searching for periodicities. If T is chosen too
large, then too few basis elements may be chosen (none as T → 1). In be-
tween “too small” and “too large” is where the algorithm provides interesting
descriptions. For many problems, 0.01 < T < 0.1 is appropriate, since this
allows detection of periodicities containing only a few percent of the power,
yet ignores those p which only incidentally contribute to x.

An equally simple “Large-To-Small” algorithm is not feasible, because
projections onto xp for composite p may mask periodicities of the factors
of p. For instance, if x100 = π(x,P100) removes a large fraction of the power,
this may in fact be due to a periodicity at p = 20, yet further projection of
the residual onto P20 is futile since π(x − x100,P20) = 0 by Theorem 5.10.
Thus an algorithm that decomposes from large p to smaller p must further
decompose both the candidate basis element xp as well as the residual rp,
since either might contain smaller q-periodicities.

The M -Best Algorithm deals with these issues by maintaining lists of the
M best periodicities and the corresponding basis elements. The first step is to
build the initial list. This is described in Table 5.2. At this stage, the algorithm
has compiled a list of the M periodicities qi that remove the most “energy”
(in the sense of the norm measure) from the sequence. But typically, the qi

will be large (since by Theorem 5.10, the projections onto larger subspaces
np contain the projections onto smaller subspaces p). Thus the projections
xqi

can be further decomposed into their constituent periodic elements to
determine whether these smaller (sub)periodicities remove more energy from
the signal than another currently on the list. If so, the new one replaces the
old.

Table 5.2. M -Best Algorithm (step 1)

pick size M
let r0 = x
for i = 1, 2, ..., M

find qi with ||π(ri−1,Pqi)|| ≥ ||π(ri−1,Pq)|| ∀q ∈ {1, 2, ..., N/2}
ri = ri−1 − π(ri−1,Pqi)
concatenate qi and xqi−1 = π(ri,Pqi) onto respective lists

end

Fortunately, it is not necessary to search all possible periods p < qi when
decomposing, but only the factors. Let ρi = {n; qi/n is an integer} be the set
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of factors of qi. The second step in the algorithm, shown in Table 5.3, begins
by projecting the xqi

onto each of its factors Q ∈ ρi. If the norm of the new
projection xQ is larger than the smallest norm in the list, and if the sum of
all the norms will increase by replacing xqi , then the new Q is added to the
list and the last element xqM

is deleted. These steps rely heavily on Theorem
5.11. For example, suppose that the algorithm has found a strong periodicity
in (say) P140, giving the projection x140 = π(x,P140). Since 140 = 22 · 5 · 7,
the factors are ρ = {2, 4, 5, 7, 10, 14, 20, 28, 35, 70}. Then the inner loop in step
2 searches over each of the π(x140,PQ) ∀Q ∈ ρ. If x140 is “really” composed
of a significant periodicity at (say) 20, then this new periodicity is inserted
in the list and will later be searched for yet smaller periodicities. The M -
Best Algorithm is relatively complex, but it removes the need for a threshold
parameter by maintaining the list. This is a sensible approach and it often
succeeds in building a good decomposition of the signal. A variation called the
M -Best algorithm with γ-modification (or M -Bestγ) is described in [B: 207]
(which can be found on the CD), where the measure of energy removed is
normalized by the (square root of) the length p.

Table 5.3. M -Best Algorithm (step 2)

repeat until no change in list
for i = 1, 2, ..., M

find Q∗ with ||π(xqi ,PQ∗)|| ≥ ||π(xqi ,PQ)|| ∀ Q ∈ ρi

let xQ∗ = π(xqi ,PQ∗) be the projection onto PQ∗

let xq∗ = xqi − xQ∗ be the residual
if (||xq∗ || + ||xQ∗ || > ||xqM || + ||xqi ||)

& (||xq∗ || > mink ||xqk || & ||xQ∗ || > mink ||xqk ||)
replace qi with q∗ and xqi with xq∗

insert Q∗ and xQ∗ into lists at position i − 1
remove qM and xqM from end of lists

end if
end for

end repeat

Another approach is to project x onto all the periodic basis elements δs
p for

all p and s, essentially measuring the correlation between x and the individual
periodic basis elements. The p with the largest (in absolute value) correlation
is then used for the projection. This idea leads to the Best-Correlation Al-
gorithm of Table 5.4, which presumes that good p will tend to have good
correlation with at least one of the p-periodic basis vectors. This method
tends to pick out periodicities with large regular spikes over those that are
more uniform.

A fourth approach is to determine the best periodicity p by Fourier meth-
ods, and then to project onto Pp. Using frequency to find periodicity is cer-
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Table 5.4. Best-Correlation Algorithm

M = number of desired basis elements
let r = x
for i = 1, 2, ..., M

ρ = argmax
p

| < r, δs
p > |

save xρ = π(r,Pρ) as basis element
r = r − xρ

end

tainly not always the best idea, but it can work well, and has the advantage
that it is a well understood process. The interaction between the frequency
and periodicity domains can be a powerful tool, especially since the Fourier
methods have good resolution at high frequencies (small periodicities) while
the periodicity transforms have better resolution at large periodicities (low
frequencies).

Table 5.5. Best-Frequency Algorithm

M = number of desired basis elements
let r = x
for i = 1, 2, ..., M

y = ||DFT{r}||
p = Round(1/f), where f = frequency at which y is max
save xp = π(r,Pp) as basis element
r = r − xp

end

At present, there is no simple way to guarantee that an optimal decom-
position has been obtained. One foolproof method for finding the best M
subspaces would be to search all of the possible

(
N
M

)
different orderings of

projections to find the one with the smallest residual. This is computationally
prohibitive in all but the simplest settings, although an interesting special case
is when M = 1, that is, when only the largest periodicity is of importance.

5.5.4 Signal Separation

When signals are added together, information is often lost. But if there is some
characteristic that distinguishes the signals, then they may be recoverable
from their sum. Perhaps the best known example is when the spectrum of x
and the spectrum of y do not overlap. Then both signals can be recovered from
x+ y with a linear filter. But if the spectra overlap significantly, the situation
is more complicated. This example shows how, if the underlying signals are
periodic in nature, then the Periodicity Transforms can be used to recover
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signals from their sum. This process can be thought of as a way to extract a
“harmonic template” from a complicated spectrum.

Consider the signal z in Fig. 5.15, which is the sum of two zero mean
sequences, x with period 13 and y with period 19. The spectrum of z is quite
complex, and it is not obvious just by looking at the spectrum which parts of
the spectrum arise from x and which from y. To help the eye, the two lattices
marked A and B point to the spectral lines corresponding to the two periodic
sequences. These are inextricably interwoven and there is no way to separate
the two parts of the spectrum with linear filtering.
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Fig. 5.15. The signal z is the sum of the
13-periodic x and the 19-periodic y. The
DFT spectrum shows the overlapping of
the two spectra (emphasized by the two
lattices labeled A and B), which cannot
be separated by linear filtering. The out-
put of the M -Bestγ Periodicity Trans-
form, shown in the bottom plot, locates
the two periodicities (which were a priori
unknown) and reconstructs (up to a con-
stant offset) both x and y given only z.

When the Periodicity Transform is applied to z, two periodicities are
found, with periods of 13 and 19, with basis elements that are exactly
x13 = x + c1 and y19 = y + c2, that is, both signals x and y are recovered,
up to a constant. Thus the PT is able to locate the periodicities (which were
assumed a priori unknown) and to reconstruct (up to a constant offset) both
x and y given only their sum. Even when z is contaminated with 50% random
noise, the PT still locates the two periodicities, though the reconstructions
of x and y are noisy. To see the mechanism, let η be the noise signal, and
let η13 = π(η,P13) be the projection of η onto the 13-periodic subspace. The
algorithm then finds x13 = x+ c1 + η13 as its 13-periodic basis element. If the
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x and y were not zero mean, there would also be a component with period
one.

For this particular example, all four of the PT variants behave essentially
the same, but in general they do not give identical outputs. The Small-To-
Large algorithm regularly finds such periodic sequences. The Best-Correlation
algorithm works best when the periodic data is spiky. The M -Best algorithm
is sometimes fooled into returning multiples of the basic periodicities (say
26 or 39 instead of 13) while the M -Bestγ is overall the most reliable and
noise resistant. The Best-Frequency algorithm often becomes ‘stuck’ when
the frequency with the largest magnitude does not closely correspond to an
integer periodicity. The behaviors of the algorithms are explored in detail in
four demonstration files that accompany the periodicity software.16

Two aspects of this example deserve comment. First, the determination of
a periodicity and its corresponding basis element is tantamount to locating a
“harmonic template” in the frequency domain. For example, the 13-periodic
component has a spectrum consisting of a fundamental (at a frequency f1

proportional to 1/13), and harmonics at 2f1, 3f1, 4f1, .... Similarly, the 19-
periodic component has a spectrum consisting of a fundamental (at a fre-
quency f2 proportional to 1/19), and harmonics at 2f2, 3f2, 4f2, .... These
are indicated in Fig. 5.15 by the lattices A and B above and below the spec-
trum of z. Thus the PT provides a way of finding simple harmonic templates
that may be obscured by the inherent complexity of the spectrum. The process
of subtracting the projection from the original signal can be interpreted as a
multi-notched filter that removes the relevant fundamental and its harmonics.
For a single p, this is a kind of “gapped weight” filter familiar to those who
work in time series analysis [B: 116].

The offsets c1 and c2 occur because P1 is contained in both P13 and in P19.
In essence, both of these subspaces are capable of removing the constant offset
(which is an element of P1) from z. When x and y are zero mean, both c1 and
c2 are zero. If they have nonzero mean, the projection onto (say) P13 grabs
all of the signal in P1 for itself (Thus c1 = mean(x) + mean(y), and further
projection onto P19 gives c2 = −mean(y)). This illustrates a general property
of projections onto periodic subspaces. Suppose that the periodic signals to
be separated were xnp ∈ Pnp and xmp ∈ Pmp for some mutually prime n and
m. Since Pnp∩Pmp is Pp, both Pnp and Pmp are capable of representing the
common part of the signal, and xnp and xmp can only be recovered up to
their common component in Pp. In terms of the harmonic templates, there is
overlap between the set of harmonics of xnp and the harmonics of xmp, and
the algorithm does not know whether to assign the overlapping harmonics to
xnp or to xmp. The four different periodicity algorithms make different choices
in this assignment.
16 MATLABR© versions of the periodicity software can be found on the CD and

online at [W: 53]. The demos are called PTdemoS2L, PTdemoBC, PTdemoMB, and
PTdemoBF.
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It is also possible to separate a deterministic periodic sequence z ∈ Pp

from a random sequence y when only their sum x = y + z can be observed.
Suppose that y is a stationary (independent, identically distributed) process
with mean my. Then E{π(y,Pp)} = my ·1 (where 1 is the vector of all ones),
and so

E{π(x,Pp)} = E{π(y + z,Pp)} = E{π(y,Pp)} + E{π(z,Pp)} = my · 1 + z

since E{π(z,Pp)} = E{z} = z. Hence the deterministic periodicity z can be
identified (up to a constant) and removed from x. Such decomposition will
likely be most valuable when there is a strong periodic “explanation” for z, and
hence for x. In some situations such as economic and geophysical data sets,
regular daily, monthly, or yearly cycles may obscure the underlying signal of
interest. Projecting onto the subspaces Pp where p corresponds to these known
periodicities is very sensible. But appropriate values for p need not be known a
priori. By searching through an appropriate range of p (exploiting the various
algorithms of Sect. 5.5.3), both the value of p and the best p-periodic basis
element can be recovered from the data itself.

5.5.5 Choice of Effective Sampling Rate

While the Periodicity Transforms are, in general, robust to modest changes
in the amplitude of the data [B: 207], they are less robust to changes in the
period. To see why, consider a signal with a 1 s periodicity. If this were sam-
pled at T = 0.1 s, the periodicity would be readily detected at p = 10. But
suppose the signal were sampled at T = 0.0952 s, corresponding to a desired
periodicity “at” p = 10.5. Since the algorithms are designed to search for in-
teger periodicities, they detect the periodicity at two repetitions of p = 10.5
samples, that is, at q = 21 samples.

This “integer periodicity” limitation of the PT can be mitigated by proper
choice of a highly factorable integer. Fortunately, it is not necessary to know
the underlying periodicity in order to make this choice; the output of the PT
can help specify a good effective sampling rate T . A simple procedure is:

(i) using a convenient T , apply the PT to the sampled data
(ii) locate a major peak (e.g., the largest) with periodicity q
(iii) pick a composite number c (an integer with many factors) near q
(iv) let the new sampling interval be T̂ = q

cT

(v) resample the data with sampling interval T̂
(vi) use the PT to locate the periodicities in the resampled data

Continuing the example with T = 0.0952, the PT in (i) detects a peak at
q = 21 in (ii). A composite number near 21 is 24 (= 2 · 2 · 2 · 3), which gives a
T̂ = 21

24T = 0.0833 for (iv). The data is resampled in (v) and then (vi) detects
the peak at p = 12, which corresponds to the desired periodicity at 1 s. This
technique is useful when resampling audio feature vectors as in Sect. 8.3.1.
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5.5.6 Discussion of PT

The Periodicity Transforms are designed to locate periodicities within a data
set by projecting onto the (nonorthogonal) periodic subspaces. The methods
decompose signals into their basic periodic components, creating their own
“basis elements” as linear combinations of delta-like p-periodic basis vectors.

In some cases, the PTs can provide a clearer explanation of the underlying
nature of the signals than standard techniques. For instance, the signal z of
Fig. 5.15 is decomposed into (roughly) 14 complex sinusoids by the DFT, or
into two periodic sequences by the PT. In a strict mathematical sense, they are
equivalent, since the residuals are equal in norm. But the PT “explanation”
is simpler and allows the recovery of the individual elements from their sum.
When periodicity provides a better explanation of a signal or an event than
does frequency, then the PT is likely to outperform the DFT. Conversely,
when the signal incorporates clear frequency relationships, the DFT will likely
provide a clearer result. In general, an analysis of truly unknown signals will
benefit from the application of all available techniques.

Like the Hadamard transform [B: 248], the PT can be calculated using
only additions (no multiplications are required). As shown in Sect. 5.5.2, each
projection requires approximately N operations. But the calculations required
to project onto (say) Pp overlap the calculations required to project onto Pnp

in a nontrivial way, and these redundancies can undoubtedly be exploited in
a more efficient implementation.

Several methods for finding the “best” basis functions from among some
(possibly large) set of potential basis elements have been explored in the lit-
erature [B: 24], many of which are related to variants of general “projection
pursuit” algorithms [B: 98]. Usually these are set in the context of choosing
a representation for a given signal from among a family of prespecified frame
elements. For instance, a Fourier basis, a collection of Gabor functions, a
wavelet basis, and a wavelet packet basis may form the elements of an over-
complete “dictionary.” Coifman [B: 33] proposes an algorithm that chooses a
basis to represent a given signal based on a measure of entropy. In [B: 139],
a greedy algorithm called “matching-pursuit” is presented that successively
decomposes a signal by picking the element that best correlates with the sig-
nal, subtracts off the residual, and decomposes again. This is analogous to
(though somewhat more elaborate than) the Best-Correlation algorithm of
Sect. 5.5.3. Nafie [B: 152] proposes an approach that maintains “active” and
“inactive” dictionaries. Elements are swapped into the active dictionary when
they better represent the signal than those currently active. This is analo-
gous to the M -Best algorithm. The “best basis” approach of [B: 118] uses a
thresholding method aimed at signal enhancement, and is somewhat analo-
gous to the Small-To-Large algorithm. Using an l1 norm, [B: 29] proposes a
method that exploits Karmarkar’s interior point linear programming method.
The “method of frames” [B: 39] essentially calculates the pseudo-inverse of a
(large rectangular) matrix composed of all the vectors in the dictionary.
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While these provide analogous approaches to the problems of dealing with
a redundant spanning set, there are two distinguishing features of the Period-
icity Transforms. The first is that the p-periodic basis elements are inherently
coupled together. For instance, it does not make any particular sense to choose
(say) δ1

3 , δ3
4 , δ3

7 , and δ2
9 as a basis for the representation of a periodic signal.

The p-periodic basis elements are fundamentally coupled together, and none
of the methods were designed to deal with such a coupling. More generally,
none of the methods is able (at least directly) to exploit the kind of structure
(for instance, the containment of certain subspaces and the equality of certain
residuals) that is inherent when dealing with the periodic subspaces of the
PT.

5.6 Summary

A transform must ultimately be judged by the insight it provides and not
solely by the elegance of its mathematics. Transforms and the various algo-
rithms encountered in this chapter are mathematical operations that have
no understanding of psychoacoustics or of the human perceptual apparatus.
Thus a triangle wave may be decomposed into its appropriate harmonics by
the Fourier transform irrespective of the time axis. It makes no difference
whether the time scale is milliseconds (in which case we would hear pitch) or
on the order of seconds (in which case we would hear rhythm). It is, there-
fore, up to us to include such extra information in the interpretation of the
transformed data.
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Adaptive Oscillators

One way to model biological clocks is with oscillators
that can adapt their period and phase to synchronize
to external events. To be useful in the beat tracking
problem, the oscillators must be able to synchronize to
a large variety of possible input signals and they must
be resilient to noises and disturbances. Clock models
can be used to help understand how people process
temporal information and the models are consistent with
the importance of regular successions in cognition and
perception. This chapter expands on the presentation in
[B: 6].

We perceive light with the eyes, sound with the ears, smells with the nose. We
perceive the passage of time: the eternity of a boring class or the rapid passage
of an exciting ballgame. How is this possible? What organ senses time?

One possible answer is that we may have internal (biological) clocks.1

Cycles of such clocks could be accumulated to explain our perception of time
intervals. Successions of clock ticks might synchronize with phenomena in
the world, heightening our expectations and perceptions at significant times
and relaxing between. Not only can we sense the passage of time, we are also
capable of marking periods of time. Beating a drum, walking rhythmically, and
maintaining regular breaths and heartbeats are easy tasks. Internal clocks help
to explain these abilities, since the clocks could regulate the muscular motions
that allow the creation of such regular successions.

One way to model such internal clocks is via oscillators: systems which
generate (roughly) periodic signals. To be useful, the clocks must do more than
just mark time, they must also respond to external events. When we encounter
a regular signal such as the beat of a dance, we can choose to synchronize to
that beat. Thus the frequency and phase of internal clocks must be malleable,
capable of synchronizing to a variety of stimuli. The models must be similarly
flexible. They must:

(i) Generate a periodic waveform
(ii) Have an input
(iii) Be capable of adapting to the frequency (or period) and phase of

the input when it changes
1 Such internal clocks form the basis of Povel’s framework for rhythm perception

and Jones’ rhythmic theory of perception, as discussed in Sects. 4.3.6 and 4.3.7.
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(iv) Be robust to noisy periods, missing events, and unexpected events

This chapter begins with an overview of the basic ideas of synchronization and
entrainment and Sect. 6.2 reviews the mathematical notation used to describe
the models. Several oscillators are presented in Sect. 6.3. The various ways
that inputs can drive the oscillators and the ways that the oscillators can adapt
their settings to achieve synchronous actions are discussed in Sect. 6.4. The
taxonomy of adaptive oscillators includes the pendulum, the Van der Pol and
Fitzhugh–Nagumo oscillators, as well as a variety of structures that are closely
related varieties of adaptive wavetable oscillators and phase-reset oscillators.
Section 6.5 examines the behavior of the oscillators as the parameters adapt
to follow various input signals. When the model is chosen properly for the
class of input signal, the oscillators can adapt quickly and robustly. When
the input signals deviate from the expected class, the oscillators may fail to
achieve synchronization.

6.1 Entrainment and Synchronization

In 1665, the Dutch scientist Christian Huygens was working on the design of
a pendulum clock. He noticed that when two clocks were mounted near each
other on a wooden beam, the pendulums began to swing in unison. Whenever
one pendulum swung left, the other swept right; when the one moved right,
the other swayed left. When he unmounted one of the clocks from the support,
they gradually fell out of step. Huygens concluded that tiny vibrations caused
by the swinging of the pendulums were conducted through the beam, coupling
the motions of the two clocks. This kind of process, where oscillators interact
to achieve synchronous behavior, is called entrainment.

Figure 6.1 shows two oscillators with frequencies f1 and f2 with phases
θ1 and θ2. At first, the two vibrate independently, but over time the coupling
causes the frequencies to move closer together until eventually (at the time
marked “synchronization achieved”) the frequencies stabilize and the phases
remain locked together. As shown, the oscillators after entrainment are 180
degrees out of phase like the motion in Huygens’s entrained pendulum clocks.

Since Huygens’s time, entrainment has been observed throughout nature.
Individual heart muscle cells each pulse at their own rate; when two are placed
close together, they begin pulsing in synchrony. The period of rotation of the
planet Mercury is in a 3:2 relation to its period of revolution around the Sun;
this can be explained in terms of tidal forces. Women who live in the same
household often find that their menstrual cycles coincide [B: 145]. In Thailand,
thousands of fireflies gather in the trees at nightfall. At first, their flashing
is random and scattered, but over time they become increasingly entrained
until eventually they are all flashing simultaneously on and off. This, and
many other examples are documented in [B: 163].

Closely related to entrainment is the idea of one oscillator synchronizing
to another (but without feedback from the second to the first). This occurs,
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Fig. 6.1. When two oscillators are coupled together, their frequencies may influence
each other. When the outputs synchronize in frequency and lock in phase, they are
said to be entrained.

for instance, when the sleep cycle becomes synchronized with the daily cycle
of light and dark. In mammals, circadian rhythms are generated by a pace-
maker in the hypothalamus [B: 149] which contains about 16000 neurons.
Researchers believe that each neuron acts as an oscillator with an average
period of about 24.3 hours. The neurons are coupled together and driven by
light, which causes them (in the normal healthy individual) to synchronize to
the solar day. Certain species of clams synchronize their behavior to the tides;
even after being removed from the ocean they continue to open and close for
several days at their habitual rate.

Both entrainment and synchronization play important roles in music. It
is easy for people to synchronize body motions to repetitive stimuli. Picture
music as a (very complex) oscillator with a frequency defined by the period
of the beat. Then the listener is a second (very complex) oscillator that must
synchronize to the first in order to dance, to march in step, or to clap hands
with the beat. Such tasks are easy for most people and synchronization occurs
rapidly, typically within a few repetitions.

Entrainment occurs between the performers of an improvisational ensem-
ble. Picture each member as a separate (very complex) oscillator. In order to
play together, the players listen and respond to each other. Players influence
and are in turn influenced by each other, coupled by actively listening and
entrained to their common beat.

The processes of synchronization and entrainment are central to any kind
of beat tracking machine. Indeed, picture the computer as (yet another) os-
cillator that must synchronize to the music in order to accomplish the beat
tracking goal. If the computer can also control a drum machine (or has other
auditory output) then the machine can become a true player in the ensemble
only when it can achieve entrainment.
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6.2 Systems Notation

A dynamical “system” takes an input signal and maps it into an output sig-
nal. The word “dynamical” indicates that the system is not memoryless, that
is, that the current operation of the system depends not only on the input
at the present moment but on the history of the input (and possibly also
on the history of the output). Typically, this means that the system can be
described by a set of ordinary differential equations or by a set of difference
equations, depending on whether time is modeled as continuous or discrete.
The oscillators discussed in this chapter are just one kind of dynamical sys-
tem: the story of differential and difference equations is vast, and there are
a number of very good books such as Luenberger’s classic [B: 134] and the
recent Synchronization [B: 163].

There are two different ways of modeling time in a system: as continu-
ous or as discrete. The mathematics reflects this dichotomy: continuous-time
systems are described by differential equations and discrete-time systems are
described by difference equations. This section reviews the basic mathematical
notations.

In continuous time, t is a real number that represents a point in time. A
function (or signal) x(t) assigns a numerical value to each timepoint. Often
these functions are differentiable, and if so, then the symbols ẋ and ẍ represent
the first and second derivatives of x(t), that is, ẋ ≡ dx(t)

dt and ẍ ≡ d2x(t)
dt2 .

A differential equation is an implicit relationship between a signal and its
derivatives. For instance, consider the equation ẋ = −ax. This means that
there is some function x(t) which has the following property: its derivative is
equal to −a times itself. It is possible that there is an explicit representation
for the function x(t). For this particular case, a little calculus shows that
x(t) = e−at since ẋ = dx(t)

dt = de−at

dt = −ae−at = −ax(t).
One particularly useful differential equation is the second order linear equa-

tion
ẍ + ω2x = 0 (6.1)

which defines a function whose second derivative is equal to the minus of itself
times the constant ω2. This also has an explicit solution, x(t) = cos(ωt), which
can be verified by taking the second derivative of x(t) and checking that it
fulfills (6.1). Thus this system describes an oscillator with frequency f where
ω = 2πf . Even when it is not possible to write down an explicit solution,
it is almost always possible to simulate the differential equation, to write a
computer program that can calculate an unknown x(t).

In discrete time systems, integers k are used to represent points in time.
A sequence x[k] assigns a numerical value to each point of time. Discrete time
systems can exhibit the same wide range of behaviors as their continuous time
counterparts. For example, the system x[k] = ax[k − 1] has the closed form
solution x[k] = akx[0]. For |a| < 1, the signal decays exponentially from the
starting value x[0] towards a resting value at 0.
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A particularly useful discrete system is the linear oscillator

x[k] = βx[k − 1] − x[k − 2].

Depending on the values of β and the initial conditions x[0] and x[1], this
generates a sampled sinusoidal signal. The resulting oscillators are studied in
[B: 2, B: 64]. Unlike differential equations, which define the signal implicitly,
such discrete systems are explicit recipes for the creation of the signal. Given
any β and any two starting values x[0] and x[1], the system provides a recipe
for x[2] (as βx[1] − x[0]). Next, the recipe is applied again to find x[3] (as
βx[2] − x[1]), and so on. While only the simplest difference equations have
explicit closed form solutions, it is straightforward to follow the recipe and
write computer code that simulates the evolution of the system.

Speaking loosely, systems in the world often refer to variables such as
position, momentum, and velocity, which can take on values at any time.
Hence they are often best modeled continuously using differential equations.
In contrast, computer-based systems most naturally represent quantities in
discrete time as sequences of numbers. Fortunately, there is a close relationship
between the two kinds of models. When taking samples of a signal, they must
be taken fast enough so that important information is not lost. Suppose that
a signal has no frequency content above B Hz. The sampling theorem [B: 102]
states that if sampling occurs at a rate greater than 2B samples per second,
it is possible to reconstruct the original signal from the samples alone. Thus,
as long as the samples are taken rapidly enough, no information is lost. On
the other hand, when samples are taken too slowly, an arbitrary signal cannot
be reconstructed exactly from the samples; the resulting distortion is called
aliasing.

To make this concrete, suppose that a continuous-time signal x(t) has
bandwidth less than B (its spectrum contains no energy above B Hz). If the
time interval Ts between the samples of x(t) is less than 1

2B , all is well: the
original x(t) can be completely rebuilt from just its samples. For example,
the sinuous curve in Fig. 6.2 is sampled every Ts seconds and the kth sample
occurs at time x(kTs) = x[k].

x(t)

Ts 2Ts 3Ts 4Ts

x(t)|t=kTs = x(kTs) = x[k]

x(2Ts)=
x[2]

x(3Ts)=
x[3]

x(4Ts)=
x[4]

Fig. 6.2. The sampling of a continuous sig-
nal can be accomplished without loss of in-
formation as long as the signal is bandlimited
and the sampling is rapid enough. A common
notation uses square brackets to indicate the
discretized version of the signal. Thus x(t)
evaluated at time t = kTs is equal to x(kTs),
which is notated x[k].

The significance of the sampling theorem is that only the samples x[k]
need to be saved and it is still possible to calculate the value of x(t) at any
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point. Fortunately, this result for signals also transfers to systems, and any
continuous system can be mapped into an equivalent discrete-time system
which will have inputs and outputs that are the same at the sampling times.
For example, the continuous system ẋ = ax behaves the same as the discrete
system x[k + 1] = eaTsx[k].

6.3 Oscillators

The Latin word oscillare means “to ride in a swing.” It is the origin of oscillate,
which means to move back and forth in steady unvarying rhythm. Thus, a
device that creates a signal that moves repeatedly back and forth is called an
oscillator.

The Pendulum: A mass suspended from a fixed point that swings freely
under the action of gravity is called a pendulum. To build a mathematical
model of the pendulum, let θ be the angle between the rod and an imaginary
vertical (dotted) line and let � be the length of the rod, as shown in Fig. 6.3.
Using Newton’s laws of motion, it is a fun exercise to write down the equations
of motion that specify how the pendulum moves. The result is the differential
equation

θ̈ + ω2 sin(θ) = 0 (6.2)

that describes the evolution of the angle over time where ω2 = g
� and where g is

the gravitational constant. While (6.2) does not have a simple solution, it can
be approximated quite closely when the angle is small since sin(θ) ≈ θ for small
θ. This reduces the nonlinear pendulum equation (6.2) to the linear oscillator
(6.1) and the frequency of oscillation of the pendulum is approximately f =
1
2π

√
g
� .

lθ

Fig. 6.3. The pendulum sways back and forth at a characteristic fre-
quency f that depends on the length of the rod 
, the initial offset, and
the strength of gravity g, but not on the mass or the size of the arc.
With small displacements it moves slowly and traverses a small per-
centage of the arc. For larger displacements, it moves faster and swings
further. The period remains the same.

There are two problems with the use of a pendulum as a timekeeper.
First, friction will eventually cause the pendulum to stop swinging. This is not
included in the model (6.2) and some method of regularly injecting energy into
the pendulum is needed in order to counteract the inevitable decay. Second,
oscillators like (6.1) and (6.2) are only “marginally” stable: there is no force
that acts to restore them to their operating point once dislodged. Computer
simulations of such oscillators eventually either die away to zero or explode
in amplitude due to the accumulation of small errors. For example, using the
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ode23 command in MATLABR©, a linear oscillator at 1 Hz degenerates to
an amplitude of 10−7 within about 5000 s of simulation time. This occurs
because numerical roundoff errors aggregate over time. In order to create a
pendulum clock that is unchanged by random perturbations, it is necessary
to incorporate some kind of feedback mechanism.

In his 1658 book Horologium, Christian Huygens [B: 101] introduced an
escapement mechanism, shown in Fig. 6.4, that made pendulum clocks prac-
tical. Such clocks are accurate to within a few minutes a day and were among
the most precise ways to measure time until the invention of electric clocks in
the early 20th century. Mathematically, the escapement can be modeled by

anchor

escape wheel

pendulum

pallet

Fig. 6.4. Escapement mechanisms regulate the
motion of the pendulum in a grandfather clock.
As the pendulum rocks back and forth, the an-
chor seesaws, engaging and disengaging the pal-
lets which constrain the gear. At each swing, the
gear (called the escape wheel) ratchets one click.
The sound of the escapement is the familiar tick
and tock of a grandfather clock. At each swing,
the mechanism transfers a small amount of en-
ergy ε from a descending mass that is attached
to the escape wheel by a rope (not shown) to
push the pendulum, counteracting the friction
and stabilizing the oscillation.

adding two terms to (6.2). The first is a frictional term c proportional to the
(negative) of the velocity of the angle θ̇. Friction opposes the motion of the
pendulum in proportion to its speed. The second term represents the energy
g(t) added by the anchor-escapement mechanism. Thus (6.2) becomes

θ̈ − cθ̇ + ω2 sin(θ) + g = 0. (6.3)

For example, g(t) might add a small pulse of energy ε each time the pendulum
reaches the end of its arc, that is, whenever θ̇ = 0. Unlike simulations of
(6.1) and (6.2), numerical simulations of (6.3) do not decay (or explode) over
time. A stable oscillator can be built by providing feedback around a linear
oscillator.

Van der Pol’s Oscillator: One of the most popular oscillators is named after
Balthasar Van der Pol [B: 234] who modeled oscillating electronic circuits with
the nonlinear differential equation

ẍ − ε(1 − x2)ẋ + ω2x = 0. (6.4)

This can be interpreted as a linear oscillator (ẍ + ω2x = 0 when ε = 0)
surrounded by a small feedback proportional to ε that stabilizes the oscillation.
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Accordingly, for small ε, the output x(t) of the Van der Pol oscillator is nearly
sinusoidal. Three typical trajectories are shown in Fig. 6.5.

time

(c)

(b)

(a) Fig. 6.5. Three typical trajectories of the Van
der Pol oscillator with ω = 1 and (a) ε = 1, (b)
ε = 5, and (c) ε = 10. Trajectories become more
sinusoidal as ε → 0. The shape of the output
waveform changes with the frequency.

The Fitzhugh–Nagumo Oscillator: This two-variable differential equation
[B: 61] can be used to model the cyclical action potential of neurons. The
model gradually accumulates energy until a threshold is reached; it then “fires”
and releases the energy, beginning a new cycle. The model is given by the
differential equation

dx

dt
= −x(x − τ1)(x − τ2) − y − Ω (6.5)

dy

dt
= ε(x − τ3y)

where the τi are thresholds, ε defines the frequency of oscillation, and Ω is a
driving term. A typical trajectory is shown in Fig. 6.6.

1.0

0.6

0.2

-0.2

time

τ1

τ2

x

y

Fig. 6.6. A typical trajectory of the
Fitzhugh–Nagumo oscillator. Parameters
for this simulation are τ1 = 1, τ2 = 0.2,
τ3 = 1.2, ε = 0.001, and Ω = 0.1.

The y variable rocks back and forth between modest growth and modest
decline depending on whether x > τ3y or not. The interesting behavior is given
by x, which is effectively a cubic. When the sign of the cubic term is positive,
x experiences rapid growth; when the sign is negative, x decays rapidly. The
period of growth occurs when τ1 < x < τ2, and the detailed shape of the
waveform changes with the frequency. The Fitzhugh–Nagumo oscillator has
been proposed for use in locating downbeats in rhythmic passages by Eck
[B: 56].

Phase-reset Oscillators I: The stabilizing nonlinearities in the Van der Pol
and Fitzhugh–Nagumo oscillators (6.4)–(6.5) are smooth and differentiable;
other oscillators use more severe, discontinuous nonlinearities. For example
the phase-reset methods, also called integrate-and-fire oscillators, contain an
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integrator (or a summer) that increases its value until it reaches a predefined
positive threshold value τ . Whenever the output crosses the threshold, it is
immediately reset to a fixed nonnegative value y0. To write this mathemati-
cally, let y[k] be the output of the oscillator at time k, let b ≥ 0 be the amount
of increase, and a > 0 the decay (or growth) factor. Then the oscillator is

y[k] = f(ay[k − 1] + b) (6.6)

where the nonlinearity f(·) is

f(s) =
{

s 0 < s < τ
y0 otherwise .

For example, if a = 1 and y0 = 0, the output of the oscillator is a ramp
or sawtooth wave with a period equal to k = τ

b as shown in Fig. 6.7(a).
Typical trajectories for two a 
= 1 cases are shown in Fig. 6.7(b) and (c). The
parameters have been chosen so that the period is 1

2 s.

0 1 2 3

(a)

(b)

(c)

time (seconds)

Fig. 6.7. The trajectories of three phase-reset oscilla-
tors: (a) a ramp oscillator with a = 1, (b) a growth os-
cillator with a > 1, and (c) a decay oscillator with a < 1.
Specific parameter values used in these simulations are
given in [B: 6].

Wavetable Oscillators I: A wavetable oscillator stores one or more periods
of a signal in a table and reads values from the table to generate its output. In
order to change frequency, the data is read at different speeds. This provides
complete flexibility in the shape of the output of the oscillator because the
data in the wavetable can be chosen arbitrarily. As a consequence, the shape
of the output is independent of the frequency of the oscillator.

It is easiest to see how this works with continuous signals. Consider a
periodic waveform w(t) that is expanded or contracted by a factor of α; the
result is w(αt). For example, w(2t) has the same basic shape as w(t), but
all features are sped up by a factor of two. The result is a doubling of all
frequencies. Similarly, w( t

2 ) stretches the waveform and moves all frequencies
down an octave. This is demonstrated in Fig. 6.8.

Analogous transformations can be made directly on digital samples of a
single period of w(t). Suppose that w(t) is sampled every Ts s and the samples
are stored in a vector w[k] for k = 0, 1, 2, . . . , N − 1. For example, Fig. 6.9(a)
shows a single period of a waveform w(t) and (b) shows a corresponding sam-
pling that records 23 samples in the period. Using resampling techniques, these
23 samples can be transformed into (almost) any other number of samples;
Fig. 6.9(c) shows a resampling into 28 samples. If played back at the same
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w(t)

w(2t)

w(t/2) Fig. 6.8. Stretching and compressing
a signal w(t) by a factor of α changes
all frequencies by a factor of α. The
cases α = 2 (up an octave) and α = 1

2

(down an octave) are shown.

rate, this would correspond to an α of 23
28 , a slowing down (lower pitched

version) of the signal to about 82% of its original speed.
If the bandwidth of w(t) is B and if the sampling interval is Ts < 1

2B ,
it is possible to exactly reconstruct w(s) at any point s using only the N
samples. This Shannon reconstruction2 is computationally intensive, but can
be approximated using relatively simple interpolation methods. It is always
possible to resample faster, to lower the pitch. But resampling slower (raising
the pitch) can be done without distortion only as long as the resampled in-
terval αTs remains less than 1

2B . For large α, this will eventually be violated.
[B: 223] discusses this in more detail for a collection of standard waveshapes.

(a)

(b)

(c)

one period

Fig. 6.9. A periodic waveform w(t) in
(a) is sampled at one rate in (b). Dig-
ital resampling of (b) results in (c),
which represents the same waveform
but at a different rate. According to
the resampling theorem, the data in
(c) is indistinguishable from a direct
sampling of (a) at the new rate.

Indexing into a wavetable w of size N is accomplished using the recursion

s[k] = (s[k − 1] + α) mod N (6.7)

where mod N is the remainder after division by N and where the starting
value is s[0] = 0. The output of the oscillator at time k is

o[k] = w((s[k] + β) mod N). (6.8)

Thus α specifies the frequency of the oscillation ( α
NTs

Hz) and β specifies the
phase.

If s[k] + β happens to be an integer then the output of the oscillator is
straightforwardly w(s[k] + β). When s[k] + β is not an integer, interpolation
is needed to estimate an appropriate value. The simplest method is to use
2 Details of the reconstruction of bandlimited signals along with MATLABR© code

to carry out the required procedures can be found in [B: 102].
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linear interpolation. For example, if s[k] + β were 10.2 then the output would
be 0.8w(10) + 0.2w(11). More sophisticated interpolation methods would not
be atypical.

Such wavetable synthesis is commonly used in sample playback electronic
musical instruments [W: 42]. For example, the stored waveform might be a
multi-period sampling of an acoustic instrument such as a flute playing C.
Whenever a key is pressed on the keyboard, the recording of the flute note
plays back but with a different α to transpose the note to the desired pitch.
One advantage of the wavetable approach is that it allows straightforward
control over the frequency (via α) and phase (via β), and cleanly separates
these control parameters from the shape of the oscillatory waveform (the
vector w).

Phase-reset Oscillators II: On the surface it may appear as if the wavetable
equation (6.7) is the same as the phase-reset equation (6.6) with the mod
function serving the same role as f(·). But it differs in two ways. First, there is
no threshold in (6.7)–(6.8). Second, the output y[k] of the phase-reset oscillator
is the value of the oscillator at time k whereas s[k] in the wavetable oscillator
is the index at time k into the wavetable w[k].

A threshold τ can be incorporated into the wavetable approach by indexing
into w (an N -vector representing the waveshape) using the recursion

s[k] =
{

0 o[k] ≥ τ
(s[k − 1] + α) mod N otherwise (6.9)

where o[k] = w(s[k]) is the output of the oscillator at time k. If w never
exceeds the threshold, the period of the oscillator is NTs

α . If w does exceed the
threshold, the period is mTs

α where m is the (first) index at which w(m) ≥ τ .
Phase-reset oscillators are important because they provide a different way to
incorporate inputs.

6.4 Adaptive Oscillators

The oscillators of the previous section are unforced: they have no inputs other
than the fixed parameters of the model. In order for an oscillator to respond to
signals in the world, there must be a way for it to incorporate external signals
into its operation: this is a forced oscillator. In order to be useful, there must
be a way for the parameters of the oscillator to change in response to external
events: this is an adaptive oscillator. There are four key issues in the design
of an adaptive oscillator:

(i) the kind of oscillator (Van der Pol, phase-reset, wavetable, etc.)
(ii) the kind of inputs it is designed to accommodate (sinusoidal, im-

pulsive, random, etc.)
(iii) which parameters will be adapted
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(iv) the mechanism (or algorithm) implementing the adaptation.

The remainder of this section examines a number of different adaptive oscil-
lators; subsequent sections examine their applicability to the rhythm-finding
and beat tracking problems.

6.4.1 The Phase Locked Loop

Many modern telecommunication systems operate by modulating a sinusoidal
“carrier” wave with a message sequence that is typically a long string of binary
encoded data. In order to recover the data, the receiver must be able to figure
out both the frequency and phase of this carrier wave. To accomplish this, a
local oscillator at the receiver generates a sinusoid and adapts its frequency
and phase to match the received (modulated) sine wave. The phase locked
loop (PLL) is one way of accomplishing this goal.3 The PLL addresses the
four design issues of the adaptive oscillator in the following ways:

(i) the oscillator in a PLL is a wavetable with the shape of a sinusoid
(ii) the PLL is designed to operate with the modulated sinusoid (the

received signal) as input
(iii) the phase of the local oscillator is adapted
(iv) the adaptation proceeds using a “hill climbing” strategy

The development of the PLL proceeds in two steps. First, the frequency is
assumed known and an algorithm for finding the phase is derived. Next, both
the phase and frequency are assumed unknown: a dual structure can estimate
both.

Phase Estimation with the PLL: Suppose first that the input signal is a
sinusoid r(t) = cos(2πft + φ) with known frequency f but unknown phase φ.
One way to estimate the phase φ is shown in block diagram form in Fig. 6.10.
The local oscillator (designated ) generates the sinusoidal signal s(t) =
cos(2πft + θ). The multiplication of r(t) and s(t) shifts the energy to near
zero where it is lowpass filtered (LPF) to remove high frequency components.
The magnitude of the resulting low frequency term is adjusted by changing
the phase θ. A bit of trigonometry (as shown below) demonstrates that the
value of θ that maximizes the low frequency component is the same as the
phase φ of r(t).

To be specific, let

J(θ) = LPF{r(t) cos(2πft + θ)} (6.10)

be a “cost” or “objective” function that represents the relationship between
the signals in the PLL and the desired θ. Using the cosine product relation-
ship,4 this is
3 This discussion draws heavily from [B: 102].
4 i.e., the trigonometric identity cos(x)cos(y) = 1

2
[cos(x − y) + cos(x + y)].
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LPFxr(t)
θ(t)

cos(2πft+θ(t))

−μ ∫

Fig. 6.10. The PLL can be viewed as a
local oscillator that adapts its phase θ(t)
over time so as to maximize the (aver-
aged) zero frequency value of the demod-
ulated signal. As time progresses, θ(t) →
φ, providing an estimate of the unknown
phase of the input signal r(t).

J(θ) = LPF{cos(2πft + φ) cos(2πft + θ)}

=
1
2
LPF{cos(φ − θ)} +

1
2
LPF{cos(4πft + θ + φ)}

≈ 1
2

cos(φ − θ)

assuming that the cutoff frequency of the lowpass filter is well below 2f . Thus,
the values of θ that maximize J(θ) occur when θ = φ+2nπ for any integer n.

One way to find the maximum of a function is to use a gradient strategy
that iteratively moves the value of the argument in the direction of the deriva-
tive. Because the gradient always points “uphill,” this is called a hill-climbing
algorithm. The derivative of (6.10) with respect to θ can be approximated5 as

dJ(θ)
dθ

≈ −LPF{r(t) sin(2πft + θ)}

and the corresponding hill-climbing algorithm is θ̇ = μdJ(θ)
dθ as depicted in

block diagram form in Fig. 6.10. In discrete time this becomes

θ[k + 1] = θ[k] + μ
dJ(θ)

dθ

∣∣∣∣
θ=θ[k]

.

Substituting for the derivative and evaluating at the appropriate θ yields

θ[k + 1] = θ[k] − μLPF{r(kTs) sin(2πfkTs + θ[k])} (6.11)

where Ts is the sampling interval and k is the iteration counter. The phase
parameter θ in the PLL plays the same role that the phase parameter β plays
in the wavetable oscillator (6.8). Using a wavetable w defined to be the N
samples of a sinusoid, the evolution of θ acts to synchronize the phase of the
local oscillator (that is, of w) to the phase of the input r(t).

Frequency Estimation with the PLL: A standard way to adjust the fre-
quency of a local oscillator to match the frequency of the input is based on
the observation that frequency is equal to the integral of phase. For example,
5 The LPF and the derivative commute because they are both linear operations.

The approximation requires a small stepsize μ as described in Appendix G of
[B: 102].
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the sinusoid cos(2πft + θ(t)) with time varying phase θ(t) = 2πct + b is indis-
tinguishable from cos(2π(f + c)t + b). Thus a “ramp” in phase is equivalent
to a change in frequency that is proportional to the slope of θ.

One approach is to use a recursive lowpass filter that can track a ramp
input. By linearizing, this can be shown to result in a θ(t) that converges
to the ramp that properly accounts for the frequency offset. A conceptually
simpler approach is based on the observation that the phase estimates of
the PLL “converge” to a line. Since the slope of the line is proportional to
the difference between the actual frequency of the input and the frequency
of the oscillator, it can be used to make iterative corrections. This indirect
method cascades two PLLs: the first finds the line and indirectly specifies the
frequency. The second converges to a value appropriate for the phase offset.

LPFx

+

r(t)
θ1(t)

cos(2πft+θ1(t))

−μ1 ∫

LPFx
θ2(t)

cos(2πft+θ1(t)+θ2(t))

−μ2 ∫

θ1(t)+θ2(t)

Fig. 6.11. A pair of PLLs can efficiently
estimate the frequency offset at the re-
ceiver. The output θ1 of the first PLL
“converges” to a line with slope that es-
timates the true frequency of the input.
Adding this line to the (phase input) of
the second PLL effectively corrects its fre-
quency and allows convergence of θ2.

The scheme is pictured in Fig. 6.11. Suppose that the received signal has
been preprocessed to form r(t) = cos(2πfrt + φ). This is applied to the in-
puts of two PLLs. The top PLL functions exactly as expected from previous
sections: if the frequency of its oscillator is f�, then the phase estimates θ1

converge to a ramp with slope 2π(fr − f�), that is,

θ1(t) → 2π(fr − f�)t + b

where b is the y-intercept of the ramp. The θ1 values are then added (as shown
in Fig. 6.11) to θ2, the phase estimate in the lower PLL. The output of the
bottom oscillator is

cos(2πf�t + θ1(t) + θ2(t)) = cos(2πf�t + 2π(fr − f�)t + b + θ2(t))
= cos(2πfrt + b + θ2(t)).

Effectively, the top loop has synthesized a signal that has the “correct” fre-
quency for the bottom loop since a sinusoid with frequency 2πfrt and ‘phase’
θ1(t)+θ2(t) is indistinguishable from a sinusoid with frequency 2πft and phase
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θ2(t). Accordingly, the lower PLL acts just as if it had the correct frequency,
and so θ2(t) → φ − b.

Variations on the PLL: The adaptation of the phase and frequency com-
ponents of the PLL is based on the objective function (6.10) which essentially
correlates the input with the waveshape of the oscillator. A variety of alter-
native objective functions can also be used. For example, the least squares
objective

JLS(θ) = LPF{(r(t) − cos(2πft + θ))2} (6.12)

leads to the algorithm

θ[k + 1] = θ[k] − μLPF{(r(kTs) − cos(2πfkTs + θ[k])) sin(2πfkTs + θ[k])}.

Similarly, the objective function

JC(θ) = LPF{(r(t) cos(2πft + θ))2}

leads to the “Costas loop”

θ[k + 1] = θ[k] − μ LPF {r(kTs) cos(2πfkTs + θ[k])}
LPF {r(kTs) sin(2πfkTs + θ[k])}. (6.13)

Analysis of these variations of the PLL (as in [B: 102]) show that they are
more-or-less equivalent in the sense that they have the same answers in the
ideal (no noise) case, though the algorithms may react differently to noises.

The algorithm (6.11) incorporates a lowpass filter. The requirements on
this filter are mild, and it is common to simplify the iteration by removing
the filter completely, since the integration with the small stepsize μ also has
a lowpass character. Similarly, the lowpass filter may be absent from some
implementations of (6.13).

6.4.2 Adaptive Wavetable Oscillators

A wavetable oscillator (as introduced in Sect. 6.3) consists of an array w
containing N stored values of a waveform. The output of the oscillator at
time k is

o1[k] = w((s[k] + β1) mod N)

where the indices into w are given by the recursion

s[k] = (s[k − 1] + α) mod N. (6.14)

As before, α specifies the frequency of the oscillation while β1 defines the
phase. The oscillator can be made adaptive by adjusting the parameters to
align the oscillator with an external input. This can be accomplished in several
ways.
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Suppose that the input to the oscillator is i[k]. An analogy with the PLL
uses the correlation-style objective function

J(β1) = LPF{i[k]o1[k]}

that directly parallels (6.10). The β1 that maximizes J provides the best fit
between the input and the oscillator. It can be adapted using a hill-climbing
strategy

β1[k + 1] = β1[k] + μ
dJ

dβ1
(6.15)

= β1[k] + μLPF{ i[k]
dw

dβ1

∣∣∣∣
β1=β1[k]

}.

Since w is defined by a table of values, dw
dβ1

is another table, the numerical
derivative of w (the time derivative of w and the derivative with respect to
β1 are equal up to a constant factor). Several candidate wavetables and their
derivatives are shown in Fig. 6.12.

waveshape

derivative of
waveshape

cosine Gaussian
Large-
Kolen

Fitzhugh-
Nagumo

Van der
Pol

Fig. 6.12. Five common wavetables and their derivatives. The cosine wavetable is
used in the PLL. The Gaussian shape is shifted so that the largest value occurs
at the start of the table. The Large–Kolen oscillator wavetable is defined by 1 +
tanh (γ(cos(2πft) − 1)). The Van der Pol and Fitzhugh–Nagumo waveshapes are
defined using waveforms culled from the numerical simulations in Figs. 6.5(b) and
6.6.

As with the PLL, the update for the frequency can be done using the
integral/derivative relationship between frequency and phase. To be specific,
let

o2[k] = w((s[k] + β1[k] + β2[k]) mod N)

be a second oscillator (corresponding to the bottom PLL in Fig. 6.11). A gra-
dient update for β2 proceeds as above by maximizing J(β2) = LPF{i[k]o2[k]}
with respect to β2. The formula is the same as (6.15) with the appropriate
substitutions.
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While the two serial phase estimates of the dual PLL can track changes in
frequency, they do not adapt the frequency parameter. Similarly, the adaptive
oscillator using β1 and β2 can follow changes in the frequency of the input,
but the parameter α in (6.14) is never changed. A consequence of this is that
if the input ceases, the oscillator returns to its original frequency.

It is also possible to adapt the frequency parameter. This allows the oscilla-
tor to “learn” the frequency of the input and to continue at the new frequency
even if the input stops. Perhaps the simplest technique for adapting the fre-
quency is to use a gradient strategy that maximizes J(α) = LPF{i[k]o1[k]}.
This is:

α[k + 1] = α[k] + μα
dJ

dα
(6.16)

= α[k] + μαLPF{ i[k]
dw

ds

ds

dα

∣∣∣∣
α=α[k]

}.

Since s[k] is defined by the recursion (6.14), the derivative with respect to α
cannot be expressed exactly. Nonetheless, when the stepsizes are small, it can
be approximated by unity,6 and so the final form of the update is the same
as the update for β. Because the frequency parameter is more sensitive, its
stepsize μα is usually chosen to be considerable smaller than the stepsize used
to adapt the phase.

In adapting the βs and αs of the adaptive wavetable oscillator, other ob-
jective functions may be used. For example, minimizing LPF{(i[k] − o[k])2}
leads to an update that optimizes a least squares criterion while maximizing
LPF{(i[k]o[k])2} leads to a “Costas loop” method of updating the oscillator
parameters. These parallel directly the sinusoidal methods associated with the
PLL in (6.13).

Besides the PLL, many common oscillators can be approximated using the
adaptive wavetable oscillator structure. For example, for Large and Kolen’s
[B: 123] oscillator

(i) the wavetable is defined by 1 + tanh (γ(cos(2πft) − 1)) as shown
in Fig. 6.12

(ii) the input is optimized for pulses of the same shape as the input,
but is also appropriate for a spike train

(iii) both the phase β and the frequency α of the local oscillator are
adapted

(iv) the adaptation proceeds using a “hill-climbing” strategy.7

When attempting to locate the position of a train of spikes in time, oscillators
that use pulses (such as Large and Kolen’s or the Gaussian) are a good idea.

6 In certain situations, this kind of approximation can lead to instabilities in the
adaptation. See Sect. 10.6 of [B: 102] for an example using the PLL.

7 The phase and period updates (equations (4) and (6) in [B: 123]) are the same as
(6.15) and (6.16) but for the addition of some factors which scale the stepsizes.
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The pulse can be thought of as providing a window of time over which the
oscillator expects another spike to occur. If the spike occurs at exactly the right
time, the derivative is zero and there is no change. If the spike occurs slightly
early, then the derivative is positive and the phase increases. If the spike occurs
late then the derivative is negative and the phase decreases. This process of
adjustment actively aligns the oscillator with the spike train. Perhaps just
as important, there is a zone between pulses where the waveshape and the
derivative are small. This makes the oscillator insensitive to extraneous spikes
or noisy data that occur far away from expected spike locations.

Figure 6.13 shows how the adaptive wavetable oscillator responds to an
input

i(t) =
{

1 t = nT, n = 1, 2, . . . , M
0 otherwise (6.17)

that is a regular train of M = 19 spikes spaced T = 500 ms apart. This simu-
lation used the Gaussian pulse oscillator with phase and frequency parameters
adapted according to (6.15) and (6.16). The α parameter was initialized with
period 550 ms, corresponding to a 10% error. The phase and frequency con-
verge within a few seconds and the pulses align with the spikes. Observe that
the oscillator continues at the adapted frequency even after the input ceases
at around 10 s.

0 2 4 6 8 10 12
time (seconds)

input
spikes

oscillator
output

Fig. 6.13. A train of spikes are input into an adaptive oscillator using the Gaussian
waveshape. Within a few periods, the oscillator synchronizes with the input. (The
initial value was α = 550 ms while the correct value was α = 500 ms.) After
synchronization, the input can cease (as occurred at 10 s) and the oscillator continues
at the new rate.

Figure 6.14 shows that the same oscillator may synchronize in various ways
to the same input depending on the initial values. The figure shows 1:2, 2:1,
and 3:4 entrainments where n:m means that n periods of the oscillator occur
in the same time as m periods of the input. While such nonunity entrainments
are common in the mode locking of oscillators, they are encouraged by the
specifics of the waveshape. The dead (zero) region between pulses means that
the adaptation is insensitive to spikes that occur far away from the expected
location. For example, in the 1:2 entrainment, the “extra” spikes occur at
precisely the point where they will have the least influence on the adaptation.
On the other hand, in the 2:1 entrainment, the input is zero for the duration of
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the “off beat” pulse and hence does not affect adaptation. The final (bottom)
simulation in Fig. 6.14 shows a stable 3:4 entrainment. These simulations
(using the Gaussian pulse shape) are effectively the same as using the Large–
Kolen oscillator. Using a cosine wave (as suggested in [B: 144], for instance)
also converges similarly, suggesting that the details of the waveshape are not
particularly crucial.

input spikes

time

2:1(a)

(b)

(c)

(d)

(e)

1:2

1:1

1:2

3:4

Fig. 6.14. The input spike train (6.17) ex-
cites the adaptive oscillator as in Fig. 6.13.
The initial value in the top plot was α =
240 ms and the oscillator synchronizes to a
2:1 rate (two oscillator pulses occur for each
input spike). The two middle plots were ini-
tialized at α = 1050 ms. The oscillator syn-
chronizes to a 1:2 rate (one oscillator output
for every two input spikes). Depending on the
initial value of β, the oscillator can lock onto
either the odd or the even spikes. Other syn-
chronizations such as 3:4 are also possible.

The stepsize parameters μ and μα affect the adaptation and synchroniza-
tion in a direct way: larger stepsizes allow faster convergence but also may
result in overshoot or unstable behaviors. Smaller stepsizes allow smoother
adaptation at the cost of longer time to convergence. Finding useful values
of the stepsizes is often a matter of trial and error. The behavior of adaptive
wavetable oscillators will be discussed further in Sect. 6.5. The survey of kinds
of adaptive oscillators turns next to consider ways that phase-reset oscillators
may be made adaptive.

6.4.3 Adaptive Phase-reset Oscillators

The input to the adaptive wavetable oscillator is used only in the adaptation
of the control parameters. The input to the adaptive phase-reset oscillator is
incorporated directly into the thresholding process. In some cases, this allows
the adaptive phase-reset oscillator to synchronize more rapidly to the input
without suffering from the effects of a large stepsize.

As in (6.9), the threshold τ defines the indexing into a wavetable w using
a recursion

s[k] =
{

0 o[k] + i[k] ≥ τ
(s[k − 1] + α) mod N otherwise (6.18)

where the input to the oscillator at time k is i[k] and the output from the
oscillator is o[k] = w(s[k]). The adaptation of the frequency parameter α can
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proceed in any of the usual ways. McAuley [B: 144] suggests8 minimizing the
least square error JLS(α) = LPF{i[k](τ−o[k])2} using a gradient strategy. An
alternative is to maximize the correlation objective Jcor(α) = LPF{i[k]o[k]}.
In either case, the update for α is

α[k + 1] = α[k] ± μ
dJ

dα

where the + is used to maximize and the − is used to minimize. Both objective
functions result in performance similar to that in Fig. 6.15. The top plot shows
α converging to its final value of 1 within a few seconds. Observe that the
convergence is not necessarily monotonic: the first step moves in the “wrong”
direction because of an unfortunate initial relationship between the phase of
the output of the oscillator and the onset of the input spikes. Despite the false
start, convergence occurs within a few periods of the input. The bottom plot
shows the output of the oscillator as it resets its phase with the onset of each
input spike. Synchronization aligns the output with the input spikes. This
simulation used the sinusoidal wavetable; others such as the Gaussian, the
Large–Kolen, Van der Pol, and Fitzhugh–Nagumo shapes (recall Fig. 6.12)
behave approximately the same.

1.4

1.2

1.0

α

0 1 2 3
time (seconds)

input
spikes

output

Fig. 6.15. The phase-reset oscillator
(6.18) adapts to minimize the correlation
between the input (6.17) and the output
of the oscillator, shown in the bottom
plot. The frequency parameter α con-
verges rapidly to its desired value of 1,
despite initially moving in the wrong di-
rection. Each time an input spike arrives,
the oscillator resets. The small circles an-
notate the output of the oscillator at the
points of reset, which move to align the
maximum points of the output with the
input spikes.

6.4.4 Adaptive Clocking

The essence of a clocking device is that it must specify a sequence of equidis-
tant time periods. This requires two parameters: one for the period T and
one for the phase (or starting point) τ . The idea of adaptive clocking is to
adjust these two parameters directly based on properties of the input. Thus
the final kind of “adaptive oscillator” is not really an oscillator at all but a
way of marking time so as to achieve synchronization with an input.
8 McAuley’s algorithm has other features (such as activation sharpening) that dis-

tinguish it from the present discussion.
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The methods of the previous sections create an objective function by com-
paring the output of the oscillator to the input: the parameters are adjusted
so as to make the output look more like the input. Since there is no wavetable
and no function generating an output for the adaptive clocking, it must oper-
ate differently. One approach is to use the error in time between the predicted
location of subsequent events and the actual location of those events. By ad-
justing the parameters, better predictions can be made. Thus the adaptive
clocking uses an objective function that measures errors in time rather than
errors in amplitude (like the least square and correlation objectives of the pre-
vious sections). This is analogous to one of the algorithms in [B: 48], though
the inputs are quite different.

To be concrete, define the objective function

J(T , τ) =
N∑

n=1

(In − (τ + nT ))2 (6.19)

where the time index is suppressed and where In represents the (actual) lo-
cation of the event n clock ticks into the future. This can be interpreted as
minimizing the (squared) difference in time between N nearby events and the
predictions (τ + nT ) of when those events will occur. The parameters that
minimize this J are (locally, at least) the best representation of the input.
This is illustrated in Fig. 6.16 for N = 2.

τ τ+Τ τ+2Τ

I1 I2

current
estimate
at time k

Fig. 6.16. In adaptive clocking, the actual
locations of the input pulses (indicated by
the In) are compared to the estimated loca-
tions τ + nT . The differences (indicated by
the paired arrows) can be used to update the
τ and T parameters to achieve synchroniza-
tion.

As in the previous sections, optimal values can be found using a gradient
strategy which leads to the iterations

τ [k + 1] = τ [k] + μτ ((I1[k] − τ [k] − T [k]) + (I2[k] − τ [k] − 2T [k])) (6.20)
T [k + 1] = T [k] + μT ((I1[k] − τ [k] − T [k]) + 2(I2[k] − τ [k] − 2T [k]))

for the N = 2 case. It is also possible to minimize J of (6.19) in one step using
a matrix formulation since both parameters enter linearly. However, both of
these approaches overlook a subtlety: the I values are also a function of the
unknowns.

To see the issue, suppose that i(t) is the input. Unless the locations of
the events in the input are known beforehand (which is not a reasonable
assumption since the goal of the adaptation is to locate the events that form
the regular succession), the value of the I depends on the current estimates.
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Let g(t) be a function that is large near the origin and that grows small
as t deviates from the origin. The Gaussian function g(t) = e−t2/σ2

is one
possibility, where σ is chosen so that the “width” of g(t) is narrower than the
time span expected to occur between successive events. The “actual” location
of the nth event can then be defined as

In = argmax{i[k] g(t − τ [k] − nT [k])}. (6.21)

To understand this, observe that g(t−τ [k]−nT [k]) is a (Gaussian) pulse with
variance σ2 and centered at τ [k] + nT [k], the estimated location of the nth
subsequent event. The product i[k]g(t− τ [k]− nT [k]) weights the input data
so as to emphasize information near the expected event and to attenuate data
far from the expected event. The argmax{·} function picks out the largest
peak in the input lying near the expected location, and returns the location
of this peak. This is (likely) the actual location of the event. The difference
between the argmax (the likely location of the event as given in the data)
and τ [k] + nT [k] (the estimated location of the event) is thus the basis of
the objective function. If the input were a regular succession of pulses and
the estimates of τ and T were accurate, then the objective function would be
zero. Appendix B of [B: 206] (which can be found on the CD) carries out an
explicit calculation of the derivative of this argmax function and shows that
it may be closely approximated by the simpler gradient method above.

One of the advantages of using a function like g(t) to locate candidate
event locations (instead of just taking the maximum in a window) is that
it gives the algorithm a robustness to additive noise that some of the other
methods may lack. Figure 6.17 shows the adaptive clock method locked onto
an input that consists of a pulse train with a significant amount of noise. The
vertical lines are the predictions of the adaptive clock after convergence.

Fig. 6.17. The adaptive clocking algorithm can be applied in fairly noisy situations
and still achieve synchronization

6.5 Behavior of Adaptive Oscillators

The behavior of an adaptive oscillator is dependent on several factors:

(i) the kind of oscillator
(ii) the waveshape
(iii) the fixed parameters (e.g., stepsizes, threshold values)
(iv) the method of adaptation
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(v) the input

The discussion in the previous sections has focused on basic design choices
within the adaptive oscillator. This section shows why the final factor (the
input) is at the heart of the creation of useful oscillators for beat and rhythm
tracking applications. When the character of the input is well modeled, oscil-
lators can be specified to synchronize and track relevant features of the input.
But when the input is too diverse or is poorly modeled, then the application
of adaptive oscillator technology is likely to be problematic.

6.5.1 Regular Pulse Trains

Several adaptive oscillators are designed to synchronize to input sequences
consisting of trains of isolated pulses such as (6.17). When the input is indeed
of this form, it is reasonably straightforward to understand the convergence
of the oscillator. A standard way to study the behavior of systems governed
by an objective function is to plot the objective for all possible values of
the parameters.9 This “objective surface” shows how the algorithm behaves:
when maximizing, the parameters climb the surface. When minimizing, the
parameters descend the surface. The summits (or the valleys) are the values
to which the algorithm converges.

For example, the objective function Jcor(α) = LPF{i[k]o[k]} for the phase-
reset adaptive oscillator of Sect. 6.4.3 is shown in Fig. 6.18(a) and (b). The
input is assumed to be a pulse train (6.17) with T = 500 ms, the threshold is
τ = 1, and the objective function J(α) is plotted for α between 0.1 and 5. Time
is scaled so that a value of α = 1 is the “correct” answer where one period
of the oscillator occurs for each input spike. In Fig. 6.18(a), the waveshape is
the cosine while (b) uses the Gaussian waveshape (recall Fig. 6.12). In both
cases, if the α is initialized between 0.5 and 1.5 then it will climb the surface
until it reaches the desired value of one. If it is initialized between 1.5 and 2.5,
it converges to α = 2, which is when two periods of the oscillator occur for
each single input pulse. Similarly, it can also converge to any integer multiple
of the input pulse train.

Figures 6.18(c) and (d) show the objective surfaces for the least squares
JLS(α) = LPF{i[k](τ − o[k])2}. Part (c) uses the cosine waveshape and (d)
uses the Gaussian waveshape; all other values are the same. In these cases,
if the α is initialized between 0.5 and 1.5, it descends the surface (because
it is minimizing rather than maximizing) until it reaches the bottom at the
desired value of unity. If it is initialized between 1.5 and 2.5, it converges to
α = 2. In all cases, the adaptive parameter converges to an integer multiple
of the input spike train.

Similar analysis can be carried out for other adaptive oscillators. For ex-
ample, the adaptive wavetable oscillator of Sect. 6.4.2 adapts both the phase β

9 For example, [B: 102] shows plots of the objective surfaces for the various forms
of the PLL (6.11)–(6.13).
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Fig. 6.18. Objective surfaces for the adaptive phase-reset oscillator. In all four
cases (Gaussian and cosine waveshapes, least squares and correlation objectives)
the α parameter is optimized at the “correct” value of 1, or at a simple integer
multiple.

and the frequency α, and so the objective function J(α, β) is two dimensional.
The surface for the correlation objective is shown in Fig. 6.19. The algorithm
is initialized at some α, β pair and then evolves on this surface, climbing at
each step. As before, α is normalized so that unity corresponds to one period
of the oscillator for each input spike. As β ranges between zero and α, it covers
all the possible phases.
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Fig. 6.19. The objective surface
for the phase and frequency up-
dates (6.15),(6.16) of the adap-
tive wavetable oscillator. Depend-
ing on the initial values, the period
may converge to α = 1, 2, 3, . . . or
any of the other peaks at integer
multiples. There are also stable
regions of attraction surrounding
α = 0.5, 1.5, 2.5, and 3.5, which
correspond to various n:m syn-
chronizations.

Observe that the oscillator may converge to different values depending
on its initialization. If started near α = 1, it inevitably synchronizes so that
each period of the oscillator is aligned with an input spike. But other values
are possible: α may converge to an integer multiple, or to a variety of n:m
synchronizations.

Another way to view the behavior of adaptive oscillators is to simulate
a large number of oscillators, each with different initial conditions. Figure
6.20 shows the adaptive clocking algorithm as it adapts to a spike train with
500 ms between adjacent spikes. All possible initial periods between 200 and
2000 ms are used and each is initialized with a randomly chosen phase. The
vast majority converge to one of the synchronization ratios shown, though
several also converge to one of the intermediate limit cycles. Figure 6.20 also
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shows the approximate rate of convergence of the algorithm (though the time
axis is not labeled, this typically occurs within 3 to 7 events (1.5 to 3.5 s).
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period Fig. 6.20. The adaptive clocking
algorithm is initialized with every
possible period between 200 and
2000 ms in an attempt to lock
onto an input spike train with pe-
riod 500 ms. Those initialized be-
tween (about) 375 and 625 con-
verge to the expected value of 500.
Others converge to 2:1, 3:1, 1:2,
etc. Initializations below (about)
175 diverge to zero. There are also
several limit cycles observable at
intermediate values which corre-
spond to more complex synchro-
nization ratios.

6.5.2 Irregular Pulse Trains

There are many ways that a regular pulse train may become irregular: spikes
in the input may fail to occur, extra spikes may be present, or noise may be
added to the input. This section compares the shape of the objective functions
of the adaptive phase-reset oscillator and the adaptive wavetable oscillator
under these kinds of irregularities. The discussion focuses on the Gaussian
waveshape and the correlation objective function, but the general outlines of
the results are the same for other wavetables and other objective functions.

First, adaptation is typically robust to the deletion of events. Converging
takes longer and is more tenuous, but once in the neighborhood of the correct
answer, the phase-reset algorithm can tolerate more than 90% deletions and
still achieve synchronization. Figure 6.21 shows three cases where 50%, 80%,
and 95% of the input spikes have been removed. In all three cases, there are
still prominent peaks in the objective function at the expected integer values
of α. The implication of the narrow peaks is that the region of convergence
is reduced, that is, the range of initial α values that will converge properly
is smaller than without the deletions. Initial values that are not near the
peaks may converge to one of the local maxima, the smaller peaks that occur
between the integer values. Similarly, the algorithms are fairly robust to the
addition of randomly spaced spikes.
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Fig. 6.21. The objective functions for the
adaptive phase-reset oscillator when (a) 50%
of the input spikes have been (randomly)
deleted, (b) 80% have been deleted, and (c)
95% have been deleted. Despite the high per-
centages, all still retain their optima at α = n
for integers n. As the number of deletions in-
creases, the region of attraction of the opti-
mal values shrinks and local maxima occur.

The Achilles heel of the adaptive phase-reset oscillator is its sensitivity
to additive noise; even small amounts of noise can bias and/or destabilize
the iteration. Figure 6.22 shows the objective function when Gaussian noise
is added. In case (a), the standard deviation of the added noise is 0.004, in
(b) it is 0.01 and in (c) it is 0.1. Even in (a), the convergent value for α is
significantly biased away from one (the peak occurs at approximately α = 1.2).
In the modest noise case, the peak near one disappears completely, and in the
high noise case, the algorithm is unstable for all initializations.
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Fig. 6.22. The objective function for the
adaptive phase-reset oscillator when (a) the
input is subjected to additive Gaussian noise
with standard deviation 0.004, (b) with stan-
dard deviation 0.01, and (c) with standard
deviation 0.1. As the amount of noise in-
creases, the optimal values cease to be max-
ima of the objective function and the oscilla-
tor cannot be expected to converge.

Why is the phase-reset adaptation so sensitive to such small additive per-
turbations? The heart of the problem lies in the thresholding. Any additive
noise tends to cause the oscillator to fire early (because the threshold tends to
be exceeded in each cycle when the noise adds to the oscillator output). Since
the threshold is crossed early, the oscillator tries to compensate by increas-
ing the period. This is why Fig. 6.22(a) and (b) shows such severe biasing
of the α. Eventually, the noise gets large enough and the thresholding occurs
irregularly enough that synchronization is lost completely.

The adaptive wavetable oscillator behaves similarly to the phase-reset os-
cillator when the input is a train of spikes, though its convergence tends to be
slower. Both tend to be robust to random additions and deletions of spikes in
the input. But the adaptive wavetable oscillator can withstand considerably
larger additive noises without suffering biased estimates or losing synchroniza-
tion. Figure 6.23, for example, shows the objective function when the input
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is corrupted by deviation 0.04. The region of at-
traction of the noise-free case and the noise floor
of the figure is umps in the objective func-
tion occur at the oscillator can still achieve
unbiased synchronization detailed comparison of the
behavior of the [B: 6].
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6.23. The objective surface
for the phase and frequency up-
dates (6.15),(6.16) of the adap-
tive wavetable oscillator using
the Gaussian waveshape. Additive
noise with standard deviation of
0.04 is added to the input, which is
a regular train of spikes. Depend-
ing on the initial values, the period
may converge to α = 1, 2, 3, . . .

Different kinds of beat tracking problems encounter different kinds of
noises. When tracking symbolic sequences such as MIDI, there may be extra
pulses or missing pulses but there is no source of additive noise. In contrast,
when tracking audio from a set of feature vectors, the noisy character of the
signal assumes a major role. This dichotomy will restrict certain kinds of os-
cillators to certain problems. These issues are explored more fully in Chap. 8.
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Statistical Models

The search for rhythmic patterns can take many forms.
Models of statistical periodicity do not presume that the
signal itself is periodic; rather, they assume that there is
a periodicity in the underlying statistical distributions.
In some cases, the randomness is locked to a known
periodic grid on which the statistics are defined. In other
cases, the random fluctuations may be synchronized
to a grid with unknown period. In still other cases,
the underlying rate or period of the repetition may
itself change over time. The statistical methods relate
the signal (for example, a musical performance) to
the probability distribution of useful parameters such
as the period and phase of a repetitive phenomenon.
The models are built on joint work with R. Morris in
[B: 151] and [B: 206].

There are two steps in the application of a statistical approach to the de-
termination of periodic behavior. The most important is the creation of an
appropriate model that specifies the unknown parameters in simple form. The
sophisticated machinery of Bayesian analysis can then be applied to the model
conditioned on the data. Typically, this involves writing a computer program
to carry out the calculations required to find the probability distribution of the
parameters representing the period and phase of the repetitive phenomenon.

The next section briefly reviews the basic probabilistic definitions that un-
derlie the Bayesian approach and Sect. 7.2 discusses the modeling of various
kinds of periodic phenomenon. The next several sections introduce a series
of models each aimed at a particular task in the rhythm finding process.
Section 7.3 considers the simplest setting in which the data consists of a se-
quence of binary events located on a fixed lattice of known duration. When
the underlying pulse-rate is not known it must be inferred from the data, as
suggested by the model of Sect. 7.4. Then Sect. 7.5 shows how the parameters
of the model can be tracked through time recursively using a particle filter
[B: 50, B: 75, B: 236]. This model can be applied to the beat tracking of MIDI
performances. Section 7.6 then constructs a generative model of the proba-
bilistic structure of feature vectors such as those of Sect. 4.4. The framework
allows seamless and consistent integration of the information from multiple
feature vectors into a single estimate of the beat timing. This final model will
be used in Chap. 8 for the beat tracking of audio performances.
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7.1 Probability and Inference

Let P (A) be the probability that event A is true and P (B, A) be the proba-
bility that both A and B are true. The conditional probability that B is true
given that A is true is designated P (B|A) and is defined implicitly by

P (B, A) = P (B|A)P (A)

when P (A) 
= 0. Similarly, the conditional probability P (A|B) is defined by

P (A, B) = P (A|B)P (B).

Since P (A, B) and P (B, A) are the same,

P (B|A)P (A) = P (A|B)P (B)

which is usually written

P (B|A) =
P (A|B)P (B)

P (A)
. (7.1)

This is known as Bayes’ rule, and it relates the conditional probability of A
given B to the conditional probability of B given A.

Books on probability are filled with problems where conditioning plays an
important role. A typical example involves a hapless student who dutifully
draws balls from an urn containing black and white balls. Suppose that black
balls are drawn with some probability q. If the value of q happened to be
known, it would be possible to calculate many interesting facts such as the
probability distribution of the number of black balls drawn, the mean and
variance of this distribution, and the chance that five black balls are chosen
sequentially. The existence of the urn is the model on which the problems are
based; it is the context or the background information. The particular value
(in this case the percentage q of balls that are black) can be thought of as a
known parameter of the model. The problems require calculation of various
functions of the distribution given the value of the parameter. That is, they
require calculation of the probability of some set of data D given the value
of q. In symbols, this is P (D|q). The calculations may be easy or difficult,
but they are straightforward because the problem statement contains enough
information so that a unique solution is possible.

Sometimes the model may be given but some of the parameters within the
model may not be known. Perhaps there is an urn containing an unknown
number of balls of different colors. Certainly it must be true that it is possible
to infer information about the contents of the urn by experimenting. Balls
that are drawn from the urn provide data D that helps to pin down reasonable
values for the percentages of the various colors. To be explicit, let q be the
(unknown) percentage of black balls. The goal is to learn as much as possible
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about the distribution of q given the data and the prior information. That is,
the goal is to find the distribution of P (q|D).

Bayes’ rule is perfect for this task because it relates the probability of
the data given the parameter (one of the straightforward problems above) to
the probability of the parameter given the data. That is, it relates P (D|q) to
P (q|D). To be explicit, (7.1) can be rewritten

P (q|D) =
P (D|q)P (q)

P (D)
, (7.2)

though many books on Bayesian statistics (such as [B: 212, B: 137]) explicitly
distinguish the background information from the parameters q of the model
by writing all quantities as conditioned on the background information. For
ease of reference, each term in (7.2) is given a name:

posterior probability =
likelihood × prior information

evidence
.

Bayes’ rule shows how the conditional probability of the data given the param-
eters (and the background information) is related to the conditional probabil-
ity of the parameters given the data (and the background information). That
is, it relates the likelihood (which is often easy to calculate) to the posterior.
In many situations, this can be rewritten as the proportionality

P (q|D) ∝ P (D|q)P (q)

which emphasizes that the denominator in (7.2) is a normalization term that
is the same for all possible values of q. In practical terms, this means that it
is possible to compare the posteriors for different candidate values of q (say
q1 and q2) by directly comparing P (D|q1)P (q1) and P (D|q2)P (q2).

7.2 Statistical Models of Periodic Phenomenon

The kinds of models used in this chapter to represent periodic or repetitious
behavior are only slightly more complicated than the ball and urn model of
the previous section. Imagine that each urn in the carousel shown in Fig. 7.1
contains some percentage of black and white balls. Each time a ball is drawn,
a new urn rotates into place. The chances of drawing black balls changes
periodically with the number of urns and the problem of inferring the number
of urns is related to the problem of locating regularities in the draws of the
balls.

This illustrates that models of statistical periodicity do not presume that
the data itself is periodic; rather, they assume that there is a periodicity in the
underlying statistical distributions. Thus the draws from the urns of Fig. 7.1
do not lead to periodic patterns of black and white balls; rather, there is
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Fig. 7.1. Each time a ball is removed
from one of the N urns (indicated
by the arrow), the platform rotates,
bringing a new urn into position. If
the number of urns were known, this
would be the same as N copies of
the original ball and urn problem.
But when N is unknown, it becomes
another parameter (the periodicity)
that must be inferred from the exper-
iments. In terms of the periodicity-
finding goals of Rhythm and Trans-
forms, inferring N is often more im-
portant than inferring the individual
percentages of black or white balls.

a tendency for the statistics of the balls to fluctuate in synchrony with the
rotation of the urns.

Such combinations of repetition and randomness are important in many
fields. For example, the message in telecommunications is effectively random
while the modulation, synchronization, and frame structure impose periodic
fluctuations. In mechanics, rotating elements provide periodicity while cavi-
tation, turbulence, and varying loads impose randomness. Rhythmic physio-
logical processes such as the heartbeat and brainwaves are clearly repetitive
but are neither completely periodic nor fully predictable.

In some cases, the randomness is locked to a known grid on which the
statistics are defined by an underlying periodicity. For example, a record of
temperature versus time might experience cycles that are locked to the daily
and yearly cycles of the Earth and Sun. In other cases, the random fluctu-
ations might be synchronized with a grid, but the period of the grid might
be unknown. This is common in astrophysics where the rotation of a celestial
object can be assumed, but the period is unknown. In still other cases, the
underlying rate or period of the repetition may itself change over time. Heart-
beats speed up or slow down depending on the activity level of the animal.

Such processes have been studied extensively in the mathematical liter-
ature. A discrete-time stochastic process1 xk is called wide sense station-
ary if both the expectation E{xk} and the autocorrelation Rx(k + τ, k) =
E{xk+τxk} are independent of k. Stationarity captures the idea that while
a process may be random from moment to moment, it has an underlying
unity in that the distribution of the process remains fixed through time. Only
slightly more complex is the idea that the mean and autocorrelation may be
periodic in time. A process xk is called wide sense cyclostationary if both the
expectation E{xk} and the autocorrelation Rx(k+τ, k) are periodic functions
of k [B: 58]. If ak is a periodic sequence and xk is a stationary process, the

1 Analogous definitions apply to continuous-time stochastic processes.
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sum ak + xk and the product akxk are cyclostationary. Many of the models
considered in this chapter are (wide sense) cyclostationary.

Statistical models of periodicity need not be much more complex than the
ball and urn problem illustrated in Fig. 7.1 and this chapter presents several
models that generate repetitive behavior.2 The simplest model, in Sect. 7.3,
considers sequences of binary random variables lying on a grid that is fixed and
known. When the grid is not known, the model of Sect. 7.4 can be used for the
detection of pulse trains in symbolic sequences. This is generalized in Sect. 7.5
to a method that can track changes in the underlying periodicities of symbolic
sequences. These models are not chosen arbitrarily; they mimic three levels of
rhythmic processing in musical sequences. The simplest situation parallels the
search for regularities in a musical score. The second parallels the finding of
the pulse in a musical performance. The third tracks changes in the pulse and
is applied to MIDI performances in Chap. 8. The final model, in Sect. 7.6,
can be applied to search for statistical periodicities in feature vectors such
as those of Sect. 4.4. This is applied to the beat tracking of audio, also in
Chap. 8.

7.3 Regularities in Binary Sequences

The numerical notations for musical sequences from Sect. 2.1.4 are built on
a fixed time grid in which each location represents a possible event. A “1”
in the ith position indicates that an event occurs at grid point i while a “0”
indicates that no event occurs. Thus the data D is a binary sequence with
elements di that indicate when events occur. The time base of the sequence
is completely regular: the interval between adjacent grid points is fixed and
known. This section shows a way to apply the statistical approach to locate
repetitive behavior in such binary sequences.

One simple model presumes that there is a basic underlying periodicity in
the statistics of the data. Every T timesteps, events occur with some large
probability qL while at all other times, events occur with some small proba-
bility qS . This is the carousel model of Fig. 7.1 with T urns: one urn has a
high percentage of black balls (ones) while the rest have mostly white balls
(zeroes). This model generates binary sequences that are repetitive but not
periodic.

Let IL be the set of indices {τ, τ + T , τ + 2T , τ + 3T , . . .} where the qL

random variables occur and let IS be the complement, where the qS random
variables occur. The model contains two kinds of Bernoulli random variables:

xL
i =

{
1 with probability qL

0 with probability 1 − qL

which occurs whenever i ∈ IL and
2 See [B: 203] for a variety of other models aimed at similar goals.
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xS
i =

{
1 with probability qS

0 with probability 1 − qS

for i ∈ IS . The parameters of the model are the period T , the phase τ , and
the probabilities qL and qS , which are gathered into the vector

t = [τ, T , qL, qS ].

There are two kinds of parameters: the structural parameters define the prob-
abilities of events and the timing parameters specify the periodicities. As will
be shown, it is often possible to assume that the structural parameters qL

and qS remain the same across many pieces and so these may be estimated
off-line from training data. For example, when considering binary represen-
tations of musical scores, the average number of notes per second translates
(roughly) into reasonable values for the probabilities. The timing parameters
τ and T lie at the heart of the problem and each piece of music will have its
own periodicities.

Since the model assumes that the data is constructed from 0–1 Bernoulli
random variables, the likelihood p(D|t) is straightforward. In a data sequence
of xL

i variables, the probability that a specific sequence of nL ones and mL

zeroes occurs is qnL

L (1 − qL)mL . Similarly, in a data sequence of xS
i variables,

the probability that there are nS ones and mS zeroes is qnS

S (1− qS)mS . Since
the xL

i and xS
i are assumed independent, the likelihood p(D|t) is proportional

to3

qnL

L (1 − qL)mLqnS

S (1 − qS)mS (7.3)

where the parameters can be written directly in terms of the data D as nL =∑
i∈IL

di, mL =
∑

i∈IL
(1− di), nS =

∑
i∈IS

di, and mS =
∑

i∈IS
(1− di). For

numerical reasons, it is often advantageous to use the log of the likelihood,
which has the same set of maxima and/or minima. This is

nL log(qL) + mL log(1 − qL) + nS log(qS) + mS log(1 − qS). (7.4)

If the values of the parameters are unknown, Bayes’ theorem can be used
to relate the probability of the parameters given the data to the probability
of the data given the parameters

p(t|D) ∝ p(D|t) p(τ) p(T ) p(qL) p(qS).

The prior probabilities p(τ), p(T ), p(qL), and p(qS) are fixed with respect to
the length of the data record and are assumed independent of each other.4 The
3 Strictly speaking, p(D|t) contains terms that count up the number of ways that

the n ones and m zeroes can occur. Since these are independent of the parameters
of interest (the qi), they do not change the maxima or minima.

4 In reality, the priors cannot be truly independent. For example, the structure of
the model dictates that qL > qS and that τ ≤ T .
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likelihood p(D|t) is strongly dependent on the data; it is a distribution that
concentrates mass at the most probable values of t and vanishes at improbable
values. Thus the likelihood, which is easy to calculate from (7.3) and (7.4),
dominates the right hand side and can be used to estimate the unknown
parameters.

To see how this works, suppose that the data has a periodic component
with period T = 8 and phase offset τ = 3. The parameters qL = 0.5 and qS =
0.2 generate data sequences where it is hard to see the underlying periodicity
by eye. Assuming that the structural parameters are known but the timing
parameters are unknown, p(D|t) can be calculated (up to a normalization
constant) for all possible periods and all possible phases directly from (7.4).
The result is plotted in Fig. 7.2. The maximum (the most probable value of

246810121416

2

4

6

8

10

12

14

16

period T

3:2 entrainment

ph
as

e
τ 8-periodic

with τ=3

double period
τ=3

half
period

double period
τ=11

Fig. 7.2. The distribution of the un-
known period T and phase τ can be
calculated using Bayes’ theorem. The
largest values on this contour plot in-
dicate the most probable values of the
parameters. The actual period and
phase coincide with the maximum,
and some simple integer multiples fea-
ture prominently.

the parameters given the data) occurs at the correct period and phase values
T = 8 and τ = 3. There are also peaks at the double period, which reflects
the fact that if a sequence is periodic with period 8 then it is also periodic
with period 16. There is a small peak at the half period T = 4 and another
at T = 12, which represents a 3:2 synchronization.

A more complete approach would also assume that the structural param-
eters are unknown, but this may not be necessary because the maxima are
fairly insensitive to the particular numbers chosen, providing qL remains suf-
ficiently larger than qS . This reinforces the observation that the structural
parameters can be safely estimated off-line. More care would also need to be
taken with the prior probabilities if the data record were short. For large data
records, the priors may be safely ignored.

This approach is not limited to finding a single periodicity. For example,
data was generated with two periods: T = 7 with τ = 4 and T = 12 with
τ = 5. The same procedure was followed (i.e., estimating p(t|D) via p(D|t)
of (7.4)) and the distribution of the unknown period(s) T and phase(s) τ are
shown in Fig. 7.3. Both periods are located with their correct phases. There are
also a number of double and triple-period maxima and a 3:2 synchronization.
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The unlabeled maxima at T = 28 are four times the T = 7 fundamental and
the small maxima at T = 30 represent a 5:2 synchronization with the T = 12
period.
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Fig. 7.3. The largest values on this
contour plot indicate the most prob-
able values of the parameters. The
actual periods and phases coincide
with the two largest maxima, and
some simple integer multiples feature
prominently.

7.4 A Model for Symbolic Pulse Detection

The model of the previous section presumes that the data sequence lies on
a fixed grid defining the interval between adjacent elements. In automated
musical processing, this grid typically represents the tatum, the underlying
regular succession, and it is likely to be unknown. The tatum must therefore
be inferred from the data, and the model must be able to automatically detect
the grid timepoints.

One approach is to represent time more finely (at a faster rate) than the
tatum by using a pulse train instead of a list of event times. Let ti be a
sequence of numbers specifying when events occur. For instance, the sequence
might be derived from a MIDI performance and the ti may be a list of times
when MIDI notes occur. The function

d(t) =
{

1 if t = ti
0 otherwise (7.5)

is a pulse train with “1” at each event and “0” between. A perfectly regular
grid would be a spike train with ones at times τ, τ + T , τ + 2T , . . . and zeroes
elsewhere.

In real data, the times are not exact: events may occur slightly before
or slightly after the specified grid, occasional spurious events might occur
between the grid points, and some events might fail to occur when expected.
This uncertainty can be modeled statistically by presuming that events are
highly probable at (or near) grid points and unlikely (but not impossible) at
points between. Thus there is a probability qL that events will occur at the
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grid times (as expected) and a smaller probability qS that events may occur in
between grid points. In order to handle the uncertainty in time, the function
q(t) is defined to move smoothly between qL to qS (and back), as shown in
Fig. 7.4. Thus there is a reasonable chance that events cluster near lattice
points even if they do not occur precisely on time. The transitions between
qL and qS are governed by a width parameter ω, which defines the standard
deviation of a Gaussian pulse centered at each grid point.

qS

qL

τ+T τ+2T τ+3Tτ

ω
q(t)

Fig. 7.4. The function q(t), bounded above by qL

and below by qS , defines the probability that an
event will occur at time t. q(t) is large near the lat-
tice with period T and phase τ , and small otherwise,
implying that events are likely to occur near the lat-
tice and less probable elsewhere.

The model is based on the Bernoulli random variables

x(ti) =
{

1 with probability q(ti)
0 with probability 1 − q(ti)

(7.6)

where q(t) is a function of the timing parameters (the period T and the
phase τ) and of the structural parameters (the width ω and the two extreme
probabilities qL and qS), which are gathered into the vector

t = [τ, T , ω, qL, qS ].

Since the data is constructed from independent Bernoulli random variables,
the likelihood p(D|t), analogous to (7.3), is proportional to∏

i

q(ti)d(ti)(1 − q(ti))(1−d(ti)) (7.7)

where d(ti) is the data at time ti arising from x(ti). The log of the likelihood∑
i

d(ti) log(q(ti)) + (1 − d(ti)) log(1 − q(ti)) (7.8)

has the same set of maxima and/or minima and may be preferred for numerical
reasons.

As before, when the values of the parameters are unknown, Bayes’ theorem
can be used to relate the probability of the parameters given the data to the
probability of the data given the parameters

p(t|D) ∝ p(D|t) p(τ) p(T ) p(ω) p(qL) p(qS). (7.9)

As before, when there is a large data set, the likelihood dominates the calcu-
lation because it concentrates mass at the most probable values of t. Since the
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priors are fixed with respect to the data, the maxima of the posterior p(t|D)
occur at the same values as the maxima of the likelihood p(D|t) and (7.8) can
be used to estimate the unknown parameters.

Of course, other statistical models are possible. One alternative, suggested
by Cemgil in [B: 27], preprocesses the data by convolving with a Gaussian
window to create a pulse train. A collection of varying width spike trains then
attempts to locate the grid using the “tempogram” and a Kalman filter as in
Fig. 7.5.

events x(t)

basis
functions

ψ(τ,T1)

ψ(τ,T3)

ψ(τ,T2)

Fig. 7.5. In Cemgil’s model [B: 27], the
continuous signal x(t) is obtained from
the event list by convolution with a Gaus-
sian function. Below, three different ba-
sis functions ψ(τ, Ti) are shown. All are
localized at the same τ but with dif-
ferent Ti. The “tempogram” is calcu-
lated by taking the inner product of x(t)
and ψ(τ, Ti) and the parameters can be
tracked using a Kalman filter.

7.5 A Model for Symbolic Pulse Tracking

The data in the sequences of Sect. 7.3 was assumed to lie on a grid of time-
points that is both fixed and known. The model was generalized in Sect. 7.4
to detect the time interval between successive elements of the grid, that is,
the grid could be unknown but it was still required to be fixed. In musical ap-
plications, the tatum grid may change as the music progresses and the model
must track these changes.

The calculation of p(t|D) in (7.9) provides a way of finding a fixed tatum-
rate of a performance encoded into symbolic events. One way that the pulse
can vary is that it might speed up or slow down. Fortunately, it is easy to
modify the probabilities q(t) by adding a derivative term δT to the timing
parameters that allows the grid to smoothly contract or expand, as shown in
Fig. 7.6. But music (typically) does not change tempo in such a simple fashion;

qS

qL

τ

τ+n(T+nδT)
ω q(t)

n=1 n=2 n=3 n=4

...

Fig. 7.6. The function q(t) defines the proba-
bility that an event will occur at time t. The
derivative term δT compresses (or expands) the
rungs of the lattice to account for increasing (or
decreasing) tempos.
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rather, it may speed up or slow down many times over the course of a perfor-
mance. Perhaps the simplest approach to tracking arbitrary time variations
is to apply the model sequentially over short segments of the performance.

Partition the spike train into blocks of N samples.5 Collect the timing
parameters, τ , T and δT into a state vector t, and let p(tk−1|Dk−1) be the
distribution of the parameters given the data in block k − 1. The goal is to
recursively update this to estimate the distribution over the parameters at
block k given the new data in the kth partition, that is, to estimate p(tk|Dk).
For example, Fig. 7.7 shows a spike train divided into partitions. If the param-

spike train

partition

estimate p({τk-1,Tk-1,δTk-1}|Dk-1)
using p({τk-2,Tk-2,δTk-2}|Dk-2)

estimate p({τk,Tk,δTk}|Dk)
using p({τk-1,Tk-1,δTk-1}|Dk-1)

τ, T grid

time

Dk-1 Dk

TkτkTk-1τk-1 τk+1

Fig. 7.7. The spike train is segmented into equal-time partitions Dk and the distri-
bution of the parameters p(tk−1|Dk−1) is calculated for the k − 1st partition. This
is used to estimate the distribution p(tk|Dk) in partition Dk.

eters entered the system linearly and if the noises were Gaussian, this could
be optimally solved using the Kalman Filter [B: 92]. However, the timing pa-
rameters t enter into (7.9) in a nonlinear manner, and so the Kalman Filter
is not directly applicable.

A naive approach would estimate the parameters anew at each partition
after directly moving forward in time. For example, the timing parameter Tk

would be assumed to be equal to Tk−1 and the phase parameter would be
updated6 as

τk = τk−1 + Tk−1�
N

Tk−1
� − N

where �z� is the first integer larger than z. Such an approach effectively ignores
the distributional information about the parameters at time k that is implied
by previous calculations at time k − 1.

A way to make this information explicit is to use a technique called particle
filtering which divides the tracking into two stages, prediction and update.
5 Somewhere between 4 and 16 seconds appears to be a reasonable time span.

Shorter partitions allow the parameters to change faster, longer partitions are
more resistant to portions of the performance where the spike train fails to reflect
the underlying pulse.

6 This formula presumes δT = 0.



186 Statistical Models

Because the pulse period does not remain precisely fixed, knowledge of the
timing parameters becomes less certain over the partition and the distribution
of t becomes more diffuse. The update step incorporates the new block of data
from the next partition and provides new information to lower the uncertainty
and narrow the distribution.

The predictive phase details how tk is related to tk−1 in the absence of
new information. In general this is a diffusion model

tk = fk−1(tk−1, wk−1)

where fk−1 is some known function and wk−1 is a vector of random variables.
The simplest form is to suppose that as time passes, the uncertainty in the
parameters grows as in a random walk

tk = tk−1 + wk−1

where the elements of wk−1 have different variances that reflect prior infor-
mation about how fast the particular parameter is likely to change. For pulse
tracking, these variances are dependent on the style of music; for instance, the
expected change in T for a dance style would generally be smaller than for a
style with more rubato.

At block k a noisy observation is made, giving the signal

dk = hk(tk, vk)

where hk is a measurement function and vk is the measurement noise. To
implement the updates recursively requires expressing p(tk|Rk) in terms of
p(tk−1|Rk−1), where Rk−1 represents all the data in the partitions up to block
k − 1.

This can be rewritten

p(tk|Rk−1) =
∫

p(tk|tk−1)p(tk−1|Rk−1)dtk−1 (7.10)

as the product of the predictive distribution p(tk|tk−1) (which can be calcu-
lated from the diffusion model) and the posterior distribution at time k − 1
(which can be initialized using the prior), then integrated over all possible
values tk−1. Bayes’ theorem asserts that

p(tk|Rk) = p(tk|dk,Rk−1) =
p(dk|tk)p(tk|Rk−1)

p(dk|Rk−1)
(7.11)

where the term p(dk|tk) is a simplification of p(dk|tk,Rk−1) as the current
observations are conditionally independent of past observations given the cur-
rent parameters. The numerator is the product of the likelihood at block k
and the predictive prior, and the denominator can be expanded

p(dk|Rk−1) =
∫

p(dk|tk)p(tk|Rk−1)dtk.
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In a one shot estimation (as in Sects. 7.3 and 7.4), this normalization can be
ignored because it is constant. In the recursive form, however, it changes in
each partition.

This method can be applied to the model of (7.6) by writing the predictive
distribution

p(tk|tk−1) ∼ e
− (Tk−Tk−1)2

2σ2
T e

− (δTk−δTk−1)2

2σ2
δT e

− (τk−τk−1)2

2σ2
τ

where σ2
T , σ2

τ , and σ2
δT are the variances of the diffusions of the period, phase,

and derivative, which are assumed independent. The likelihood is given by
(7.7) and (7.8). Assuming an initial distribution p(t1|R0) is available, these
equations provide a formal solution to the estimate through time of the dis-
tribution of the timing parameters [B: 13].

In practice, however, for even moderately complex distributions, the in-
tegrals in the above recursion are analytically intractable. Particle filters
[B: 50, B: 236] overcome this problem by approximating the (intractable) dis-
tributions with a set of values (the “particles”) that have the same distribu-
tion, and then updating the particles over time. More detailed presentations
of the particle filter method can be found in [B: 51, B: 75].

Applied to the pulse tracking problem, the particle filter algorithm can be
written succinctly in three steps. The particles are a set of M random samples,
tk(i), i = 1, 2, . . . , M distributed as p(tk−1|Rk−1).

(i) Prediction: Each sample is passed through the system model to obtain
samples of

t†k(i) = tk−1(i) + wk−1(i) for i = 1, 2, . . . , M,

which adds noise to each sample and simulates the diffusion portion of the
procedure, where wk−1(i) is assumed to be a three-dimensional Gaussian
random variable with independent components. The variances of the three
components depend on how much less certain the distribution becomes
over the block.

(ii) Update: With the new block of data values dk, evaluate the likelihood
for each particle using Equation (7.7). Compute the normalized weights
for the samples

gi =
p(dk|t†k(i))∑
j p(dk|t†k(j))

.

(iii) Resample: Resample M times from the discrete distribution over the
t†k(i)s defined by the gis to give samples distributed as p(tk|Rk).

To initialize the algorithm, draw M samples from the prior distribution
p(τ, T ), which is taken as uniform over some reasonable range. If more infor-
mation is available (as studies such as Noorden and Moelants on preferred
rates of tapping [B: 156] suggest), then better initializations may be possi-
ble. A number of alternative resampling schemes [B: 51, B: 52] with different
numerical properties could be used in the final stage of the algorithm.
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7.6 A Model for Audio Feature Vectors

The models of the previous sections operate with inputs composed of event
lists and binary spike trains. To deal with audio, the model must operate with
real-valued feature vectors meant to represent the rhythmic structure of the
piece. Each feature vector is a method of data reduction that uses a different
method of (pre)processing to extract different low level audio features, and
so provides a (somewhat) independent representation of the beat. Feature
vectors based on auditory models and on the detection of various kinds of
auditory boundaries are described in detail in Sect. 4.4.

Inspection of the feature vectors such as those in Figs. 4.17 and 4.20 (on
pp. 104 and 107) reveals that, to a first approximation, they are composed
primarily of large values at (or near) the beat timepoints and smaller values
away from the beat points. This suggests that they may be modeled as a
collection of random variables with changing variances: small variance when
“between” the beats and large variance when “on” the beat. A simple model
that captures this structure supposes that the feature vectors are formed from
realizations of an independent Gaussian noise process, where the variance of
the noise “on” the beat is larger than the variance “off” the beat.

The simplest variance model assumes an underlying T -periodic sequence
σ2

0 , σ2
1 , σ2

2 , . . ., σ2
T−1 that defines the variance of a zero mean cyclostationary

process si with T -periodic distribution

si ∼ N (0, σ2
i mod T

)

where N (·, ·) denotes the Gaussian distribution. The T = 3 case is illustrated
in Fig. 7.8, and the model is fully specified by the distribution of the si, the
variances σ2

i , and the starting time τ .

τ+kτ τ+2k τ+3k τ+4k τ+5k τ+6k

s0 ~ N(0,σ
0

)

...

2

s1 ~ N(0,σ
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Fig. 7.8. Outputs of the vari-
ance model are generated from a
stochastic process si defined by a
periodic pattern of variances σ2

i . A
three-periodic example is shown.

Much as the model of regularities in binary sequences (of Sect. 7.3) requires
that the data lie on a fixed and known grid, the variance model requires a rigid
T -periodicity of the statistics. This can be relaxed by creating a smooth func-
tion that varies between a large variance σ2

L near the beat and a small variance
σ2

S far from the beat. Figure 7.9 shows the parameters and the structure of
the model, along with a typical realization. It is a zero mean cyclostationary
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process with parameters defined by a function σt that looks much like the
q(t) of Fig. 7.4 but where the values represent the instantaneous variance of
a Gaussian process rather than the Bernoulli probability of events.

Such a model ignores much of the structure that is present. For example,
the group delay feature vector (in Fig. 4.20(c)) often shows larger positive
peaks than negative peaks. The tracks also regularly display oscillatory be-
havior, mirroring the intuitively obvious idea that the samples cannot be truly
independent (this is most obvious in the feature vector of Fig. 4.14). However,
this model is shown in the experiments to capture enough of the structure to
allow reliable beat extraction in a variety of musical situations. While it is
in principle possible to derive the distribution of the samples in the feature
vectors from a probabilistic model of the original audio, this is too complex
to result in a feasible algorithm. Also, it is no more obvious how to construct
a model for the audio than for the feature vectors directly.

T

t

S L

location of first beat
interval between

beats

width of the
"on" beat

variance of 
the "off" beat

variance of 
the "on" beat

Fig. 7.9. Parameters of the feature vector model are T , τ , ω, σS , σL and δT (not
shown). The dark curve σt shows the periodic pattern of variances that defines the
cyclostationary process. The jagged curve shows a typical realization.

The parameters can be divided into two sets. The structural parameters
remain essentially constant and are estimated off-line from training data:

• σ2
S is the “off the beat” variance,

• σ2
L is the “on the beat” variance, and

• ω2 is the beatwidth, the variance of the width of each set of “on the beat”
events. For simplicity, this is assumed to have Gaussian shape.

The timing parameters lie at the heart of the beat extraction:

• τ is the time of the first beat,
• T is the period of the beat, and
• δT is the rate of change of the beat period.

Gather these parameters into a single vector
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t = [τ, T , δT , σS , σL, ω].

Given the signal r (the feature vector), Bayes’ theorem asserts that the prob-
ability of the parameters given the signal is proportional to the probability of
the signal given the parameters multiplied by the prior distribution over the
parameters. Thus

p(t|r) ∝ p(r|t) p(τ) p(T ) p(δT ) p(σ2
S) p(σ2

L) p(ω2)

where the priors are assumed independent.7 Each of the prior probabilities
on the right hand side is fixed with respect to the length of the data record,
while the first term becomes more concentrated as a function of the length of
the data. Accordingly, the first term dominates. Let ti = iT +

∑i
j=0 jδT + τ

be the time of the ith beat and let λt =
∑∞

i=−∞ e−
(t−ti)

2

2ω2 be a sum of shifted
Gaussian functions. The variance

σ2
t = λtσ

2
L + (1 − λt)σ2

S (7.12)

specifies the likelihood of the feature vector model as

p(rt|τ, T , δT , σS , σL, ω) ∼ N (0, σ2
t ) (7.13)

where t is the (positive) time at which the sample rt is observed. This periodic
variance function σ2

t defines the cyclostationary statistics of the process and
is illustrated by the dark curve in Fig. 7.9.

Because the feature vector values rt are assumed independent, the prob-
ability of a block of values {rt, t1 < t < t2} is simply the product of the
probability of each value. Thus σ2

t is a combination of the variances on and
off the beat, weighted by how far t is from the nearest (estimated) beat lo-
cation. While this may appear noncausal, it is not because it only requires
observations up to the current time. Also note that the summation in the
definition of λt can in practice be limited to nearby values of j.

To see the relationship between experimentally derived feature vectors and
the model, the data in Fig. 7.9 is an “artificial” feature vector constructed from
alternating small and large variance normally distributed random variables.
Qualitatively, this provides a reasonable model of the various feature vectors
in Fig. 4.20.

Much as the model of pulse detection (of Sect. 7.4) requires that the data
lie on a fixed grid, the feature vector model of Fig. 7.9 does not directly track
changing parameters. The symbolic pulse tracker of Sect. 7.5 used recursive
particle filtering [B: 75] to follow changes in the pulse and the same idea can be
applied to the tracking of audio feature vectors by operating over successive
blocks using the output distribution at one block as the prior distribution
(initialization) for the next.
7 In reality, the priors cannot be truly independent, for example, the structure of

the model dictates that σL > σS .
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Divide each feature vector into blocks, typically about 400–600 samples
long.8 Collect the timing parameters, τ, T and δT into a state vector t, and
let p(tk−1|·) be the distribution over the parameters at block k − 1. The goal
of the (recursive) particle filter is to update this to estimate the distribution
over the parameters at block k, that is, to estimate p(tk|·).

Again, the tracking can be divided into two stages, prediction and up-
date. The predictive phase details how tk is related to tk−1 in the absence
of new information. The simplest form is to suppose that as time passes, the
uncertainty in the parameters grows as in a random walk

tk = tk−1 + wk−1 (7.14)

where the elements of wk−1 have different variances that reflect prior infor-
mation about how fast the particular parameter is likely to change. At block
k a noisy observation is made, giving the signal

rk = hk(tk, vk)

where hk is the measurement function and vk is the noise. To implement the
updates recursively requires expressing p(tk|Rk) in terms of p(tk−1|Rk−1),
where Rk−1 represents all the feature vector samples up to block k − 1.

The same logic as in Sect. 7.5, equations (7.10) and (7.11), shows that the
predictive distribution is

p(tk|tk−1) ∼ e
− (Tk−Tk−1)2

2σ2
T e

− (δTk−δTk−1)2

2σ2
δT e

− (τk−τk−1)2

2σ2
τ

where σ2
T , σ2

δT and σ2
τ are the variances of the diffusions on each parameter,

which are assumed independent. In this case, the likelihood is

p(rk|tk) ∼ N (0, σ2
k) = e

− r2
k

σ2
k (7.15)

where σ2
k is the value of the function σ2

t in (7.12) evaluated at the time of
the kth sample. Assuming an initial distribution p(t1|R0) is available, these
equations provide a formal solution to the estimate through time of the distri-
bution of the timing parameters. As before, the integrals in the recursion are
analytically intractable, and so the particle filtering algorithm can be used.

A major advantage of the Bayesian approach is its ability to incorporate
information from multiple feature vectors in a straightforward manner. As-
suming that the various feature vectors provide independent measurements of
the underlying phenomenon (a not unreasonable assumption given that the
tracks measure different aspects of the input signal), the likelihood for a set of
feature vectors is simply the product of the likelihood for each track. Thus the
numerical complexity of estimating the optimal beat times from a collection
8 At an effective sampling rate of 60 Hz, this is in the middle of the same 4–16

second range suggested in Sect. 7.5. The same tradeoffs apply.
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of four feature vectors is only four times the complexity of estimating from a
single feature vector. Examples of the application of the models of this chapter
to the beat tracking problem appear in Chap. 8.



8

Automated Rhythm Analysis

Just as there are two kinds of notations for rhythmic
phenomenon (the symbolic and the literal), there
are two ways to approach the detection of rhythms;
from a high level symbolic representation (such as
an event list, musical score, or standard MIDI file)
or from a literal representation such as a direct
encoding in a .wav file. Both aspire to understand
and decompose rhythmic phenomena, and both exploit a
variety of technologies such as the transforms, adaptive
oscillators, and statistical techniques of Chaps. 5–7.
This chapter begins with a discussion of the rhythmic
parsing of symbolic sequences and then incorporates the
perceptually motivated feature vectors of Chap. 4 to
create viable beat detection algorithms for audio. The
performance of the various methods is compared in a
variety of musical passages.

Listeners can easily identify complex periodicities such as the rhythms that
normally occur in musical performances, even though these periodicities may
be distributed over several interleaved time scales. At the simplest level, the
pulse is the basic unit of temporal structure, the foot-tapping beat. Such
pulses are typically gathered together in performance into groupings that cor-
respond to metered measures, and these groupings often cluster to form larger
structures corresponding to musical phrases. Such patterns of grouping and
clustering can continue through many hierarchical levels, and many of these
may be readily perceptible to an attentive listener.1 An overview of the prob-
lem and a taxonomy of beat tracking methods can be found in [B: 194], and
a review of computational approaches for the modeling of rhythm is given in
[B: 81].

Attempts to automatically identify the metric structure of musical pieces
often begin with a symbolic representation such as a musical score. This sim-
plifies the rhythmic analysis in several ways: the pulse is inherent in the score,
note onsets are clearly delineated, multiple voices cannot interact in unex-
pected ways, and the total amount of data to be analyzed is small. Three
levels of difficulty are contrasted in Table 8.1. At the simplest level, Sect. 8.1
applies the various methods (the transforms of Chap. 5, the adaptive os-
cillators of Chap. 6, and the statistical methods of Chap. 7) of identifying

1 Recall the discussion in Sect. 3.2, especially Figs. 3.1 and 3.2 on pp. 55 and 56.
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Table 8.1. The three levels of rhythmic analysis in order of increasing difficulty

Score MIDI Audio

Tatum given inferred inferred
Note Events given given inferred
Section/Page 8.1/194 8.2/201 8.3/209

repetitions to a simple symbolic representation of La Marseillaise. All of the
methods are capable of detecting the kinds of regularly recurring rhythmic
structures associated with the beat and/or higher levels of metrical structure.

Finding repetitive phenomena in a MIDI sequence is, in general, a more
complex task because the underlying pulse must be inferred from the sig-
nal. Section 8.2 discusses how the various methods can be applied and an
essential dichotomy emerges. Techniques (such as transforms and autocorre-
lations) that require a steady underlying pulse to locate rhythmic behavior
fail when the tatum of the MIDI signal is variable. Techniques (such as the
adaptive oscillators and statistical methods) that are able to track changes in
the underlying pulse continue to perform well.

But listeners are not presented with patterns of symbols when attempting
to understand a musical passage. Discovering repetitive behavior in an audio
signal is tricky, and there are two basic approaches. In the first, the audio is
parsed to identify note boundaries and interonset intervals. Since MIDI rep-
resentations are defined directly in terms of note-onset times, this effectively
reduces the audio problem to an event list, which can then be solved by any
of the techniques that work with MIDI sequences. The second approach re-
duces the audio to a set of feature vectors and then parses the feature vectors
for the existence of a regular succession. This bypasses the difficulties of ex-
tracting individual notes from the audio signal. Section 8.3 uses the feature
vectors of Chap. 4 to preprocess the audio, and demonstrates the strengths
and weaknesses of the various technologies for detecting rhythm. The rhythm
finding approaches are then examined in a number of musical examples in
Sect. 8.3.1, beginning with a simple polyrhythm and proceeding through a
variety of musical styles. Sound examples demonstrate the proper (and im-
proper) functioning of the methods.

8.1 Analysis From a Musical Score: La Marseillaise

Many of the earliest attempts at automated rhythm and meter detection begin
with a musical score. This simplifies the problem in several ways: the data is
already segmented into notes with known pitches and the basic beat of the
music is known, since all notes of equal duration are represented identically.
Perhaps the simplest case is to use a single (usually melodic) line from a
musical score.
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8.1.1 Rule-based Approaches

Several researchers have created programs to automatically parse a musical
score in order to generate a “high-level” explanation of the grouping of musical
rhythms. Steedman [B: 222] proposes a theory of how listeners might infer
the meter of a passage by comparing note lengths. Using only the interonset
intervals within a single melodic line, the goal is to try to explain why a
given rhythm is heard to be in a particular meter. This involves building a
metrical hierarchy from the given set of interonset durations. The method is
applied to the pieces of Bach’s Well Tempered Clavier and the meter is often
correctly found by following the suggested set of rules. Similarly, Longuet-
Higgins [B: 132] creates a computer program to parse monophonic musical
scores. The meter is regarded as a tree-like structure that can be derived from
a kind of generative grammar, though the grammar must be augmented by
the incorporation of various aspects of perception. A second study [B: 133]
augments this with higher level phrasing rules which attempt to parse the
rhythm so as to minimize the number of syncopations. One conclusion is that
“any given sequence of note values is in principle infinitely ambiguous, but this
ambiguity is seldom apparent to the listener.” This underscores the difficulty
of capturing musical meter and phrasing in a simple set of grammatical rules.

Given that the inputs are monophonic, pitchless, and uninflected, even the
limited success of such rule-based programs is encouraging. The researchers
report their results in glowing terms, saying [B: 222], “this program is intended
to constitute a psychological theory of our perception of meter in melody.”
Yet there is no “perception” involved in this work. The program operates on
high-level symbolic data (the interonset intervals taken from a musical score)
that is far removed from the act of perception. To explain the cases where
the program fails to discover the correct metrical structure, Steedman writes:
“. . . where the program does not infer the meter that the score indicates, then
either the melody is ambiguous, or the composer has exercised the artist’s
privilege to break the rules.” There is also a third possibility: that the ideas
used in the program are not sufficiently developed to explain the metrical
structure of the pieces.

Rosenthal [B: 184] created a rhythm parsing program called Fa which
searches for regularly spaced onset times in a MIDI data stream. The pro-
gram forms and ranks several hypotheses “according to criteria that corre-
spond to ways in which human listeners choose rhythmic interpretations.”
These criteria include quite sophisticated ideas such as having accented notes
fall on “strong” beats, noticing motivic repetitions, and measuring salience.
An example is given of the best rhythmic parsing found by Fa for the song La
Marseillaise, which is reproduced here as Fig. 8.1. The four measure phrase
can be heard in [S: 61].

Such rule-based approaches view the list of note events as a string of
symbols to be parsed and makes decisions based on properties of the sequence.
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Fig. 8.1. The first four measures of La Marseillaise are encoded into the regular
dark lines (representing notes that occur on the beat) and the short light lines that
encode off-beat sixteenth notes. The three sets of arches show the rhythmic group-
ings calculated by Rosenthal’s program Fa, which discerns three levels of metrical
structure corresponding to the beat, the half measure and the full measure. The two
dark circles • are “ghost tones” that occupy a place in the metric hierarchy but are
unsounded. The oblique arrows indicate how the metrical analysis lines up with the
musical score.

This problem of finding rhythmic parsings can also be viewed as a search for
periodicity or frequency data from a time domain signal.

8.1.2 Transform Techniques

Autocorrelation is one way to look for periodicities and to detect non-
randomness in a data sequence. Brown [B: 21] extracts a single voice from
a musical score, codes it into a modified form of the binary notation, and
then applies autocorrelation. In many cases, metrical features of the piece
(such as the beat and the length of the measure) can be correlated with peaks
of the autocorrelation function. In some cases, the half-measure was located at
the peak of the autocorrelation function. This was also considered successful
since listeners may also choose this level of the metric hierarchy as among the
most significant.

For example, the four measures of La Marseillaise shown in Fig. 8.1 can
be coded into the binary string A:

1100110001000100010001000000110011001100010000000100110000000000

Each digit represents a time equal to that of one sixteenth note. The symbol
1 indicates that a note event occurred at that time, while a 0 means that
no new note event occurred. Using the modified form of binary notation (as
described in Sect. 2.1.4 on p. 29, this replaces each “1” with a number that
specifies the length of the note), this becomes the string B:

1 3 0 0 1 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 7 0 0 0 0 0 0 1 3 0 0
1 3 0 0 1 4 0 0 0 8 0 0 0 0 0 0 0 3 0 0 1 11 0 0 0 0 0 0 0 0 0 0
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The autocorrelation of B is shown in Fig. 8.2, which plots the magnitude
of the correlation coefficient at every possible delay. Large values indicate that
the sequence is similar to itself at that delay. The curve shows several temporal
groupings that correspond to musically significant features. The peak at delay
4 represents the quarter note pulse, the peak at delay 8 is the half note, and
the peak at delay 16 corresponds to the measure. Similarly, the peak at delay
32 shows a strong correlation at two measures. Other peaks do not have clear
musical interpretations.
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delay
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half note
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de two measures

Fig. 8.2. The autocorrelation of the
string B derived from the score to La
Marseillaise shows several musically
significant features (the quarter and
half notes and the measure). Other
peaks in the autocorrelation do not
have an obvious interpretation.

For comparison, the binary sequence A (concatenated with itself four
times) was transformed using the DFT. Assuming a sampling rate of 16 Hz,
the duration of each quarter note is 1/4 second, and the resulting magnitude
spectrum is shown in Fig. 8.3. In this figure, the largest peak at 4 Hz represents
the quarter note pulse, while the peak at 1 Hz corresponds to the measure. It
is unclear how to interpret the remainder of the information in this spectrum.
In both this and the autocorrelation, the use of the binary notation A or the
modified version B makes little difference.
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Fig. 8.3. The DFT of the binary se-
quence A derived from the score to
La Marseillaise, assuming a sampling
rate of 16 Hz (one measure per sec-
ond). The peak at 4 Hz represents the
quarter note pulse, and the peak at 1
Hz corresponds to the measure.

Both the autocorrelation and the DFT show significant musical features:
the quarter note beat is prominent and other musical durations are apparent
after inspection. Unfortunately, each is also riddled with extra peaks that have
no obvious interpretation. In the autocorrelation of Fig. 8.2, for instance, the
largest peak occurs at a delay of 12 which corresponds to a dotted half note (or
a “measure” of three quarter notes). There are also large peaks at delays of 20,
24, and 28, etc. that do not directly correspond to sensible durations. Similarly,
the DFT of Fig. 8.3 consists mostly of peaks that are integer harmonics of a
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very low frequency that corresponds to the length of the sequence. Most of
these are unrelated to useful features of the musical score.

The periodicity transform of Sect. 5.5 fares somewhat better since it lo-
cates many of the most significant musical durations without clutter. Figure
8.4 shows the output of the M -Best periodicity transform with M = 5; the
transform searches for the five best periodicities that occur within the se-
quence B. The largest peak at period 4 represents the quarter note pulse.
Also appearing are the eighth note (period 2) and the half note (period 8), as
well as longer structures at the measure with period 16 and the two measure
phrase with period 32. The appearance of the eighth note periodicity is inter-
esting because there are no eighth notes in the sequence; rather, the algorithm
has inferred this level of the metrical hierarchy from the sixteenth and dotted
eighth notes.
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period

eighth note

half
note

measurepo
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two
measures

Fig. 8.4. The Periodicity Transform
of the sequence B derived from the
score to La Marseillaise shows five
major periodicities: the quarter note
beat (with period 4), the eighth note,
the half note, and larger structures at
the measure and at the two measure
phrase

8.1.3 Statistical Methods

Another way to search for regularities in binary data is to use the Bayesian
model of Sect. 7.3. Given the encoding of La Marseillaise into binary notation
A, the probability of the sequence A given the values of the parameters is
the likelihood P (A|{τ, T , qL, qs}). This can be calculated using (7.4), where
qL and qS are the probabilities of events at the grid points and away from the
grid points respectively. Using the default values of qL = 0.5 and qS = 0.2 for
the structural parameters, the likelihood is plotted in Fig. 8.5 over a range of
period T and phase τ . The contour plot displays the most prominent features
such as the quarter note pulse, the half note, and the measure, though there
are also smaller peaks (such as the one at three times the quarter note) that
do not correspond to musically sensible intervals. In principle it would be
proper to estimate the probabilities qL and qs rather than simply assuming
them. But running simulations with a variety of values provides essentially the
same output, suggesting that the peaks of the likelihood are fairly immune to
the particular choice of values for the structural parameters. This is helpful
because it reduces the problem from four dimensions to two.
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Fig. 8.5. The likelihood function for
the binary AM model of Sect. 7.3 ap-
plied to La Marseillaise (string A) has
its largest peak at the quarter note
pulse. The second largest peak occurs
at the half note, and the third largest
at the measure. Smaller peaks also ap-
pear at three times the quarter note.

8.1.4 Adaptive Oscillators

All of the methods of the previous sections (whether rule-based, transform,
or statistical) assume that the tatum (the basic underlying pulse) of the piece
is known beforehand. For example, in La Marseillaise, all durations are de-
fined as simple multiples of the sixteenth note. This assumption underlies the
musical score and numerical representations such as the strings A and B. Be-
cause all intervals between adjacent note events are specified in terms of this
idealized tatum, the interonset intervals represent idealized values, not actual
values as might occur in performance.

When the tatum is not known beforehand, or where it might reasonably
be expected to change throughout the development of a piece, time must be
represented with a finer granularity than the tatum-rate. The simplest method
is to create a function that represents the event list A. Suppose that the ith
element of the list occurs at time ti. The function

x(t) =
{

1 if t = ti
0 otherwise (8.1)

is a pulse train that can be input to an adaptive oscillator. Figure 8.6 shows
the spike train representation for La Marseillaise, which has the same generic
appearance as the spike trains in Figs. 6.13–6.15 on pp. 164–166. Applying
these inputs to adaptive oscillators provides a way to locate and track changes
in the tempo of a sound pattern (as long as the change is not too rapid). By
using several adaptive oscillators with different starting values, it is possible
to locate more than one level of the metrical hierarchy simultaneously since
the oscillators operate independently.2

Figure 8.6 shows the output of three adaptive phase-reset oscillators (de-
fined in Sect. 6.4.3) when initialized near three different values corresponding
to the tatum, the quarter note and the half note. All three synchronize within
2 While some authors have suggested that better performance might result by cou-

pling the oscillators in some way, it is not obvious how to implement the coupling.
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α=1
(tatum)

α=0.5
(quarter note)

α=0.25
(half note)

spike train

event list

time

Gaussian
pulse train

11001100010001000100010000001100110011000100000001001100000000001

Fig. 8.6. The binary event list A for La Marseillaise is represented as a time-based
pulse train. It is input to an adaptive phase-reset oscillator initialized near three dif-
ferent rates (α = 1, 0.5, and 0.25) corresponding to the tatum, the quarter note and
the half note. The output of the oscillators synchronize to the three different levels
of the metric hierarchy. The bottom signal shows the spike train after convolution
with a bell-shaped pulse, which produces an input useful for the adaptive clocking
method.

a few spikes. The simulation shows the output signal during the second pass
through the spike train; subsequent passes are identical. When the underly-
ing rate of the input spikes is changed (up to about 10% per repetition) the
output flawlessly tracks the input.

The bottom signal in Fig. 8.6 shows the spike train x(t) convolved with
a Gaussian pulse. This reshapes each spike in the binary representation into
a smooth pulse that can be input into an adaptive clocking oscillator (given
by (6.20) on p. 167). This input was applied to a bank of 500 independent
oscillators that were identical except for their initial values. Most of the os-
cillators converged within a few repetitions, and the final (converged) values
are displayed in the histogram Fig. 8.7, which shows the number of oscilla-
tors that converged to each period T . About half of the oscillators converged
to one of the musically sensible periods, with the simpler periods attracting
the most oscillators. About one-fifth of the oscillators failed to converge (for
example, the clusters of values near T = 450 and T = 720). The remaining
oscillators appeared to be trapped in complex limit cycles with no obvious
(musical) significance.

At first glance it may seem that a situation where one-half of the oscillators
fail to converge to useful values is excessive. But it is easy to understand. The
data contains several different near-periodic features. When initialized near
a period of the data, an oscillator will most likely converge to that period.
The objective surface for the wavetable oscillator (recall Fig. 6.19) shows
the various stable points and the size of the regions of attraction. Thus an
oscillator initialized close to the T = 100 period will, with high probability,
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Fig. 8.7. The Gaussian pulse train
representation of La Marseillaise
drives a collection of 500 adaptive
clock oscillators initialized with ran-
dom starting values between 40 and
900 (T = 50 was the tatum rate).
The oscillators are allowed to con-
verge through repeated presentations,
and the resulting converged values are
displayed in this histogram.

converge to T = 100 while an oscillator initialized at T = 700 may be too far
from any actual period of the data to be attracted. Thus adaptive oscillators
may be most useful when considered in aggregate. This lends plausibility to
analogies with biological systems in which neuronal elements are typically
considered in aggregate rather than in isolation.

For example, in a pair of studies Eck [B: 55, B: 56] used a collection of
Fitzhugh–Nagumo oscillators (recall Fig. 6.12 on p. 162) to locate downbeats
within the Povel and Essens patterns [B: 174, B: 202]. The frequency of the
oscillators was fixed at the correct value and the phases were initialized ran-
domly. The oscillators were run for several cycles until the outputs settled into
a steady state. The behavior of the oscillators was then examined in aggre-
gate. Though the adaptive oscillators of Chap. 6 are different in detail from
Eck’s oscillators, they have similar dynamics and behaviors.

8.2 MIDI Beat Tracking

All of the technologies for finding repetitive behavior can be successfully ap-
plied to symbolic sequences. The various transforms, the statistical methods,
the adaptive oscillators, and the rule-based approaches can all locate the un-
derlying periodicities when the pulse is known. But MIDI performance data
is more complex in two ways. First, the time between successive events is uni-
form and idealized in symbolic sequences and musical scores. When data is
derived from a musical performance, the interonset intervals (IOIs) need not
be exactly equal. One pair of notes may be 150 ms apart and another 160 ms,
and these are typically perceived as “the same duration.” One task required
for rhythmic understanding is to classify such durations together. Second, the
tempo of a musical piece may change over time. Thus the pair of notes that
are 150 ms apart at the start of a piece may be 140 ms apart when the “same”
section is repeated at the end.

The classification problem can be seen in Fig. 8.8, which shows the IOIs in
a MIDI performance of the Maple Leaf Rag. The data is displayed event-by-
event in the left hand plot and as a histogram on the right. The values cluster
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around the tatum, around the eighth note, and around zero (representing
notes that are played simultaneously).
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Fig. 8.8. The interonset intervals of Trachtman’s [W: 51] rendition of the Maple
Leaf Rag cluster in a few groups including 0.15 s (the tatum) and 0.3 s (the eighth
note) that correspond to the surface structure

Desain [B: 43] attacks the classification problem directly using an “ex-
pectancy” function. Suppose that an interval A is perceived. What intervals
are likely to follow? The most probable is another A, though simple integer
multiples and divisors are also quite likely. Unrelated intervals such as πA
and 6A

7 are unlikely, but not impossible. The expectancy curve is shown in
Fig. 8.9. When a sequence of IOIs occurs, the expectancies can be added, per-
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Fig. 8.9. The basic expectancy curve for a sin-
gle time interval A. The most likely interval is
another A, followed by simple integer multiples
2A, 3A, and 4A and simple divisors such as A

2
.

haps with a decay for those furthest back in time. Desain creates a network
of nodes that represent the IOIs. These interact and alter their values until
they approach simple rational multiples. Thus the expectancy model can be
used to adjust the underlying tatum to the current IOIs and to classify all the
intervals into a small number of uniform times.

Such a direct ad hoc approach may not be necessary. The transform meth-
ods, for instance, implicitly accomplish such a clustering. MIDI data can be
converted into a time function using (8.1) which translates an event list into
a spike train. (This was illustrated in Fig. 8.6.) The transforms can then be
applied to the spike train. Figure 8.10 shows three analyses of the same MIDI
version of the Maple Leaf Rag. Despite the fluctuations in the IOIs, the DFT
and PT identify the required tatum, and the PT locates two higher levels of
metric structure.

Unfortunately, none of the transform methods are able to handle tempo
variation gracefully. Typical failures appear in Fig. 8.11, which shows the
“same” MIDI performance of the Maple Leaf Rag played with a modest
time variation (the piece slows down throughout the first half and speeds
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Fig. 8.10. A MIDI rendition of the
Maple Leaf Rag is analyzed by auto-
correlation, the DFT, and the Peri-
odicity Transform. While peaks that
correspond to the tatum and certain
other features can be identified in
the autocorrelation and DFT, they
are overwhelmed by a maze of irrel-
evant peaks. The Periodicity Trans-
form does better, but requires care in
choosing the effective sampling rate.

up throughout the second half). None of the rhythmic features of the piece
are visible and there is no obvious indication of the tempo variation.
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Fig. 8.11. When the Maple Leaf Rag changes tempo, none of the transform methods
give reliable indications of the tatum or other rhythmic features. Shown are the
autocorrelation and the DFT, which may be contrasted to Fig. 8.10. The PT fails
similarly.

Thus neither the transform methods nor the rule-based approaches can be
expected to be generally successful when parsing data from musical perfor-
mances. Fortunately, this pessimistic assessment does not apply to all of the
technologies, and the next two sections show how both adaptive oscillators and
statistical techniques can be applied to track time variations in MIDI perfor-
mances. Looking ahead, Sect. 8.3 considers the (yet more complex) problem
of tracking the beat directly from an audio source.

8.2.1 Adaptive Oscillators

A MIDI sequence defines a set of musical events and specifies the times when
they occur. An adaptive oscillator defines a kind of clock with an adjustable
period, and the goal of the adaptation is to synchronize the oscillator to the
events in the list. As suggested in Sect. 8.1.4, the time base for the oscillator is
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unknown and varying, and this makes oscillators ideal candidates for tracking
MIDI performance data.

For example, Fig. 8.12 shows the trajectories of a collection of adaptive
phase-reset oscillators applied to a MIDI rendition of the Maple Leaf Rag. The
MIDI event list is first translated into a spike train3 and the oscillators adjust
their period throughout the performance. In the left hand plot, the tempo is
held constant (as it was performed). Most of the oscillators converge to rates
that correspond to the tatum (the sixteenth note) or to twice the tatum.
In the right hand plot, the piece was artificially slowed down and then sped
up (using sequencing software to manipulate the MIDI file). The phase-reset
oscillators track the changes without problem.
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Fig. 8.12. A collection of adaptive phase-reset oscillators are used to find rhythmic
features in a rendition of the Maple Leaf Rag. Trajectories of 26 oscillators (with
different initializations) are shown. All but one converge to either the eighth note
or the tatum (sixteenth note). The tempo is fixed in the left plot, but varies (first
slowing and then speeding up) throughout the right plot. The oscillators track the
changes. In both cases, the bottom oscillator converges to zero, a degenerate stable
point. Other initializations (larger than those shown) do not converge.

To demonstrate beat tracking in a more realistic scenario, a bank of adap-
tive oscillators is applied to a MIDI rendition of the Beatles’ song Michelle.
This MIDI file is from a data set containing expressive polyphonic piano per-
formances by twelve pianists (four “classical,” four “jazz,” and four “ama-
teurs”) with considerable fluctuation in the tempo. Cemgil et al. [B: 27] write
that each arrangement of the Beatles’ song was played at “normal, slow and
fast tempo (all in a musically realistic range and all according to the judgment
of the performer)” and the files are available at the Music, Mind, Machine
website [W: 35].

Each oscillator contains an adjustable parameter α that specifies the fre-
quency.4 One trajectory is shown in the left hand plot of Fig. 8.13, which
3 in the same way that the event list for La Marseillaise was translated into a spike

train in Fig. 8.6.
4 The period of the oscillator is N

αTs
where N is the number of samples in the

wavetable and Ts is the time base on which the spike train is sampled.
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shows the tempo as it increases throughout the first 30 s and then slows to-
wards the end. The output of the oscillator is shown in the right hand plot,
which also superimposes the MIDI spike train. Observe that the output of the
oscillator resets to one each time a new spike occurs. Thus Fig. 8.13 gives a
visual indication of the functioning of the beat tracking.
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Fig. 8.13. A MIDI rendition of the Beatles’ Michelle is beat tracked using an
adaptive phase-reset oscillator. The α parameter is proportional to the frequency
of the adaptive oscillator, which tracks the tempo of the piece. The right hand plot
shows how the MIDI spike train resets the output of the oscillator at each event.
A noise burst imposed at each projected beat location allows the ear to judge the
accuracy of the beat tracking in examples [S: 62]– [S: 64].

More insightful, however, is to listen. One approach is to superimpose
a noise burst at each beat location. These are calculated by projecting one
period into the future: at the kth beat, the time of the k+1st noise burst
is estimated based on the current period. The output of this procedure can
be heard in [S: 62]. The noise bursts lock onto the beat rapidly and follow
changes. Careful listening reveals a glitch at around 29 s, which is caused by
a rapid succession of note events that momentarily increase α. By about 37 s,
the pulse is regained. Because of the projection, the process is causal and can
be implemented in real time (though the simulations reported here are im-
plemented offline in MATLABR©). The second example in [S: 62] replaces the
phase-reset oscillator with a wavetable oscillator using a Gaussian wavetable:
this avoids the glitch and gives smoother results.

To investigate further, the adaptive wavetable oscillator is applied to three
different MIDI renditions of the Maple Leaf Rag in sound example [S: 63]. In
each case the oscillator is initialized far enough from the actual pulse rate that
it is possible to hear the oscillator converging. Synchronization occurs within
three or four beats, and the oscillators subsequently track the tatum of each
of the performances. Two seconds of a typical run in Fig. 8.14 show the three
generic situations that the beat tracker encounters. Often, the MIDI events
occur at the times of the beats and the oscillator output achieves its peak
value at these times. Many MIDI events occur between beat locations. The
beat tracker must not be unduly influenced by such misaligned events since
they are common even in metrically simple music. Finally, the beat tracker
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must locate some beats where there are no events. All three situations are
illustrated in Fig. 8.14.

two seconds

oscillator
output

MIDI
events

beats

Fig. 8.14. The output of the adap-
tive wavetable oscillator tracks MIDI
events. In many places, events coin-
cide with the output of the oscilla-
tor. In others, events occur between or
off the detected beat locations. In yet
others, the beat continues even when
there are no events.

By initializing the oscillator at a slower rate, it is often possible to locate
other levels of the metric hierarchy. For example, when the same wavetable
oscillator is initialized at half speed, it converges to the quarter-note rate of
the Maple Leaf Rag rather than to the eighth-note pulse. This can be heard
in [S: 64].

These examples give something of the flavor of what is possible when using
adaptive oscillators to track MIDI performances. A number of researchers
have developed this idea in various directions. One of the earliest uses of
adaptive oscillators as a model of metric perception is the work of Large and
Kolen [B: 123] which uses an “integrate-and-fire” oscillator with phase and
frequencies that adapt via a gradient-like strategy. Toiviainen [B: 229] uses a
similar bank of adaptive oscillators for the recognition of meter and applies
this to the automatic accompaniment of piano playing in [B: 230]. Toiviainen
expertly demonstrates his system by playing in real time to an accompaniment
that follows his rhythmically sophisticated performance.

Each of the three kinds of adaptive oscillators has its own idiosyncrasies.
The phase-reset oscillator has the fastest convergence. But it is not robust to
additive noises and hence cannot be sensibly applied to audio feature vectors.
The phase-reset oscillator also tends to be limited to only the fastest levels of
the metrical hierarchy since it does not have a good mechanism for “ignoring”
large numbers of events that occur between successive beats. For example, all
initializations at frequencies below those shown in Fig. 8.12 converge to the
degenerate oscillator with frequency zero. The adaptive clock method has the
slowest convergence, though it is also perhaps the most resistant to noises. The
adaptive wavetable converges quickly, and can be adjusted for different rates
of synchronization by choosing the shape (and particularly the width) of the
wavetable. Sharply peaked wavetables help the algorithm ignore unexpected
intermediate events while wider wavetables increase the robustness to noises.

8.2.2 Statistical Methods

The model for symbolic pulse tracking of Sect. 7.5 is ideal for beat tracking
MIDI performances. The timing parameters τ (phase), T (period), and δT
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(change of period) are gathered into a state vector t and the input is a set of
time stamped MIDI events. The procedure is:

(i) Change the MIDI events into a spike train using the technique of
(8.1) (as shown in the first part of Fig. 8.6).

(ii) Partition the data into frames Dk, each representing 2 to 6 seconds
(as in Fig. 7.7).

(iii) Apply the particle filter method of Sect. 7.5 to estimate the distri-
bution of the parameters p(tk|Dk) in frame Dk from the previous
distribution p(tk−1|Dk−1).

An audible output can be created by superimposing a percussive sound at the
detected beat locations. This requires choosing a single “best” value for the
parameters in each frame. This can be the mean, the median, the mode, or
any other single “most likely” point value.

(iv) Choose the most likely values of τ , T , and δT from p(tk|Dk) and
use these as the “best estimate” of the beat within frame k.

This procedure is applied to two MIDI renditions of the Maple Leaf Rag in
[S: 65] and to the Beatles’ Michelle in [S: 66]. The detected beat follows the
pulse of the music flawlessly even as the tempo changes. The performance
by Roache contains numerous ornaments and flourishes, and the algorithm is
able to “ignore” these (metrically extraneous) events.

One way to control the algorithm is via the initialization, the prior dis-
tribution p(t0|D0) of the first frame. In the simulations [S: 65] and [S: 66],
the initial distribution of the period T was chosen to be uniform over some
reasonable range (between t = 0.2 and t = 0.4 s per beat for the Maple Leaf
Rag and between t = 1.0 and t = 2.0 s for the slower Michelle). The initial
distribution of the phase τ was chosen to be uniform over one period (0, t− t)
and the derivative δT was initialized to zero.

Other initial distributions also lead to useful behaviors. For example, if
the initial range of the period for the Maple Leaf Rag is doubled to t = 0.4
and t = 0.8, the output settles to the next slowest (quarter note) level of the
metric hierarchy as in [S: 67]. If nothing is known about the true tempo, a
good strategy is to run the algorithm several times (or to run several versions
in parallel5) with different initial distributions. If the initializations differ by
factors of two or three, they will often converge to different levels of the metric
hierarchy. For example, for the Maple Leaf Rag, each of the T initializations
(t, t) = (0.1, 0.2), (0.2, 0.4), (0.4, 0.8), and (0.8, 1.6) leads to a description of
the piece at a different level. The fastest of these (see [S: 68]) locates the tatum
at every sixteenth note. Even faster synchronizations are possible, though they
become increasingly difficult to listen to.

The slowest example of the Maple Leaf Rag in [S: 68] beats steadily once
per 2

4
measure. In this example, the beat tracker does not typically lock onto

5 The method operates considerably faster than real time even in MATLABR©.



208 Automated Rhythm Analysis

the first beat of each measure. Rather, it locks onto the first “and” where the
meter is counted “one-and-two-and.” While it is possible to force the algorithm
to synchronize to the “one” by suitably restricting the initial values of the
phase τ , the syncopation is strong enough that the algorithm consistently
prefers the “and” to the “one.” This is diagrammed in Fig. 8.15 where the
underlying beats shown as “1+2+” correspond to the metric notation in the
musical score. Four different synchronizations are shown, with periods equal
to the quarter note and to the measure. Which synchronization will occur
depends primarily on the initialization.

beat
time-
points

(a)

(b)

(c)

(d)

“on” beat

“off” beat

1 + 2 + 1 + 2 + 1 +

Fig. 8.15. Four possible synchronizations to
the beats of the Maple Leaf Rag: (a) and (b)
show the beat tracker synchronized to the
“on” beat at rates of the measure and the
quarter note. (c) and (d) show the same two
rates synchronized to the “off” beat. When
initialized near the measure, the statistical
approach prefers the off-beat synchronization
(d) to (a), in accordance with the idea that
the syncopation in the Maple Leaf Rag is sig-
nificant.

The diffusion parameters give another dimension of control over the algo-
rithm by specifying the anticipated change in the parameter values between
successive frames. Where modest changes are likely (such as a rendition of the
Maple Leaf Rag) these variances may be chosen small. Where larger changes
can be expected (as in Michelle) the variances must be chosen larger.

In the course of a musical performance, parameters may change at any
time. By processing the data in discrete frames, the algorithm can only report
changes at the frame boundaries. This is shown in Fig. 8.16 for a phase change
τ occurring in the midst of frame B. The statistical method can retain multiple
estimates of the parameters since the distribution p(tk|Dk) in step (iii) may
contain many possible values, each with their own probability. However, in
step (iv), when it is necessary to choose a particular estimate for output (for
instance, a set of times at which to strike the percussion within frame B) only
a single set of parameters is possible within a given frame. This problem is

A B C

τ1 τ2

frames

Fig. 8.16. Parameter values may change at
any time; the phase τ is shown changing in
the middle of frame B. A frame-based anal-
ysis may locate the actual values in frames
A and C, but it must choose a compromise
value within frame B.
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inherent in any method that uses frame-based processing, and is one of the
reasons that the frame size should be kept as small as possible.

The method (i)–(iv) is one way to exploit probabilistic reasoning in the
context of MIDI beat tracking. Other researchers have proposed a variety of
methods including the Kalman filter [B: 27], MCMC methods and particle
filters [B: 28] (based on Cemgil’s model of Fig. 7.5 on p. 184), and a Bayesian
belief network [B: 179]. Cemgil and Kappen [B: 28] compare two algorithms
for the beat tracking of MIDI data and conclude that the particle filter meth-
ods outperform iterative methods.

8.3 Audio Beat Tracking

There are two approaches to the beat tracking of audio signals. The first
locates interonset intervals and note events, gathers them into a list, and
applies one of the MIDI beat tracking techniques. Since MIDI beat trackers
can operate quite effectively (as shown in the previous sections), this method
is limited primarily by the accuracy of the detection of the note events. The
second approach uses feature vectors to reduce the audio data to a manageable
size and the beat tracker searches the feature vectors for evidence of a regular
succession. This bypasses the need to accurately detect individual note events,
but is limited by the fidelity of the feature vectors to the underlying pulse of
the music.

Because “notes” feature so prominently in the human conception of music,
a commonsense perspective suggests that note detection is a prerequisite to
rhythm identification. Indeed, the majority of beat tracking algorithms (see
for example the overview of automated rhythm description systems by Gouyon
and Dixon [B: 78]) begin with the detection of note events. But the difficul-
ties in transcribing complex polyphonic music are well established, and things
may not be as straightforward as they appear. Section 4.3.8 observed that
any factors that can create auditory boundaries can be used to create rhyth-
mic patterns (recall that sound examples [S: 47]–[S: 50] demonstrate rhythms
without loudness contours or individually identifiable notes). This suggests
that it may sometimes be easier to identify a regular succession of auditory
boundaries than to reliably identify the individual note events that make up
the succession. This is a kind of chicken-and-egg problem discussed further in
Sect. 12.1.

The bulk of this section focuses on the parsing of feature vectors and
examines the ability of the pattern-finding techniques of the previous chapters
(transforms, oscillators, and statistical) to solve the beat tracking and rhythm
detection problems.

8.3.1 Transform Techniques

Many psychoacoustically based models of the auditory system begin with a
set of feature vectors created from a bank of filters that divide the sound
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into a number of frequency regions. For example, the first two minutes of the
Maple Leaf Rag are shown in a spectrogram-like display in Fig. 4.5 on p. 82.
Such feature vectors have been used as a first step in beat tracking in [B: 208],
in the wavelet approach of [B: 232] and in Gouyon’s subband decomposition
[B: 79].

This section presents several examples where the transforms of the feature
vectors correlate closely with various levels of the rhythmic structure. These
begin with a simple three-against-two polyrhythm, which is explored in depth
to show how various parameters of the model effect the results. A series of mu-
sical examples are taken from a variety of sources with a steady tempo: dance
music, jazz, and an excerpt from a Balinese gamelan piece. The transforms
are able to discern the pulse and several “deeper” layers of rhythmic struc-
ture with periodicities corresponding to measures and musical phrases. When
the beat is steady and unchanging, transform techniques can be successful at
locating rhythmic phenomenon even on multiple metrical levels. As might be
expected from the MIDI results, however, when the underlying tempo of the
audio changes, the transform methods fail.

Three Against Two

The Three Against Two polyrhythm familiar from Sect. 3.9 is notated in
Fig. 8.17. It was played at a steady tempo of 120 beats per minute using two
different timbres, “wood block” and “stick,” for 15 seconds (see [S: 69]). This
was recorded at 44.1 kHz and then downsampled using the data reduction
technique of Sect. 4.4.1 to an effective sampling rate of 140 Hz. The down-
sampled data was divided into 23 frequency bands (resulting in 23 feature
vectors) which can be pictured as a spectrogram-style plot (such as Fig. 4.5)
in which each row represents one of the frequency bands and each column
represents a time instant of width 1

140 s. The rows can then be searched for
patterns and periodicities.6

A standard signal processing approach to the search for periodicities is to
use the DFT. Figure 8.18 superimposes the magnitudes of the DFT of all 23
rows. While not completely transparent, this plot can be meaningfully inter-
preted by observing that it contains two harmonic series, one based at 2 Hz
(which represents the steady quarter note pulse) and the other at 3 Hz (which
represents the steady triplet rhythm). These two “fundamentals” and their
“harmonics” are emphasized by the upper and lower lattices which are super-
imposed on the plot. However, without prior knowledge that the spectrum of
Fig. 8.18 represents a three against two polyrhythm, this structure would not
6 This effective sampling rate ef was derived using the technique of Sect. 5.5.5. An

initial periodicity analysis used an effective sampling rate of 132.43 Hz (corre-
sponding to a FFT overlap of 333 samples). The strongest periodicities detected
occurred at 227 samples, corresponding to a periodicity at 1.714 seconds. A new
sampling interval was chosen so that 240 samples occurred within the same time
span; this corresponds to the effective sampling rate of 140 Hz.
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quarter notes

triplets

resultant

Fig. 8.17. The Three Against Two
polyrhythm is written in standard
musical notation. At a tempo of 120
beats per minute, two quarter notes
occur in each second; three triplets oc-
cupy the same time span. This can be
heard in [S: 69].

be obvious. This result directly parallels the earlier results in Figs. 8.3 and
8.10 where the DFT was applied to symbolic sequences and to MIDI files.
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Fig. 8.18. The DFTs of the 23 fea-
ture vectors for the Three Against
Two polyrhythm [S: 69] are superim-
posed. The arrows of the upper lad-
der point to the “fundamental” at
2 Hz and its harmonics (which to-
gether represent the steady quarter
note rhythm) while the arrows of the
lower ladder point to the “fundamen-
tal” at 3 Hz and its harmonics (the
steady triplet rhythm).

Applying the periodicity transforms to the feature vectors (in place of
the DFT) leads to plots such as Fig. 8.19. Here the Best-Correlation method
detects three periodicities, at p = 72 (which corresponds to the quarter note
pulse), at p = 48 (which corresponds to the triplets), and at p = 24 (which
corresponds to the speed of the resultant in Fig. 8.17). Clearly, it is much
easier to interpret the periodicities in Fig. 8.19 than to locate the harmonic
templates in the spectrum of Fig. 8.18.
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Fig. 8.19. The Best-Correlation algorithm is
used to detect periodicities in the Three Against
Two polyrhythm [S: 69]. The horizontal axis is
the period (each sample represents 1

140
second).

The vertical axis shows the amount of energy de-
tected at that period, summed over all the fre-
quency bands.
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Accelerating Three Against Two

A significant limitation of the transform methods is that they require a steady
tempo; pieces which change speed lack the kinds of periodicities that are eas-
ily detected. To investigate the effect of unsteady pulses, the “same” Three
Against Two polyrhythm was re-recorded in [S: 70], but the tempo was in-
creased by 5% every eight beats. This resulted in an increase in tempo of
more than 25% over the course of the 15 seconds. As expected, the transforms
are unable to cope gracefully with the time variation. Figure 8.20 shows the
DFT spectrum and the detected periodicities for the Small-to-Large, Best-
Correlation, and M -Best algorithms. Each of the algorithms has its own pe-
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Fig. 8.20. The Three Against Two
example is performed with the tempo
increasing 5% after every eight beats
in [S: 70], for a total increase of about
25% over the 15 second duration.
None of the periodicity algorithms
show significant rhythmic features of
the signal and the DFT also fails to
reveal any significant structure. The
autocorrelation (not shown) is simi-
larly uninformative.

culiarities, but none of the periodicities accounts for a significant percentage
of the energy from the signal. The Small-to-Large algorithm detects hundreds
of different periods, most far longer than the “actual” signals of interest. Both
the Best Correlation and M -Best algorithms detect clumps of different peri-
odicities between 33 < p < 40 and 53 < p < 60 which are in the midrange
of the changing speed. One can view these clumps as decreasing in period,
as should be expected from an increase in tempo, but it would be hard to
look at these figures and to determine that the piece had sped up throughout.
Similarly, the harmonic templates of the DFT (the top plot in Fig. 8.20) are
smeared beyond recognition and give little useful information.

This highlights the greatest limitation to the use of transforms in the
detection of rhythm; when the underlying pulse rate changes, the transforms
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are unable to follow. Nonetheless, when the beat is steady, the transform
techniques can be used quite effectively, as the following examples show.

True Jit

The first analysis of a complete performance is of the dance tune Jit Jive
performed by the Bhundu Boys [D: 4]. Though the artists are from Zimbabwe,
the recording contains all the elements of a dance tune in the Western “pop”
tradition, featuring singers, a horn section, electric guitar, bass and drums, all
playing in a rock steady 4/4 beat. A preliminary analysis was performed at a
convenient effective sampling rate (in this case 100.23 Hz, an overlap factor of
440), and there was a major periodicity at p = 46 samples. The analysis was
then redone7 at a sampling rate so that this same time interval was divided
into 60 samples giving an effective sampling rate of 130.73 Hz. This was used
to generate Fig. 8.21, which compares the outputs of the Best-Correlation
algorithm, the M -Best algorithm, and the DFT. In all cases, the transforms
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Fig. 8.21. Periodicity analysis of
Jit Jive by the Bhundu Boys [D: 4]
clearly reveals structural aspects of
the performance. The major periodic-
ities occur at 30 (which represents the
pulse at 230 ms), 60 (two beats), 120
(the four beat measure), 240 (the two
measure phrase) and 960 (an eight bar
phrase). The DFT shows three mean-
ingful peaks: peak A represents the
230 ms pulse, and peak C represents
the four beat measure. The interme-
diate peak B corresponds to the half
measure.

are conducted on each of the 23 feature vectors independently, and then the
results are added together so as to summarize the analyses in a single graph.
Thus the figure labeled DFT is actually 23 DFTs superimposed, and the figure
labeled M -Best represents 23 independent periodicity analyses. The vertical
axis for the DFT is the (summed) magnitude, while the vertical axes on all the
periodicity transform figures is the amount of energy contained in the basis
functions, normalized by the total energy in the signal. Hence it depicts the
percentage of energy removed from the signal by the detected periodicities.

There are several major peaks in the DFT analysis, of which three are
readily interpretable in terms of the song. The peak marked A represents
the basic beat or pulse of the song which occurs at 230 ms (most audible in

7 as suggested in Sect. 5.5.5 for the determination of a good effective sampling rate.
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the incessant bass drum) while peak C describes the four beat measure. The
intermediate peak B occurs at a rate that corresponds to two beats, or one
half measure.

The periodicity analysis reveals even more of the structure of the perfor-
mance. The major periodicity at 30 samples corresponds to the 230 ms beat.
The periodicities at 60 and 120 (present in both periodicity analyses) repre-
sent the two beat half note and the four beat measure. In addition, there is a
significant periodicity detected at 240, which is the two bar phrase, and (by
the M -Best algorithm) at the eight bar phrase, which is strongly maintained
throughout the song. Thus the transforms, in conjunction with the feature
vectors defined by the critical band filters, can be easily interpreted in terms
of a hierarchical rhythmic structure for the performance. Plots for a variety of
musical pieces that are qualitatively similar to the DFT and PT in Fig. 8.21
can also be found in [B: 63] and [B: 109].

Take Five

Both of the previous pieces were rhythmically straightforward. Brubeck’s Take
Five [D: 9] is not only in the uncommon time signature 5

4
, but it also contains

a drum solo and complex improvisations on both saxophone and piano. Figure
8.22 shows the periodicity analysis by the Best-Correlation, Best-Frequency,
and M -Best algorithms. All show the basic five to one structure (the period
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Fig. 8.22. Periodicity analysis of
Brubeck’s Take Five [D: 9] clearly re-
veals the “five” structure. The period-
icity at 31 represents the beat, while
the periodicity at (and near) 155 rep-
resents the five beat measure. The
lower two plots show the periodicities
detected by the M -Best algorithm:
the top is an expanded view of the
bottom, which shows the larger peri-
odicities near 310 (two measures) and
near 620 (four measures). The piece is
often notated in eight bar phrases.

at 31 represents the beat, while the period at 155 corresponds to the five beat
measure). In addition, the M -Best algorithm finds periodicities at 310 (two
measures) and at 620 (the four bar phrase). The piece would normally be
notated in eight bar phrases, which is the length of both of the melodies. As
is clear, there are many more spurious peaks detected in this analysis than
in the previous two, and likely this is due to the added complexity of the
performance. Nonetheless, Fig. 8.22 displays several of the major structural
levels.
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Baris War Dance

The Baris War Dance is a standard piece in the Balinese Gong Kebyar (game-
lan) repertoire [D: 15]. The performance begins softly, and experiences several
changes from soft to loud, from mellow to energetic, but it maintains a steady
underlying rhythmic pulse throughout. This beat is alternately carried by the
drum and the various kettle instruments (the bonangs and kenongs), while
the bass gong is struck steadily every eight beats.

These rhythmic elements are clearly reflected in the periodicity analysis.
Figure 8.23 shows the pulse at period 45, and other periodicities at two, four,
and eight times the pulse. The striking of the large gong every eight beats is
shown clearly by the M -Best analysis. Such regular punctuation appears to
be a fairly generic character of much of the Gong Kebyar style [B: 221]. Thus
the periodicity analysis is applicable cross culturally to musics with a steady
pulse.
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Fig. 8.23. Periodicity analysis of the
Baris War Dance [D: 15] clearly re-
flects structural aspects of the perfor-
mance. The major periodicities occur
at the beat p = 45 and at two, four,
and eight times the beat. The largest
of these is most prominent in the bass,
and the periodicity at 360 is the rate
at which the largest gong is struck.

Periodicity Transforms are designed to locate periodicities within a data
set by projecting onto a set of (nonorthogonal) periodic subspaces. This can be
applied to musical performances through the intermediary of feature vectors,
and examples show that the method can detect periodicities that correspond
to the tatum, the beat, the measure, and even larger units such as phrases,
as long as the basic pulse is steady. The major weakness of the transform
approaches is the inability to gracefully account for time variations in the
musical pulse. Fortunately, other techniques do not have the same limitation.

8.3.2 Statistical Beat Tracking

The statistical approach to audio beat tracking operates on feature vectors
designed to capture and condense relevant characteristics of the music. This
section presents a number of examples that demonstrate the functioning of the
algorithm. In all cases, the output is a sequence of times designed to represent
when beat timepoints occur, when listeners “tap their feet.” To make this
accessible, an audible burst of noise is superimposed over the music at the
predicted time of each beat. By listening, it is clear when the algorithm has
“caught the beat” and when it has failed. Please listen to the .mp3 examples
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from the CD to hear the algorithms in operation; graphs such as Fig. 8.24 are
a meager substitute.

The statistical approach of Sect. 7.6 partitions the feature vectors into
frames and sequentially estimates the distribution of the model’s parameters.
As indicated in Fig. 7.9 (on p. 189) there are six parameters in the model.
The three structural parameters are fixed throughout all the examples while
the three timing parameters estimate the temporal motion of the feature vec-
tors. To be specific, the particle filter method outlined in Sect. 7.5 is used to
implement the prediction and update phases using (7.14) and (7.15), that is,
the method estimates the distribution of the timing parameters in the k+1st
frame of the feature vector based on the distribution in the kth frame.

Initial values for the structural parameters σ2
S , σ2

L, and ω (the variance
of the off-beat, the variance of the on-beat, and the width of the Gaussian
pulse) were chosen by hand from an inspection of the feature vectors. Using
these values, the algorithm was run to extract the beats from several pieces.
These results were then used to re-estimate the parameters using the entire
feature vectors, and the values of the parameters from the different training
tracks were then averaged.8 These averaged values were then fixed when es-
timating the beats in subsequent music (i.e., those not part of the training
set). The nominal values were ω = 0.02, σ2

S = 0.14, and σ2
L = 0.2, while the

initialization of T was uniform in the range [t, t] = [0.2, 0.4] s, δT was uniform
[−0.0001, 0.0001] and τ was uniform [0, t − t] = [0, 0.2].

The statistical method of beat tracking has been applied to about 300
different pieces in a variety of styles and a representative sample appear in
Table A.1 on p. 289. The first (approximately) thirty seconds of each are
excerpted in the corresponding sound examples [S: 71] which demonstrate the
beat tracking by superimposing a burst of white noise at each detected beat.
In each case, the algorithm locates a (slowly changing) regular succession that
corresponds to times when a listener might plausibly tap the foot.

In some cases, the detected beat rate feels uncomfortably fast. For exam-
ple, using the default values, the algorithm locks onto a pulse near T = 0.24 s
when beat tracking Howell’s Delight [S: 71](12). Because the piece is rhyth-
mically fluid and moves slowly in a stateful 6

8
, this feels frenetic. Doubling

the initial range of the period T to [t, t] = [0.4, 0.8] allows convergence to a
more reasonable T ≈ 0.72 s, which taps twice per 6

8
measure. This can be

heard in [S: 72]. Taken together, these have located the fastest two levels of
the metrical hierarchy. Observe how much musical activity occurs between
each detected timepoint. Similarly, the default values applied to Julie’s Waltz
[S: 71](15) lock onto the eighth-note tatum at T ≈ 0.30. Doubling the initial
range of the period T allows it to lock onto the quarter note beat at T ≈ 0.61,
and this can be heard in [S: 73].

8 It is important to scale the feature vectors so that they have approximately equal
power. This allows use of one set of parameters for all feature vectors despite
different physical units.
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Similarly, the detected period in Lion Says [S: 71](14) is the tatum at
T ≈ 0.21 when using the nominal parameters. By doubling the initial period
to [t, t] = [0.4, 0.8], the algorithm locates the quarter note beat at T ≈ 0.42 s.
Interestingly, the phase can lock onto either the on-beat or the off-beat (de-
pending on the exact initialization). These can be heard in [S: 74]. This is the
same kind of synchronization issue as in Fig. 8.15.

Thus, depending on the range of the initial timing parameter T , the algo-
rithm may lock onto a pulse rate that corresponds to the tatum, the beat, or
to some higher level of rhythmic structure. Given that reasonable people can
disagree by factors of two9 on the appropriate beat (one clapping hands or
tapping feet at twice the rate of the other), and that some people tend to clap
hands on the on-beat, while others clap on the off-beat, such effects should
be expected in a beat tracking algorithm.

While searching for regularities in symbolic sequences using the statistical
method, the likelihood function often has several peaks. For example, the
maxima in Figs. 7.2 and 7.3 (on pp. 181 and 182) occur at the basic pulse and
at various simple integer ratios. Similarly, in audio beat tracking, there are
rare cases that may lock onto two equally spaced taps for every three beats
or to three equally spaced taps for every two beats. These can typically be
“fixed” by running the algorithm again and/or by increasing the number of
particles. Since the initial particles of the algorithm (the initial guesses) are
chosen randomly, there is no guarantee of finding the best possibilities and
unlikely answers (such as the 3:2 or 2:3 synchronizations) may occasionally
occur. Moreover, once the algorithm becomes entrained, it can be stable and
persist throughout the piece. While such cases are rare (occurring in perhaps
two percent of the cases), it is easy to force such synchronizations by suitably
restricting the initial values of the period. For example, if the period estimates
of the Maple Leaf Rag are constrained to [t, t] = [0.5, 0.53], the algorithm
identifies a 3:2 synchronization at T ≈ 0.52 which is 3

2 the actual beat rate of
T = 0.34 (as in [S: 71](5)). This can be heard in [S: 75].

In typical operation, the output of the algorithm can be pictured as in
Fig. 8.24, which shows the four feature vectors of Sect. 4.4.3 at the start
(between 2 and 6 seconds) of Pieces of Africa by the Kronos Quartet [S: 71](8).
The smooth curves σt define the variance at each time t which is approximately
constant (= σ2

S) between beats and larger (≈ σ2
L) near the bumps. Spaced T

seconds apart, the bumps represent the estimated beat times. Some of the
feature vectors show the pulse nicely, and the algorithm aligns itself with
this pulse. Feature vector (c) provides the cleanest picture with large spikes
at the beat locations and small deviations between. Similarly, feature vector
(a) shows the beat locations but is quite noisy (and temporally correlated)
between spikes. Feature vector (d) shows spikes at most of the beat locations,
but also has many spikes in other locations, many at twice the tap rate.
Feature vector (b) is unclear, and the lattice of times found by the algorithm

9 And also factors of three for music in a triple meter.



218 Automated Rhythm Analysis

3 4 53 4 5
secondsseconds

(a)

(b)

(c)

(d)

σS
2

σL
2

σ t T

ωτ

Fig. 8.24. A few seconds of four feature vectors of Pieces of Africa by the Kronos
Quartet [S: 71](8) are shown. The estimated beat times (which correctly locate the
pulse in cases (a), (c), and (d)) are indicated by the bumps in the curve σt that are
superimposed over each vector. The three structural parameters (ω, σ2

S , and σ2
L) are

fixed while the three timing parameters T , τ , and δT (not shown) are estimated
from the feature vectors. See also Fig. 7.9.

when operating only on this track is unrelated to the real pulse of the piece.
In operation, the algorithm derives a distribution of samples from all four
feature vectors that is used to initialize the next block. The algorithm proceeds
through the complete piece block by block.

An audio file is a record of a performance of a piece. Therefore, a rhythmic
analysis of an audio file directly reveals information about the performance
and only indirectly about the underlying music. The enduring popularity of
the Maple Leaf Rag makes it an ideal candidate for a multi-performance rhyth-
mic analysis because of the many artists, working in a variety of musical styles,
who have interpreted it. Chapter 11 conducts a detailed comparison of the
beat structure of the different performances. To lay the groundwork for this
investigation, Table A.2 (on p. 290) lists 27 renditions of the rag that have
been beat tracked using the technique of this section. About half are piano
renditions, the instrument the rag was originally composed for. Other versions
are performed on solo guitar, banjo, and marimba. Renditions are performed
in diverse styles: a klezmer version, a bluegrass version, three different big
band versions (by Sidney Bechet, Tommy Dorsey, and Butch Thompson), one
by the Canadian brass ensemble, two symphonic versions and an a capella
version.
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The beat was correctly located in all 27 versions shown in Table A.2 us-
ing the default values in the algorithm, as were all but 8 of 67 versions I
have located. Six of these eight were correctly identified by increasing or de-
creasing the time window over which the algorithm operates (the length of
a frame) and by increasing the number of particles. The remaining two are
apparently beyond the present capabilities of the algorithm. One is bathed
in reverberation and the other (by Sindel) is a solo electric guitar with a
substantial delay-feedback effect. In both of these, the feature vectors appear
to be smeared by the effect and fail to respect the underlying pulse. It is
worth noting (parenthetically) that versions by Hyman [S: 76](7) and Dorsey
[S: 76](14) which had been problematic in our earlier report [B: 206], can now
be tracked successfully using nominal parameters. The improvement is due to
small changes in the algorithm, better choice of parameters, and the use of
more particles (typically 1500 rather than 500).

The statistical beat tracking method is generally successful at identifying
the initial tempo parameters and at following tempo changes. One mode of
failure is when the tempo changes too rapidly for the algorithm to track, as
might occur in a piece with extreme rubato. It should be possible to han-
dle abrupt changes by including an additional parameter that represents the
(small) probability of a radical change. The price of this would be that more
particles would be required. Perhaps the most common mode of failure is
when the feature vectors fail to have the hypothesized structure (rather than
a failure of the algorithm in identifying the structure when it exists). Thus a
promising area for research is the search for better feature vectors. There are
many possibilities: feature vectors could be created from a subband decom-
position, from other distance measures in either frequency or time, or using
probabilistic methods. What is needed is a way of evaluating the efficacy of
a candidate feature vector. Also at issue is the question of how many fea-
ture vectors can be used simultaneously. In principle there is no limit as long
as they remain “independent.” Given a way of evaluating the usefulness of
the feature vectors and a precise meaning of independence, it may be pos-
sible to approach the question of how many degrees of freedom exist in the
underlying rhythmic process. Some progress on these issues can be found in
[B: 204, B: 205].

Finally, it should be noted that the algorithms are capable of real time op-
eration because they process a single frame at a time, though the simulations
reported here are not real time because they are implemented in MATLABR©.

8.3.3 Beat Tracking Using Adaptive Oscillators

The promise of the adaptive oscillator approach is its low numerical complex-
ity. That the oscillators are in principle capable of solving the beat tracking
problem is indicated in Fig. 8.25 which shows 70 different runs of the adap-
tive clocking algorithm of Sect. 6.4.4 applied to the Theme from James Bond
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[S: 71](9). Each run initializes the algorithm at a different starting value be-
tween 20 and 90 samples (between 0.11 and 0.52 seconds). In many cases,
the algorithm converges nicely. Observe that initializations between 35 and
45 converge to the eighth-note beat at 0.23 seconds per beat, while initial-
izations between 75 and 85 converge to the quarter-note beat at about 0.46
seconds. Other initializations do not converge, at least over the minute ana-
lyzed. This generic behavior should be expected from the analogous results
for symbolic sequences as in depicted in Fig. 8.7.
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Fig. 8.25. Estimates of the beat period for the Theme from James Bond using
the adaptive clocking algorithm. Depending on the initial value it may converge to
the eighth-note beat at about 40 samples per period (about 0.23 seconds) or to the
quarter-note beat near 80 samples (about 0.46 seconds).

When first applying the algorithm, it was necessary to run through the
feature vectors many times to achieve convergence. By optimizing the param-
eters of the algorithm (stepsize, number of beats examined in each iteration,
etc) it was possible to speed converge to within 30 or 40 beats (in this case,
15 to 20 seconds). What is hard to see because of the scale of the vertical axis
in Fig. 8.25 is that even after the convergence, the estimates of the beat times
continue to oscillate above and below the correct value. This can be easily
heard as alternately rushing the beat and dragging behind. The problem is
that increasing the speed of convergence also increases the sensitivity.

In order to make the oscillator method comparable to the Bayesian ap-
proach, the basic iteration (6.20) needed to be expanded to use information
from multiple T intervals simultaneously and to use information from multiple
feature vectors simultaneously. Both of these generalizations are straightfor-
ward in the sense that predictions of the beat locations and deviations can
follow the same method as in (6.20) (from p. 167) whether predicting one
beat or n beats into the future and whether predicting from a single feature
vector or many. What is new is that there must be a way of combining the
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multiple estimates. There are several possibilities including averaging the up-
dates from all n beats and all feature vectors, using the median of this value,
or weighting the estimates. The most successful of the schemes (used to gen-
erate the examples such as Fig. 8.25) weight each estimate in proportion to
r(t∗k) g(t∗k − τk − Tk) (using the notation from (6.21)) since this places more
emphasis on estimates which are “almost” right.

Overall, the results of the adaptive oscillators were disappointing. By hand
tuning the windows and stepsizes, and using proper initialization, it can often
find and track the beat. But these likely represent an unacceptable level of
user interaction. Since the Bayesian algorithm converges rapidly within a few
beats it can be used to initialize the oscillators, effectively removing the initial
undulations in the timing estimates. Of the 27 versions of the Maple Leaf
Rag, this combined algorithm was able to successfully complete only twelve:
significantly fewer than the particle filter alone.

8.4 Summary

This chapter has applied each of the three technologies for locating patterns
(transforms, adaptive oscillators, and statistical methods) to three levels of
processing: to symbolic patterns where the underlying pulse is fixed (e.g., a
musical score), to symbolic patterns where the underlying pulse may vary (e.g.,
MIDI data), and to time series data where the pulse may be both unknown
and time varying (e.g., feature vectors derived from audio).

All three methods operate well on symbolic patterns where the pulse is
fixed. But when the pulse varies, the transform methods fail. Both the oscilla-
tors and the statistical methods can follow a changing pulse. Oscillator-based
systems entrain to the pulse and the probabilistic methods locate regularities
at the beat-level by parsing small chunks of data searching for statistical order.
A number of sound examples demonstrate the proper and improper function-
ing of the methods. The next several chapters discuss how the beat tracking
methods can be used in audio signal processing, in musical recomposition, and
in musical analysis.
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Beat-based Signal Processing

There is an old adage in signal processing: if there is
information, use it. The ability to detect beat timepoints
is information about the naturally occurring points
of division within a musical signal and it makes
sense to exploit these points when manipulating the
sound. Signal processing techniques can be applied
on a beat-by-beat basis or the beat can be used
to control the parameters of a continuous process.
Applications include beat-synchronized special effects,
spectral mappings with harmonic and/or inharmonic
destinations, and a variety of sound manipulations that
exploit the beat structure. A series of sound examples
demonstrate.

The ability to automatically detect the beat allows signal processing tech-
niques to be applied on a beat-by-beat basis. There are two ways to exploit
beat information. First, each beat interval may be manipulated individually
and then the processed sounds may be rejoined. To the extent that the wave-
form between two beat locations represents a complete unit of sound, this is an
ideal application for the Fourier transform since the beat interval is analogous
to a single “period” of a repetitious wave. The processing may be any kind of
filtering, modulation, or signal manipulation in either the time or frequency
domain. For example, Fig. 9.1 shows the waveform of a song partitioned into
beat-length segments by a series of envelopes. Each of the segments can be
processed separately and then rejoined. Using envelopes that decay to zero at
the start and end helps to smooth any discontinuities that may be introduced.

The second method uses beat locations to control a continuous process. For
example, a resonant filter might sweep from low to high over each beat interval.
The depth of a chorusing (or flanging) effect might change with each beat.
The cutoff frequency of a lowpass filter might move at each beat boundary.
There are several commercially available software plug-ins (see for example
[W: 8] and [W: 46]) that implement such tasks using the tempo specified by
the audio sequencer; the performer implicitly implements the beat tracking.

Since certain portions of the beat interval may be more perceptually salient
than others, these may be marked for special treatment. For example, time
stretching by a large factor often smears the attack transients. Since the beat
locations are known, so are the likely positions of these attacks. The stretching
can be done nonuniformly: to stretch only a small amount in the vicinity of the
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Processing

Fig. 9.1. A collection of windows separates the waveform into beat intervals, which
can be processed independently. After processing, the intervals are windowed again
to help reduce clicks and edge discontinuities. The final step (not shown) is to sum
the intervals to create a continuous output.

start of the beat and to stretch a larger amount in the steady state portions
between beat locations.

The bulk of this chapter documents a number of experiments with beat-
based audio processing. The final section compares the two signal processing
techniques used to generate the majority of the sound examples: the phase
vocoder and the beat-synchronous FFT.

9.1 Manipulating the Beat

Detected beat information can be used to change durations within a piece
in several ways. For example, a recording might have an unsteady beat; an
alternative version can be created that equalizes the time span of each beat,
as diagrammed in the top part of Fig. 9.2. Sound example [S: 77] equalizes
the beat in the Maple Leaf Rag so that each beat interval is the same length.
A percussion line (from a drum machine) is superimposed to emphasize the
metronomic regularity. On the other hand, a piece might suffer from a repet-
itive metronomic pulse. To create a more expressive performance, the beat
intervals may be stretched or compressed at will. Signal processing techniques
for changing the length of a passage without changing the pitch are discussed
at length in Sect. 9.8.

Such beat manipulations can also be used to change the character of a
rhythm. For example, Fig. 9.3 shows several different ways to expand and
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original unsteady beat

original beat

desired steady beat

desired faster beat

Fig. 9.2. An unsteady beat can be regularized by changing the duration of each beat
interval to a desired steady value. A slow tempo can be made faster by shortening
the sound in each beat interval.

compress beat intervals. When played together with the original, the sound
becomes more complex, often in a rhythmic fashion. The first beat of part
(a) is stretched by a factor of 4

3 , the second beat is compressed by a fac-
tor of 2

3 , and the third and fourth are left unchanged. Every four beats
the stretched/compressed pattern realigns with the original so the overall
tempo does not change. This manipulation is applied to the Maple Leaf Rag
in [S: 78](a). The piano bounces along, having gained some extra flourishes.
Part (b) stretches the first and third beats by 3

2 and leaves the second beat
unchanged. Every fourth beat is removed. This pattern is then played simul-
taneously with the original in [S: 78](b). Again, the piano acquires a rapid
rhythmic ornamentation. Similarly, [S: 78](c) manipulates the beat pattern
twice and plays all three versions simultaneously. While arbitrarily complex
manipulations are possible, at some point the sound will become overly clut-
tered.

1/13/2 3/2 3/2 3/21/1

4/3 1/12/3 1/1 1/1 1/14/3 2/3

4/3 1/12/3 1/1 1/1 1/14/3 2/3

4/31/11/1 2/3 4/31/11/1 2/3
(a)

(c)

(b)

4/3 4/3 4/3 4/3 4/3 4/3

(d)

Fig. 9.3. Changing the duration of beat intervals can be used as a kind of
beat-synchronized delay processing. Performing different versions simultaneously in-
creases the density, often in a rhythmic way.

Figure 9.3(d) shows a uniform stretching of three out of every four beats
by a factor of 4

3 . Thus three of the slower beats occupy the same time interval
as four of the faster beats. When played simultaneously, the result is a 4:3
polyrhythm analogous to those of Sect. 3.9 but where individual rhythmic
events are replaced by beat intervals. Two versions appear in [S: 79]. In the
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first version, the last beat of each measure is removed. In the second version,
the third beat of each measure is removed. The two lines are panned left and
right for the first 16 bars so that it is easier to hear the “four” of the original
against the “three” of the stretched. The lines are merged back into stereo for
the remainder to emphasize the polyrhythmic percept.

The tempo of the piece can also be changed by increasing or decreasing
the length of sound within each beat interval. As discussed in Sect. 5.3.4, one
common way to carry out time stretching and compression is to use the phase
vocoder. A variable (time dependent) stretching can be used to accomplish
a one-to-one time mapping near the start of each beat (to help preserve the
attack) and to then speed up (or slow down) to achieve the desired stretching
throughout the bulk of the beat interval. Several examples in [S: 80] demon-
strate the Maple Leaf Rag at a variety of tempos ranging from one-quarter
normal speed to sixty-four times normal speed. The Maple Sleep Rag [S: 81]
develops the half-speed Maple Leaf Rag [S: 80](ii) using a variety of subtle
(and not-so-subtle) beat-based effects from Sect. 9.2.

Extreme time stretching can be an interesting effect even when it is not tied
to beat locations. When sounds become elongated, details that are normally
not heard may come to the foreground. In [S: 82](i), a single strike of a gong
lasts about four seconds. This is time stretched to over thirty seconds in
[S: 82](ii), bringing out details of the evolution of the sound that are lost
when heard at normal speed.

A collage of beat intervals from a variety of sources are joined in the
Very Slow examples of [S: 83](i) and (ii). The uniting aspect of these sounds
is that they are stretched (approximately) eight times so that each single
beat interval lasts for 8

3 of a second. Though many of the source beats are
percussive, the primary impression of the sounds in the Very Slow pieces
are of evolving textures, reverberant tonal masses, and transparent sound
clouds. Typically, the attack of a sound is a synchronous onset of a complex
collection of waves which evolve rapidly. When the sound undergoes extreme
time stretching, the synchrony is lost. The “attack” of a drum becomes a
cluster of sweeping sounds. Examples [S: 83](iii) and (iv) present the same
piece Inspective Latency at the original tempo and slowed by a factor of eight.

Kramer’s [B: 117] “vertical time” is a regime of perception where a single
moment of time appears vastly elongated. In musical composition, vertical
time may be evoked by repetition of a set of selected sonic events and by
habituation of the listener to the repetition. Extreme time expansion is a
signal processing analog of vertical time, where the elongation occurs in the
perception of the individual sounds rather than in the perception of sequences
of sounds. Beethoven’s 9th Symphony, stretched to last 24 hours [W: 1], is a
fascinating example of elongated time.

At the other extreme, radical time compression plays with the boundary
between composition and timbre. Sound examples [S: 80](iv)–(viii) present a
series of increasingly absurd compressions of the Maple Leaf Rag by factors
of four, eight, sixteen, thirty-two and sixty-four. By the final version, the
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complete rag is squeezed into less than two seconds! It is no longer a piece of
music; it is a complex fluttering timbre.

9.2 Beat-synchronous Filters

Perhaps the best known beat-based effect is the wah-wah pedal. The com-
mercial viability of products such as Dunlop’s “crybaby,” Ibanez’s “weeping
demon,” and Morley’s “Steve Vai” wah-wah attest to its continued popularity.
The wah-wah consists of a foot pedal that controls the resonant frequency of
a low pass filter (as shown in Fig. 9.4). As the foot presses down, the resonant
frequency increases, with the peak moving from (a) to (b) to (c). This imitates
(in a crude way) the formants of a voice saying “wah” and gives the device its
name.1 Though this can be used in many ways, one of the most characteristic
is a rhythm guitar effect in which the performer rocks the foot up and down
in synchrony with the beat while strumming a chord pattern. For example,
Isaac Hayes in the theme from Shaft [D: 22] and Jimi Hendrix in Voodoo Child
[D: 23] exploit this style of playing.

frequency
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ag
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(b) (c)(a)
Fig. 9.4. In a wah-wah pedal, the resonant
frequency of a lowpass filter is controlled by
the position of a footpedal. A common per-
formance technique is to rock the foot back
and forth with the beat, sweeping the reso-
nance in time to the music.

With the wah-wah pedal, the performer supplies the beat-synchronization,
but the same idea can be applied to the post-processing of sound once the beat
locations are known. For example, the resonant frequency of a filter might be
controlled by the position within the beat interval: the beat might begin at
(a), proceed through (b), reach (c) at the midpoint, and then return smoothly
to (a) through the remainder of the beat interval.

The Beat Filtered Rag [S: 84] demonstrates some of the possibilities. These
include:

(i) linear filters with resonances that change in synchrony with the
beat: sometimes on each beat, sometimes twice per beat, some-
times four times per beat

(ii) delays that are synchronized with the beat: portions of the sound
are fed back, summed, and delayed using times that are integer
subdivisions of the beat

1 A similar effect is produced when brass players move their hand in the bell of
their instruments; for example, Joe “King” Oliver recorded Wawawa in the 1920s.
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(iii) automatic panning (in the left/right stereo field) in a beat syn-
chronous manner

(iv) flanging (a time variable phase shifting) with delays and time pa-
rameters that coincide with the beat

While it may appear as if the Beat Filtered Rag has been augmented with
synthesizers or other instruments, the only sound source is the solo piano of
the Maple Leaf Rag [S: 5]. All the sounds are (time varying) linear filters and
delays of this single performance.

The parameters of the effects can be automated by a low-frequency oscil-
lation (LFO) that is synchronized to the beat locations. The LFO may be a
sinusoid, a ramp up or down, a triangle wave, or some arbitrary shape. It may
fluctuate at a rate of one period per beat, or it may oscillate with n periods
of the LFO entrained to m beats of the music (where n and m are small
integers). Thus the effects may vary more rapidly than the beat or they may
evolve more slowly than the beat; the key is that they remain synchronized.

The Beat Gated Rag [S: 85] also exploits other techniques:

(v) beat-synchronous gating allows the sound to pass at certain time
instants and not at others

(vi) enveloping modulates the sound with predefined amplitude en-
velopes that synchronize with the beat locations

Again, it may appear at first listening that the Beat Gated Rag is supplemented
with extra instruments or synthesizers, but it is not. All sounds are derived
from the original piano performance by beat-synchronous gating, enveloping,
filtering, and delays. How is this possible?

Classical analog synthesizers (such as those by Moog and ARP) begin with
a simple waveform such as a sawtooth or a square wave, and then process the
waveform using a variety of filters and techniques not dissimilar from the
above lists. In the beat-based rags, the source sound is a piano performance
(instead of a sawtooth wave), but the kinds of processing tricks, which lend
the sound its color and character, are the same. The key is that in order to get
intelligible output, it is necessary to synchronize the changes in the parameters
of the filters, delays, gates, and envelopes with the changes in the music. In the
classical synthesizer used as a musical instrument, the performer orchestrates
the timing. In the post processing of a piece such as the Maple Leaf Rag, the
parameters can be synchronized using beat-based information to control the
timing. Additional variations on these processes can be heard in the Magic
Leaf Rag [S: 141] and the Make It Brief Rag [S: 142], which exploit a variety of
beat-synchronized gating and filters in addition to beat-synchronized delays
such as those of Fig. 9.3. These pieces are discussed further in Sect. 10.3.

There are also many kinds of processing that can be done to a complex
sound source that are inappropriate for simpler sounds. The next several sec-
tions explore signal processing techniques that require a complex beat syn-
chronized input.
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9.3 Beat-based Time Reversal I

A classic effect is to play a recording backwards. The sound of a percussive
instrument (like the piano) swells out of nothingness, grows, and then eerily
cuts off. Speech becomes unintelligible. For example, Gar Fael Elpam [S: 86]
plays the first 45 seconds of the Maple Leaf Rag backwards. While this kind
of reversal can be used as a special effect to generate odd timbres, gener-
ally speaking, the process of playing a sound backwards destroys its musical
content.

At what level does this loss of meaning arise? Is meaning lost when in-
dividual sounds are reversed, or when the composition itself is reversed? A
beat-based time reversal can distinguish between these two alternatives. In
sound example [S: 87], the audio in each beat interval of the Beat Reversed
Rag is reversed. The music (the melody, harmony, and rhythm) appears to
move forward in the normal manner but the timbre of the sound changes
drastically. The familiar timbre of the piano is transformed into an organ or
a calliope by the reversal of the time envelope. Thus, time reversal on a small
scale (within each beat) changes the timbre of the sound but does not change
the composition itself. Time reversal on a large scale destroys the composition.

waveform

beat reversed
waveform

identified beat
locations

beat interval

time

.  .  . .  .  .

Fig. 9.5. Each beat interval of the Maple Leaf Rag is reversed in sound example
[S: 87], the Beat Reversed Rag. The overall impression is that the music moves
forward in the normal manner, but that it is played on a different instrument.

To demonstrate that correctly finding the beat boundaries is crucial in this
process, the Wrongly Reversed Rag [S: 88] reverses the audio in approximately
beat-size chunks (for this example, every 0.4 s). The boundaries of the reversed
segments have no sensible relationship to the beat boundaries (which occur
about every 0.34 s) and the primary impression is of a confused, or at least
confusing, performance.

9.4 Beat-based Averaging

There are many styles of music based on repetitive cycles (any of the styles
based on timelines, tala, or clave from Chap. 3) which repeat a rhythmic
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pattern throughout a significant portion of the piece. Once the beat timepoints
have been identified, it is possible to average the signal over successive cycles,
creating a kind of variation from the repetition.

Suppose that the individual beat intervals are identified and clustered into
cycles so that a1 represents the first complete cycle, a2 represents the second
cycle, etc. A two-cycle running average defines bk = 1

2 (ak + ak+1) and then
plays the bk in succession. More generally, the kth term in an n-cycle average
is ck = 1

n (ak + ak+1 + . . . + ak+n−1).
For example, the hip-hop sublime [S: 31] is averaged over n = 2, 5, 30,

and 50 cycles in [S: 89]. For n = 2, the voice becomes confusing (because
Ice Cube is rapping with himself) but the rhythmic feel remains intact. By
n = 5, the voice overlays itself five times and becomes an incomprehensible
chorus. With n = 30, the thirty voices have become a swirling sound cloud;
the rhythmic material has become phased but is still clearly discernible. By
n = 50 the voices are no longer recognizable as human and the rhythm has
become smeared, but remains recognizable.

This emphasizes the amount of repetition inherent in the music; that which
is the same throughout the piece is reinforced at each cycle, that which changes
becomes attenuated and blurred.

So far, this chapter has focused on time domain manipulations of the
sound within the beat intervals. The next sections turn to frequency domain
manipulations of the beat.

9.5 Separating Signal from Noise

Frequency domain methods begin by finding the spectrum using an FFT.
Since the spectrum is a sequence of numbers, the numbers can be changed
(or “processed” or “mapped”) in many possible ways. The result is a new
spectrum that can be transformed back into a time signal:

input
sound → FFT

spectrum−−−−−−−→ Processing
changed−−−−−−−→
spectrum

IFFT → output
sound

The next sections describe several different kinds of musically sensible pro-
cessing.

One of the great strengths of a transform-based approach to the process-
ing of musical signals is that the tonal aspects of the sound can be treated
differently from the noisy aspects; the periodic components can be treated dif-
ferently from the aperiodic components. This requires that there be a simple
way of separating the signal (loosely, the most salient partials in the sound)
from the noise (rapid transients or other components that are distributed
over a wide range of frequencies). This separation helps preserve the integrity
of the tonal material and helps preserve valuable impulsive information that
otherwise may be lost due to smearing [B: 195]. This section shows how to
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carry out this separation, and then applies the method in a variety of sound
examples.

The noise floor can be approximated as the output of a median filter
applied to the magnitude spectrum, as shown in Fig. 9.6. Since peaks are
rarely more than a handful of frequency bins wide, a median filter with length
between mL = 21 and mL = 31 allows good rejection of the highs as well as
good rejection of the nulls. For example, the left hand plot in Fig. 9.6 shows
the spectrum in a single beat interval of Joplin’s Maple Leaf Rag. The median
filter, of length 25, provides a convincing approximation to the noise floor. If
desired for data reduction purposes, this can be approximated using a small
number of linear segments without significant loss of detail.
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Fig. 9.6. A typical spectrum and the noise floor as calculated by the median filter.
The noise floor can be used as a step in the identification of spectral peaks and
to help separate the signal from the noise. The plot on the right enlarges a small
section of the plot on the left.

To be explicit, the length mL median filter (with mL an odd integer) of
the sequence x(k) is

N(k) = median {x(j), x(j + 1), . . . , x(j + mL)} (9.1)

where j = k− mL−1
2 . If the indices refer outside the vector x (as occurs at the

start and end), then zero is assumed. In the present application, x represents
the magnitude spectrum of the input and N(k) is a magnitude spectrum that
approximates the noise floor.

What does the noise floor sound like? The Noisy Leaf Rag [S: 90] strips
away all information that lies above the noise floor in each beat of the Maple
Leaf Rag (leaving, for example, only the data below the dark line in Fig. 9.6).
After translation back into the time domain, all the significant peaks of the
sound are removed and only the noise floor remains. Perceptually, the rhythm
of the piece is clearly evoked and the bulk of the pitched material is removed.
The Maple Noise Rag [S: 91] uses the Noisy Leaf Rag as its only sound source,
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augmenting the rhythmic noise with a variety of beat-based delays and filters
as in Sect. 9.2. The Just Noise Rag [S: 92] demonstrates another variation.
Similarly, Noisy Souls [S: 93] removes all but the noise floor from Soul and
then sculpts a variety of sound textures from this noise.

This technique is particularly interesting when applied to vocal sounds.
Sound example [S: 94], the Noisy StrangeTree, removes all information above
the noise floor in each beat. In the verse, the consonants of the voice are
(almost) identifiable. In the chorus, where the voice sings sustained notes, the
vocals effectively disappear. This technique is applied more artfully in the
second verse of the song Sixty-Five StrangeTrees [S: 106], which is discussed
more fully in Sect. 9.6.

The opposite manipulation, stripping away all information that lies below
the noise floor, has the opposite effect. This is demonstrated in the Signal Leaf
Rag [S: 96]. Observe that many of the percussive elements (such as the attacks
of the piano notes) are removed, leaving the basic tonal material intact. Due
to the linearity of the transform process, the sum of the Noisy Leaf Rag and
the Signal Leaf Rag is equal to the original Maple Leaf Rag [S: 5].

The noise floor is also important as a step in locating the peaks of the
magnitude spectrum. Within each beat, let X(f) be the magnitude spectrum
and N(f) the noise floor. A useful algorithm for peak identification is:

(i) Let L be the set of frequencies at which all local maxima of X(f)
occur.

(ii) For all �i ∈ L, if X(�i) < N(�i), remove �i from L.
(iii) Remove all but the M elements of L which have the largest mag-

nitude.

For many purposes, M = 50 is a useful maximum number of peaks, though
this number might vary depending on the complexity of the sound material
and the desired compositional goals. By construction, the algorithm returns
up to M of the largest peaks, all of which are guaranteed to be local maxima
of the spectrum and all of which are larger than the noise floor. The right hand
plot in Fig. 9.6 demonstrates how the peaks (indicated by the small circles)
coincide only with maxima that are greater than the noise floor. Observe that
this is quite different from a strategy that chooses peaks based on a threshold
(which might typically be a function of the magnitude of the largest peak).

What do peaks sound like? Once the M largest peaks are located, it is
straightforward to remove the non-peak data and transform the result back
into the time domain. Since each peak is actually several samples wide,2 as
can be seen in the right hand plot of Fig. 9.6, it is a good idea to retain a small
number of samples surrounding each peak. Removing all but the largest peak
results in Maple One Peak [S: 97](i). This single sinusoid additive resynthesis3

of the Maple Leaf Rag is barely recognizable. The next several sound examples
2 due to the windowing and finite resolution of the FFT.
3 The algorithm is applied separately to the left and right tracks of the original

sound file. Because the data is different in each track, the largest peak in the
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[S: 97](ii)–(v) increase the number of peaks that are retained: from 3, to 15,
to 50, and then to 250. With 3 peaks the piece is recognizable but glassy
and synthetic. With 50 and 250 peaks, the character of the piano is clear. In
between, with 15 peaks, the timbre is somewhat inconsistent. Certain notes
approach the piano timbre while others retain a synthetic feel.

Observe that the process of retaining only the peaks is not the same as the
process of removing the noise floor. Nor is retaining the noise floor the same
as removing the peaks. For example, the Atonal Leaf Rags [S: 98] and [S: 99]
remove all data in a band of width ±25 Hz about each of 50 detected peaks.
The primary impression is of an atonal rhythmic bed. The atonality occurs
because the majority of the (harmonic) peaks are detected and removed, leav-
ing an irregular pattern of peaks unrelated to any harmonic series. The ear
interprets this as a random collection of partials that have no tonal structure,
yet which retain a rhythmic pulse. The same technique is applied to Soul [S: 7]
to form the basis of the Atonal Soul [S: 100]. The raw atonal output is then
beat-gated and beat-filtered as in the previous sections.

Once the tonal components are separated from the noise components of a
beat, there are many more interesting ways to process the sound than simple
deletion. The next section looks at a technique of mapping the partials from
their current location to some desired location.

9.6 Spectral Mappings

The partials of a sound are defined by the peaks of the magnitude spec-
trum. Since these are represented in the computer as a vector of numbers, the
numbers can be manipulated algorithmically. This is called spectral mapping
[B: 199] because it maps the spectrum of the source into the spectrum of the
destination. This changes the frequencies of the peaks (partials) and hence
changes the timbre of the sound.

Mathematically, a spectral mapping is a function from Cn → Cn, where
Cn is the n-dimensional space of complex numbers and n is equal to the size
of the FFT. In general, the mapping may change from beat to beat because
the locations of the source and/or destination partials may change. Thus the
mapping is not time invariant.

For example, Fig. 9.7 shows a stylized representation of a spectral map-
ping from a source spectrum with peaks (partials) at fi into a destination
spectrum with peaks (partials) at gi. As shown, some of the partials move up
in frequency while others move down. If there is a consistent motion (up or
down) then the pitch may also change. It can change a harmonic sound into
an inharmonic sound. It can change a single pitched note into two or more
notes, or it may change a chord into a single tone, depending on the nature of

left may be different from the largest peak in the right. Hence there are times in
[S: 97](i) where two sinusoids sound simultaneously.



234 Beat-based Signal Processing

the source and destination. There are many possible spectral mappings; this
section presents some that may give musically interesting results.

g1      g2   g3     g4          g5 g6       g7        g8 g9
 ...

f1 f2 f3 f4 f5 f6 f7 f8 f9 ...source

destination
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Fig. 9.7. In this schematic representation of a spectral mapping, a source spectrum
with peaks at f1, f2, f3, . . . is mapped into a destination spectrum with peaks speci-
fied at g1, g2, g3, . . .. The spectrum of the original sound (the plot is taken from the
G string of a guitar with fundamental at 194 Hz) is transformed by the spectral
mapping for compatibility with the destination spectrum. The mapping changes the
frequencies of the partials while preserving both magnitudes (shown) and phases
(not shown).

9.6.1 Mapping to a Harmonic Template

Harmonic sounds play an important role in perception, as discussed in
Sect. 4.3.2. What happens when a source (input) sound is spectrally mapped
so that all partials are moved to coincide with a single harmonic series? This is
a special case of the spectral mapping of Fig. 9.7 where the destination spec-
trum gi consists of all integer multiples of a single fundamental frequency. For
example, the harmonic series built on 65 Hz is

g1 = 65, g2 = 130, g3 = 195, g4 = 260, g5 = 325, . . . . (9.2)

If the source consists of a harmonic series with fundamental f , the spectral
mapping is much like a transposition where all partials are multiplied by
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a constant factor g1
f . But even when the source is inharmonic, the output

lies on a single harmonic series. For example, the gong [S: 82](i) is spectrally
mapped to the 65 Hz harmonic destination in [S: 101]. The harmonic gong
has a definite pitch (the same pitch as a sinusoid with frequency 65 Hz).

Similarly, sound example [S: 102] maps an inharmonic cymbal into a har-
monic series. The spectrum of the cymbal (like that of the gong) contains
many peaks spread irregularly throughout the audible range. The spectrally
mapped version retains some of the noisy character of the cymbal strike, but
it inherits the pitch associated with the destination spectrum. The two brief
segments of the Harmonic Cymbal [S: 102] are:

(i) the original sample contrasted with the spectrally mapped version
(ii) a simple “chord” pattern played by pitch shifting the original sam-

ple, and then by pitch shifting the spectrally mapped version

The transformed instrument supports both chord progressions and melodies
even though the original cymbal sound does not.

Even greater changes occur when mapping complete musical pieces to
harmonic spectra. For example, Maple in 65 Hz [S: 103] maps the Maple Leaf
Rag into the 65 Hz harmonic template (9.2). Chords become static and the
harmonic motion is lost. The bass remains rooted in a 65 Hz fundamental even
as the pitch moves in the scale defined by the harmonic series. Chord variations
in the Maple Leaf Rag become variations in timbre in [S: 103]. Throughout,
the rhythm remains clear. Sixty-Five Maples [S: 104] further develops and
elaborates [S: 103]. Other pieces mapped into the same 65 Hz harmonic series
are Sixty-Five Souls [S: 105] and Sixty-Five Strangetrees [S: 106]. Even while
remaining tied to a single root, an amazing variety is possible.

Such radical alteration of sound is not without artifacts. The most promi-
nent effect is the 65 Hz “drone” that accompanies each of the pieces. This
is unsurprising given the nature of the mapping since all partials between 30
Hz and 97.5 Hz are mapped to 65 Hz. Thus an octave and a half of the bass
range is mapped to the fundamental frequency. Similarly, all other partials of
the source are mapped to the various harmonics of this drone.

Artifacts associated with time variations can be more subtle. The actual
mapping performed within each beat4 changes as the partials in the source
move. For example, at certain times, the partials of the voice in Sixty-Five
Souls jump around, wiggling up and down. This rapid oscillation between ad-
jacent destination partials is illustrated in Fig. 9.8. Discontinuous outputs can
occur even when the input partials vary smoothly. This exhibits an essential
tension between the sliding pitch of the original Soul [S: 7] and the essentially
static pitch of the destination. This artifact can be reduced by incorporating
hysteresis in either frequency or in time, though this requires careful tweaking
of additional parameters.
4 or within each frame in a PV implementation.
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Fig. 9.8. When the partials are mapped to a fixed destination, small changes in the
input frequency can cause jumps in the output. In this plot, the smoothly varying
input repeatedly crosses the boundary that separates partials mapped to gi from
partials mapped to gi+1.

9.6.2 Mapping to a n-tet Template

Another simple destination spectrum is given by the steps of the n-tone equal
tempered scale (abbreviated n-tet). This destination contains the frequencies
Fαi for all positive and negative integers i where α = n

√
2 and where F is

a reference frequency. For example, the familiar 12-tet scale of the Western
tradition has α = 12

√
2 ≈ 1.059463 and F = 440 (though different values

of F have been used in various times and places). One motivation for this
destination spectrum is that if the partials of a sound are located at intervals
corresponding to these scale steps, the sensory dissonance [B: 166] of the sound
will be minimized at the intervals of the scale steps [B: 200]. For example, an
easy way to achieve consonant chords in (say) 11-tet is to map the partials of
the sound to the 11-tet scale steps. A series of examples showing various n-
tets and related spectra that minimize dissonance is given in Tuning, Timbre,
Spectrum, Scale [B: 196].

An n-tet destination spectrum is

g1 = Fαj1 , g2 = Fαj2 , g3 = Fαj3 , g4 = Fαj4 , . . . . (9.3)

where the ji are some subset of the integers. For example, with n = 11, it
is possible to map individual harmonic sounds into 11-tet sounds using the
mapping5

f
↓
f

2f
↓

α11f

3f
↓

α17f

4f
↓

α22f

5f
↓

α26f

6f
↓

α28f

7f
↓

α31f

8f
↓

α33f

9f
↓

α35f

10f
↓

α37f

· · ·

· · ·

where f is the fundamental of the harmonic tone and α = 11
√

2. Sound example
[S: 107] illustrates this mapping with several instrumental sounds alternating
with their 11-tet versions.

(i) harmonic trumpet compared with 11-tet trumpet
5 These particular destination values (powers of α) are chosen because they are

the closest 11-tet scale steps to the harmonic partials of the source. This helps to
minimize the perceived changes in the timbre of the sound.
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(ii) harmonic bass compared with 11-tet bass
(iii) harmonic guitar compared with 11-tet guitar
(iv) harmonic pan flute compared with 11-tet pan flute
(v) harmonic oboe compared with 11-tet oboe
(vi) harmonic “moog” synth compared with 11-tet “moog” synth
(vii) harmonic “phase” synth compared with 11-tet “phase” synth

The instruments are clearly recognizable and there is little pitch change caused
by this spectral mapping. Perhaps the clearest change is that some of the
samples have acquired a soft high-pitched inharmonicity: a “whine” or a high
“jangle.” In others, it is hard to pinpoint any differences.

Isolated sounds do not necessarily paint a clear picture of their behavior in
more complex settings. The Turquoise Dabo Girl [S: 108] is performed in 11-
tet using the spectrally mapped sounds from [S: 107] (along with additional
percussion). This demonstrates that some of the kinds of effects normally
associated with harmonic tonal music can occur even in such strange settings
as 11-tet. For instance, the harmonization of the 11-tet pan flute melody
(between 1:33 and 2:00) has the feeling of a kind of (perhaps unfamiliar)
“cadence” harmonized by unfamiliar chords.

When mapping complete performances (rather than individual sounds) it
is no longer possible to use the pitch (or fundamental frequency) of the source
to help define the destination. The simplest approach is to use all possible
scale steps Fαi for all integers i. For example, the Maple Leaf Rag is mapped
into several different n-tet destination spectra in sound examples [S: 109] and
[S: 110]:

(i) a 4-tet destination spectrum in Maple 4-tet
(ii) a 5-tet destination spectrum in Maple 5-tet
(iii) a 10-tet destination spectrum in Maple 10-tet
(iv) a 100-tet destination spectrum in Maple 100-tet

For small n, there are only a few partials per octave and the source partials
must be mapped to distant frequencies. This can have a significant impact
on the timbre. For example, the piano timbre in the n = 4 and n = 5 cases
resembles an accordion without a bellow or a cheesy organ with only a single
stop. By the time n increases to 100, the destination partials are densely
packed and there is little change in the sound. In between, the sound wavers
as the source partials switch destinations. In all cases, the rhythmic pulsation
is retained.

Each of the Maple n-tet examples is generated two ways: using the PV in
[S: 109] and using the beat-synchronous FFT in [S: 110]. The FFT method
of spectral mapping tends to preserve transients better while the PV method
tends to give smoother results. Further discussion and technical details are
given in Sect. 9.8. The FFT version of the Maple 5-tet is used as the source
material for the Pentatonic Rag [S: 111]. Applying a series of beat-based filters
and gates (as described in Sect. 9.2) allows the development of interesting
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motifs and rich timbral development even though the basic elements of five
equally spaced tones and five equally spaced partials per octave may appear
to be a meager resource.

The video [S: 112] displays some of the more subtle points of the spectral
mapping procedure by plotting the source spectrum, the output spectrum, and
several related features over the first five seconds of Maple 5-tet [S: 109](ii).
This is annotated in Fig. 9.9, which shows a single frame of the video. The
small magenta circles on the horizontal axis are the locations of the 5-tet des-
tination spectrum. There are five of these circles within any octave (between
200 and 400 Hz, or between 400 and 800 Hz, for example). The undulating
red spectrum is the input, and the small black circles show the peak detection
locating the most prominent of the peaks.
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Fig. 9.9. A single frame from the video example [S: 112] is reproduced here and
annotated. The video demonstrates the complexity of the spectral mapping process
as the partials of the input rise and fall, split and rejoin. The detected peaks wiggle
about even when the destination remains fixed. Colors refer to the video.

Each peak in the source must be assigned to one of the destination loca-
tions, and these are shown by the nearby green circles in the video. Finally,
the output spectrum is shown in blue. This is constructed from the input
spectrum through the mapping defined by the black to green circles. The
time variation of the mapping is clear in the video, even when the destination
remains fixed.

Other examples of n-tet mappings are the Pentatonic Souls [S: 113] and
Scarlatti 5-tet [S: 114] which map Soul [S: 7] and Scarlatti’s K517 sonata into
5-tet. The Pentatonic Souls reduce the song to a single chord. When the band
modulates between chords, the 5-tet versions “modulate” from one inversion
of the 5-tet chord to another. As in the 65-Hz version, the 5-tet voices jump
between discrete pitches where the original varies smoothly (recall Fig. 9.8). In
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Scarlatti 5-tet, the piano takes on a metallic character and the piece acquires a
gamelan-like flavor. The strong chord progressions of the original are flattened
into a continuous recapitulation of the 5-tet mode. The tonal meaning of the
piece is warped, perhaps beyond recognition, though the rhythmic activity
remains intact.

9.6.3 The Make Believe Rag

Spectral mappings to n-tet destinations (for small n) often sound like a single
chord. An intriguing idea is to compose using these “notes” and “chords” as
basic elements. The Make Believe Rag [S: 115] combines spectral mappings of
the Maple Leaf Rag into 3, 4, 5, and 7-tet sequenced in a beat-synchronous
manner so that the sound within each beat interval is transformed to one of the
n-tet destinations. The compositional process consists primarily of choosing
the order and duration of each mapping and Fig. 9.10 shows two snippets
from the musical score.

beat

n-tet destination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 3 3 4 4 4 4 5 5 5 5 7 7 7 7 3

beat

n-tet destination

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 4 4 5 4 4 4 5 5 5 4 5 5 5 4 4

A

B

Fig. 9.10. Two short segments (labeled A and B) from the score to the Make
Believe Rag: each beat is transformed to one of the n-tet destination spectra. Various
patterns of 3, 4, 5, and 7-tet are used. In sequence A, for example, the first three
beat intervals are mapped to 3-tet, the next four beat intervals are mapped to 4-tet,
etc. Changes in the tunings (the destination spectra) play a role in the Make Believe
Rag analogous to the role normally played by changes of harmony in tonal music.

Changes in the tuning (i.e., in the destination spectra) are aligned with
rhythmic changes in the piece so that the result “makes sense” even though
there are no standard chords or harmonic progressions; changes of tuning play
a role analogous to the changing of chords in a tonal context. Observe that
while 3-tet and 4-tet mappings are subsets of the familiar 12-tet system, 5-tet
and 7-tet are not. Thus the Make Believe Rag mixes the familiar with the
unfamiliar.

This section has considered only octave-based scales. Non-octave based
systems such as stretched pseudo-octaves [B: 141], the tritave-based Bohlen-
Pierce scale [B: 142] (and others), proceed along analogous lines. The only
requirement is a clear specification of the desired destination spectrum.
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9.7 Nonlinear Beat-based Processing

This section discusses four sound transformations that are particularly useful
when applied in a beat-synchronous manner: the spectral band filter, spectral
freezing, the harmonic sieve, and instantaneous harmonic templates.

9.7.1 Spectral Band Filter

A graphic equalizer separates the frequency into a set of different bands and
then amplifies or attenuates the sound in each band individually. A spectral
band filter separates the magnitude (the vertical axis of the Fourier trans-
form) into a set of different bands and then amplifies or attenuates the sound
in each band individually. This tips the standard linear filter on its side. A
simple four-band spectral band filter is illustrated in Fig. 9.11. Spectral band
filters sound radically different from any linear filter. Local Variations, sound
example [S: 117], applies a fixed (eight band) spectral band filter to Local
Anomaly [S: 116]. Within each beat, the relative sizes of the spectral peaks
are rearranged, causing drastic timbral changes that nonetheless maintain the
rhythmic feel.
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Fig. 9.11. A spectral band filter uses thresholds τi to define a collection of mag-
nitude regions. The sound within each region is sent to a different channel and
amplified or attenuated (by the bi) as desired, and the output of all the channels
is summed. The FFT that transforms the time signal into the spectrum and the
IFFT that transforms the output of the channels back into the time domain are not
shown.

9.7.2 Spectral Freeze

One of the remarkable features of algorithms that separate temporal motion
from spectral motion is the ability to control the flow of time. Musical time
can be sped up, slowed down, run backwards, or stopped completely (frozen)
by a simple choice of parameters. If the instants at which time is frozen are
synchronized with the beat, this can be an effective way to generate “new”
rhythmic material from existing material.
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Figure 9.12 shows two rhythmic patterns in the necklace notation of
Sect. 2.1.3. The inner and outer circles indicate times when the left and right
audio tracks are frozen; each freeze is held until the next one begins so that
there is no pause in the sound. Applying these patterns to the Maple Leaf

time

(a)

times to initiate freeze

time

(b)

Fig. 9.12. The Maple Leaf Rag and Soul are frozen in these two patterns in [S: 118]
and [S: 119]. The inner and outer necklaces indicate when the left and right tracks
are frozen.

Rag results in [S: 118]. In (a), the two tracks are frozen at a steady rate of
once per (eighth-note) beat, but the right track freezes at the start of the beat
while the left track freezes in the middle. Together, they move at the tatum
(sixteenth-note) rate. In (b) the right track again moves at the steady beat
rate while the left track executes a simple syncopated pattern. New rhythms
result from the interaction between the rhythm of the piece and the rhythm
of the freezing pattern. The Soul Freezes [S: 119] apply the same patterns to
Soul [S: 7], and Frozen Souls [S: 120] elaborates pattern (b) using the standard
complement of beat-synchronous tricks.

9.7.3 The Harmonic Sieve

A harmonic filter Hg(f) centered at g Hz passes only frequencies in the neigh-
borhood of the harmonic series g, 2g, 3g, . . . , as illustrated in Fig. 9.13. The
output of the harmonic filter is the product of (a) the spectrum S(f) of the
input and (b) the transfer function Hg(f) of the harmonic filter. Thus the
output spectrum (c) is Rg(f) = Hg(f)S(f). Let ||Rg(f)|| be the energy of the
output in each beat interval. The harmonic sieve chooses the Rg(f) with the
greatest energy in each beat. Formally, the output of the sieve in a given beat
is R(f) = Rg∗(f) where

g∗ = argmax
g

||Rg(f)|| = argmax
g

||Hg(f)S(f)||

is the fundamental frequency of the harmonic filter with the greatest output
energy. The harmonic sieve can be thought of as a collection of harmonic comb
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frequency (Hz)

(a) input
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(c) output
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Fig. 9.13. The spectrum of the in-
put S(f) is multiplied by a set of
harmonic filters Hg(f), each of which
passes frequencies around the partials
of the harmonic series g, 2g, 3g, . . ..
The output of each harmonic filter
is Rg(f). The Rg(f) which has the
greatest energy is the output of the
harmonic sieve in that beat interval.

filters with fundamental frequencies gi along with a switch that chooses the
comb with the maximum output in each beat interval.

The harmonic sieve forms the basis of three sound examples. The first ap-
plies the sieve to Three Ears [S: 121]; the result is Mirror Go Round [S: 122].
The many odd sounds produced by the harmonic sieve in Mirror Go Round
are brought to the foreground in the mix; these include a large collection of
gentle bubbling, sweeping, and tinkling artifacts. These could be annoying,
but because they synchronize with the underlying sound, they ornament the
timbre. Similarly, the sieve transforms the bulk of the percussion into accents
that merge into the flow of the timbre. Perceptually, one of the primary fea-
tures of the sieve is that it transforms transients such as the attacks of notes
into timbral ornaments and accents.

A collection of harmonic sieves are applied to StrangeTree, to give Sieve-
tree [S: 123]. The various sieves are sometimes synchronized with the beat,
sometimes with the half-beat, and sometimes with every second beat. Each
sieve shifts the voice differently in time; the effect is especially striking in the
verses (for instance, near 0:22 and near 1:10) where a single voice echoes itself
in a ghostly manner. It is also interesting to compare with Sixty-Five Strange-
trees [S: 106] which applies a spectral mapping to a fixed 65 Hz harmonic
template. This induces a fixed drone at the destination frequency; Sievetree
changes harmonic center as the piece progresses.

The third application of the harmonic sieve is to Phase Space [S: 124],
resulting in Reflective Phase [S: 125]. Here, a large number of sieves were
used, each synchronized to a different multiple or submultiple of the beat.
The outputs of all these sieves were then rearranged, mixed and edited; no
other kinds of processing were used (other than some reverberation added to
the final mix). Yet the piece is almost unrecognizable.

One reason to use different time scales for different sieves is that this allows
different gs to occur simultaneously in the same beat interval. For example,
each segment in the top line of Fig. 9.14 represents a beat interval and g1
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through g5 are the frequencies of the harmonic filter with the greatest energy.
The second and third lines show the two possible double-width beats, and
these are also labeled with g values representing the harmonic filters with the
greatest energy. Even though (for instance) the time interval g6 contains the
same sound as the time intervals g1 and g2, they may (or may not) be equal.
Similarly, there is no necessary relationship between the gs in the second and
third lines; thus g6 and g8 may or may not be equal. By layering over several
time scales, complex timbres can occur even though each individual sieve
passes only the harmonics of a single fundamental. In terms of Fig. 9.14, the
gis may all be different.

g1 g2 g3 g4 g5

g7g6

g8 g9

Fig. 9.14. The gi represent the fundamental fre-
quencies of the harmonic filter with the greatest
energy in each beat interval. There is no neces-
sary relationship between the gs at the various
levels. Layering several such harmonic sieves al-
lows complex timbral variations.

9.7.4 Instantaneous Harmonic Templates

The harmonic sieve is a way of choosing a harmonic destination spectrum
that changes with each beat interval. An analogous idea can be applied using
spectral mappings; all that is required is a way of specifying the destination
spectrum. One approach is to attempt a pitch identification and to use the
fundamental frequency of the pitch to define the harmonic template. Another
approach is to use a periodicity detector such as the Periodicity Transform
to locate the desired fundamental(s). These tend to work well when the pitch
and/or periodicity identification succeed.

The technology for extracting the pitch of a single (monophonic) sound
source is well advanced, but complex sound sources remain problematic. Some-
times the pitch extraction technique of [B: 138] and [W: 56] works well and
sometimes it fails spectacularly. In particular, it will fail when the sound has
no pitch (for example, the rustling of leaves or the crunching of snow under-
foot) or when the sound has many pitches. Indeed, what is “the” pitch of an
A� major chord?

Nonetheless, it is possible to apply the pitch extraction method to the
sound in each beat interval and to use the detected pitch as a fundamental
frequency to define a harmonic destination spectrum. The Instant Leaf Rag
[S: 126] applies this to the Maple Leaf Rag. In places, the song is completely
recognizable. In others, the mapping has completely changed the melodic and
chordal progression, sometimes in peculiar and unexpected ways.

Using the periodicity transform does not produce results that are signif-
icantly more reliable, but it does allow the simultaneous detection of mul-
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tiple periodicities. Each periodicity corresponds to a different fundamental
frequency; together they define the destination spectrum. Like the Instant
Leaf Rag, this can result in unexpected and even amusing juxtapositions of
tonalities. For example, the Instant Nightmare [S: 127] uses three simultaneous
periodicities in each beat interval. Percussion has been added and segments
have been rearranged to emphasize the complete atonality of the output; the
original piece has been changed (or perhaps mutilated) beyond recognition.
As expected, the rhythmic motion is preserved.

9.8 The Phase Vocoder vs. the Beat-synchronous FFT

The bulk of the sound examples of this chapter have been generated using
either a (modified) phase vocoder or a beat-synchronous FFT. This section
compares and contrasts these two approaches in terms of the details of imple-
mentation and then in terms of the kinds of sounds that result.

9.8.1 Implementations

The PV and the beat-synchronous FFT are alike in many ways, both

(i) use a collection of windows to parse the signal into segments
(ii) take the FFT of each segment
(iii) apply a mapping to the transformed data
(iv) apply the inverse FFT, and finally
(v) piece together the output from the modified segments

The fundamental difference between the two methods is in the choice of seg-
ments: the PV uses a series of overlapping fixed-size frames while the beat-
synchronous FFT uses adjustable segments that coincide with the beat in-
tervals. Many of the details of implementation are driven by the differences
in the width of the FFTs: the windowing, frequency resolution, methods of
locating spectral peaks, and the kinds of spectral mappings. These differences
are summarized in Table 9.1 and then discussed in detail throughout the bulk
of this section.

Windows: The two windowing strategies are shown pictorially in Fig. 9.15.
Typically, the windows (frames) of the PV are between 1K and 4K sam-
ples wide,6 and overlap by a factor of about four. The windows in a beat-
synchronous FFT are the same size as a beat: somewhere between 200 ms
and 1.5 s. At the standard CD sampling rate, this corresponds to 8K to 60K
samples. As shown in Fig. 9.15, only a small overlap at the beat boundaries
(typically 128 or 256 samples) is needed to help remove clicks that might occur
between successive beats.
6 Smaller windows give better time localization and better reproduction of tran-

sients; larger windows allow more faithful reproduction of low frequencies.
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Table 9.1. Implementations of the phase vocoder and the beat-synchronous FFT

Phase Vocoder Beat-synchronized FFT

windows small frames from 1K–4K
with 2 to 8 times overlap

large beat-sized windows 1
5
– 1

2
s,

zero padded to a power of two

FFT resolution 40 Hz –10 Hz (improved by
phase adjustment)

3 Hz – 1.5 Hz (phase adjustment
possible)

peak finding all local max above median
or threshold (see Sect. 9.5)

plus distance parameter (forbid-
ding peaks too close together)

spectral map direct resynthesis: output
frequencies placed in FFT
vector with phase adjustment

resampling with identity window
[B: 199], no phase adjustment

alignment See Fig. 9.18 See Fig. 9.18

beat detection optional required

Resolution of FFT: The small FFTs of the PV imply a poor frequency
resolution, especially in the bass. Fortunately, the accuracy of the frequency
estimation can be increased using the phase values as discussed in Sect. 5.3.4.
This strategy can also be applied to the beat-synchronous FFT by using two
shorter overlapping FFTs within the same beat interval but it is probably
not necessary in most cases due to the increased accuracy of the frequency
estimates of the longer FFTs.

Peak Finding: When searching for peaks in the spectra, the PV can use the
median-based method of Sect. 9.5 directly. With longer magnitude vectors,
however, more false peaks may be detected. For example, Fig. 9.16 shows an
ambiguous collection of “peaks” centered around 490 Hz. Using the median-
based method directly, up to five peaks are detected. Yet, because these are
all so tightly packed in frequency, it is likely that they are all the result of
some single physical action, and hence should be mapped together as a group.
One way to help insure that only a single peak is detected in situations like

beat interval k beat interval k+1

windows for beat-
synchronous FFT

overlapping
windows for 

phase vocoder
PV window/frame width

mkmk-1 mk mk mk mk+1 mk+1 mk+1 mk+2

Fig. 9.15. The windows are aligned with the beat intervals in the beat-synchronous
FFT. The windows of the PV do not coincide with beat boundaries.
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this is to incorporate a parameter that requires adjacent peaks to be at least
a minimum distance apart.

400 450 500 550 600
frequency Hz

m
ag

ni
tu

de

How many peaks?
Fig. 9.16. This shows a small portion
of the spectrum from a single beat
in the Maple Leaf Rag. How many
peaks lie within the dotted region?
The median method finds up to five,
depending on the median length. A
more sophisticated peak finding algo-
rithm that includes a parameter speci-
fying the minimum allowable distance
between adjacent peaks might detect
only the single largest peak.

Spectral Mapping: Different processing techniques are also needed for the
spectral mappings. For the PV, it is possible to directly construct a frequency-
domain magnitude vector that contains the desired frequencies. The phase
adjustment technique of Sect. 5.3.4 ensures that the output partials align cor-
rectly across the frame boundaries. The beat-synchronous FFT uses the re-
sampling with identity window (RIW) technique for spectral mapping, which
is shown in Fig. 9.17. One assumption underlying spectral mappings is that
the most important information (the partials that define the sound) is located
at or near the spectral peaks. RIW relocates these peaks to the appropriate
destinations. Thus the spectrum is divided into regions associated with the
peaks (these are copied verbatim from the source to the destination) and the
relatively empty regions between the peaks (these are stretched or compressed
via resampling). In order to help preserve the temporal envelope within each
beat interval, the phases accompany the magnitudes (in both the identity and
the resampling portions of the mapping). A more complete discussion of this
technique can be found in [B: 196] and [B: 199].

Data Alignment: Consider a set of source locations s1, s2, . . . , sn and a set
of destination locations d1, d2, . . . , dm where n may be different from m. The
problem of how to assign the si to the dj is an example of the data alignment
problem, and there is no simple (unique) solution. The “nearest neighbor” and
the “sequential alignment” approaches are shown in Fig. 9.18, and either may
be used with the PV or the beat-synchronous FFT. Sequential alignment
is ideal for simple sounds which may undergo some transposition (observe
that the sequential alignment between two harmonic sounds with different
fundamentals is just a transposition). But aligning the partials sequentially
may also map partials to distant destinations, which can have a large impact
on the timbre.
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source

destination

spectrum of the 
source sound

transformed
spectrum

frequency

(si+w, si+1-w)
resampled to
(di+w, di+1-w)

(si-1+w, si-w)
resampled to
(di-1+w, di-w)

identity
mapping
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mapping
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si-1 si+1si

di-1

di-w di+w

si-wsi-1+wsi-1-w

di-1-w

si+1-w si+1+w

di+1+wdi-1+w di+1-w

si+w

di+1di

Fig. 9.17. Resampling with identity windows (RIW) preserves the information in
a region about each peak by copying the data from the source spectrum to the des-
tination spectrum. In between, the data is stretched or compressed via resampling.
The phases (mapped similarly) are not shown.

The nearest neighbor method ensures that source partials are mapped to
nearby destination partials, but allows two source partials to map to the same
destination. (The parallel problem that some destination locations may not
be assigned to a source is less important.) This conflict may be resolved by
either discarding the smaller of the two, or by summing the partials. Both
resolutions can themselves be problematic in certain situations since both
irretrievably lose information. The simulations and sound examples of this
chapter have taken a pragmatic approach: try the various alignment methods
and use whichever sounds best in a given situation.

source:

destination:

nearest neighbor sequential alignment

Fig. 9.18. Two methods of aligning the partials are the “nearest neighbor” (which
may map two source partials to the same destination) and the “sequential alignment”
(which may map partials a great distance in frequency)
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Beat Detection: Since the beat-synchronous FFT partitions the audio into
segments that coincide with the beat intervals, accurate beat tracking is essen-
tial. In contrast, the segmentation of the audio in the PV is specified without
reference to the beat locations. For some spectral mappings (such as Sixty-
Five Maples [S: 104] which uses a single fixed destination spectrum), the PV
can operate without beat information. But if the destination locations change,
(such as in the Make Believe Rag [S: 115]) it becomes crucial that the changes
in the mapping align with the rhythmic structure of the piece. Figure 9.15
shows that the PV can exploit beat information by changing the mappings
(indicated in the figure by the mk, the mapping at the kth beat interval)
whenever the center of a window crosses a beat boundary.

More important than the mechanics of how the methods operate is the
question of how they influence the sound.

9.8.2 Perceptual Comparison

In any spectral mapping (other than the identity mapping) there is an inher-
ent ambiguity: are the perceived changes due to the nature of the mapping
(the given source and destination pair) or are they caused by the particular
algorithms used to carry out the mapping procedure? The similarities and
differences between the two different algorithms for spectral mapping help
untangle this ambiguity.

The Maple n-tet sound examples (discussed on p. 237) conduct a series
of spectral mappings for n = 4, 5, 10, and 100. These are computed using
the PV strategy in [S: 109] and using the beat-synchronous FFT in [S: 110].
Aspects that appear similar between the corresponding examples are likely
due to inherent properties of the mapping while differences are due to details
of the implementations.

For example, in the n = 4 and n = 5 cases, the primary perception is that
of a single inharmonic chord. Even as the input modulates from A� major
to E� major, the output remains centered on the same 4-tet (or 5-tet) tonal
cluster. Thus, this is likely to be an inherent feature of the mapping. On the
other hand, there is a soft “underwater” phasiness to the FFT versions and a
smearing and smoothing of the attacks in the PV versions. These are likely to
be artifacts of the methods themselves. Indeed, both of these can be influenced
and ameliorated by careful control of the parameters of the algorithms.

Both the PV and the FFT versions of the Maple 10-tet are similar, suggest-
ing that the sound is not dominated by implementation artifacts. The spectral
mapping of 12-tet performances into 10-tet destinations may be intrinsically
subject to such out-of-tune (or more properly, out-of-timbre [B: 196]) effects.
Finally, both n = 100 versions reliably reproduce the original chordal mo-
tion (for example, the arpeggiation of the A� and E� chords) and recreate
recognizable piano timbres. But there are also significant differences: the PV
tends to smear attacks, while the FFT tends to overemphasize (and sometimes
misplace) transients.
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The mapping of Soul [S: 7] into the 5-tet Pentatonic Souls is also conducted
both ways in [S: 113]. Again, the PV is smoother while the beat-synchronous
FFT retains greater rhythmic articulation. The vocal artifacts are conspicuous
in both versions though they are very different from each other. The PV is
prone to oscillate between adjacent destination partials as in Fig. 9.8 while the
voice in the beat-synchronous FFT has more of a “chipmunk” effect. Similarly,
when mapping Soul into the 65 Hz harmonic template of [S: 105], the PV
tends to smear attacks while the beat-synchronous FFT tends to induce a
kind of phasiness (especially in the vocals). Thus, while both the PV and the
beat-synchronous FFT can carry out the spectral mappings, each has its own
idiosyncrasies; each has its own strengths and weaknesses.
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Musical Composition and Recomposition

The beats of a single piece may be rearranged and
reorganized to create new structures and rhythmic
patterns including the creation of beat-based “variations
on a theme.” Musical uses are discussed, and new
forms of rhythmic transformation and modulation are
introduced. Two pieces may be merged in a time-
synchronous manner to create hybrid rhythmic textures
that inherit tonal qualities from both. A series of sound
examples demonstrate.

There are many ways to create music. Chapter 2 showed an interplay be-
tween various kinds of notation and the kinds of strategies that composers
adopt. Many traditional methods rely on elaboration and repetition; others
rely on conceptual strategies involving random actions or algorithmic pro-
cesses. Schoenberg writes:

Smaller forms may be expanded by means of external repetitions,
sequences, extensions, liquidations and broadening of connectives...
derivatives of the basic motive are formulated into new thematic units.
[B: 191]

Compositional strategies typically involve sequences of elements that are com-
bined, arranged, and organized according to some artistic, aesthetic, or logical
principles. Wishart [B: 242] distinguishes the field, the sound elements used
in the composition, from the order, the arrangement of the sound elements.
Both the field and the order may operate at a variety of time scales.

For a traditional composer who works by placing individual notes on a
score, the field consists of the note events and the order is given by their
placement on the score. Individual notes have no inherent rhythm, and only
achieve a timbre when they are realized in a musical performance. This par-
allels a MIDI-based compositional paradigm that orders MIDI note events
into a sequence. The individual MIDI notes contain no inherent rhythm and
have a timbre only when assigned to a sound module for output. At a higher
level, the MIDI sequence itself can be considered a compositional element.1

1 Commercial libraries of short MIDI files contain musical extracts, drum patterns,
bass, guitar, piano, and percussion lines intended to be “cut and pasted into your
own compositions” [W: 21]. They are available in a variety of musical styles (such
as Latin, funk, jazz, Brazilian, and country) and are created by a variety of well
known musicians.
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The field consists of MIDI sequences that can be (re)arranged into a compo-
sition; these elements contain inherent rhythmic and melodic structures but
are devoid of timbral information.

For a hip-hop composer using audio loop-based “construction kits,” the
field is the collection of sound loops and the order is defined by the way the
loops are arranged and superimposed [B: 119]. Each individual loop has an
intrinsic rhythm and an intrinsic texture; the art lies in creating a montage
of elements that is greater than the individual elements themselves.2

Between the note-based time scale and the sequence or loop-based time
scale lies the realm of the beat. Beat intervals are typically longer than indi-
vidual notes but shorter than the four or eight-bar phrases typical of sequence
or loop-based composition.3 Like the loop, a beat interval (in an audio source)
has a recognizable timbre and sound texture. Like a note, the beat interval
does not have an intrinsic rhythm. Table 10.1 summarizes the properties of
the elements of the sound field at various (approximate) time scales and levels
of organization.

Table 10.1. Intrinsic properties of events at various time scales

Time Intrinsic Intrinsic
Field Scale Rhythm? Timbre?

note 1
8
-4 s N N

beat 1
5
-2 s N Y

sequence 2-20 s Y N
loop 2-20 s Y Y

This chapter explores the use of beats as basic compositional elements.
This is composing at a higher level than when composing with notes or indi-
vidual sounds since beat intervals taken directly from an audio source have
an internal timbre, structure and consistency. On the other hand, compos-
ing with beat-elements is at a lower level than the kinds of building blocks
commonly associated with construction kits, drum loop libraries, and MIDI
sequences. These often contain two or four measures that express an internal
rhythm and are essentially recordings of miniature performances. Compos-
ing in this middle realm allows the (re)use of timbres and expressions from
musical pieces without being tied to the rhythms of the original.
2 Commercial software for such “beat splicing” is available in Sony’s Acid [W: 50],

Native Instrument’s Traktor [W: 38], and Propellerheads ReCycle [W: 41], the
“ultimate tool for sampled grooves.” These tools rely on extensive human inter-
vention in the location of beat timepoints.

3 While some notes may last as long as several beats, typical beat intervals involve
many simultaneous notes.
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10.1 Friend of the Devil of the Friend

Before proceeding, it is worthwhile to give a simple example of a beat-based
“composition.” Consider the beginning of the song Friend of the Devil [D: 19]
by the Grateful Dead, which is beat tracked in [S: 71](11). An acoustic guitar
plays a four note descending pattern in the first measure and is then joined
by a second guitar. The bass enters at the end of measure five, and the three
instruments continue until the ninth measure, when the voice enters. Thus
there are eight measures (thirty-two beats) of introduction. Suppose that the
introduction is played forwards and then backwards, where backwards means
on a per beat basis. Symbolically, this is

1, 2, 3, . . . , 30, 31, 32, 32, 31, 30, . . . , 3, 2, 1

where the ith number represents the ith beat interval of the song. In this
extended version, the three instruments continue together until the bass drops
out at the start of the thirteenth measure. The two guitars continue through
the fifteenth, and the single guitar plays a four note ascending pattern in the
final measure.

Listen to Friend of the Devil of the Friend [S: 128]. Can you hear where
the audio reverses direction? Yes. Does it sound greatly different backwards
from forwards? No. Consider how different this is from Gar Fael Elpam and
from the Beat Reversed Rag ([S: 86] and [S: 87]). In both of these, the audio
was played backwards, causing a large change in the timbre of the piano. In
Friend of the Devil of the Friend, however, the audio is played forwards; it
is the composition that is played backwards. As in all such manipulations, a
small window (128 or 256 samples) is used on both sides of the beat interval
to help remove clicks and to cover up any (small) inaccuracies in the beat
tracking.

10.2 “New” Pieces from Old

The Friend of the Devil of the Friend would not be possible without the ability
to accurately track beat timepoints and the bulk of this chapter develops a va-
riety of compositional strategies based on beat interval manipulations. These
descend from tape splicing techniques used on tape recorders since the musique
concrète of the 1950s, though rapid-cutting montage techniques were used in
the 1920s by filmmakers such as Lev Kuleshov to manipulate the apparent
flow of time. With the modern use of sampling and computer-based editing,
the splicing operation became easy and practical, and has been credited with
inspiring much of the sound and form of hip-hop [B: 119]. Breaking apart a
piece at the beat boundaries opens another level of this kind of processing.

There are also important theoretical implications to beat-based processing.
For example, the Friend of the Devil of the Friend is clearly derived from the
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original Friend of the Devil. But how far can the manipulations be taken
before the piece is transformed into a “new” piece? This brings up questions
about the fundamental identity of a musical work, what it means to “be” a
piece of music. This is discussed further in Sect. 12.4.

Another implication can be most easily stated in terms of Kramer’s
[B: 117] dichotomy between linear and nonlinear musics. “Linearity” in this
context is “the determination of some aspects of music in accordance with im-
plications that arise from earlier events in the piece.” Thus familiar chord pro-
gressions and tonal systems are examples of structures that allow the creation
of linear music. “Nonlinear” music is memoryless, without directed temporal
implications: timeless, atmospheric, stationary, repeating with variation but
without progression or climax. Kramer cites gamelan music with its rhythmic
cycles, and modern “trance” and “techno” styles as examples of primarily
nonlinear musics. Moments of time in a nonlinear piece are intended to be
moments of pure sound, of harmonic stasis, and are not intended to be part
of a linear, goal-oriented progression.

Of course, no music is completely linear or completely nonlinear, but rather
different genres, styles (and musical cultures), lie somewhere between. The
kinds of beat-based rearrangements of pieces conducted in this chapter can
be used to conduct a concrete test of the linearity of a piece: if the beat
intervals of a piece can be rearranged without changing its essence, then it
has strong nonlinear component. If the meaning of the piece is destroyed by
rearrangement, then the piece has a strong linear component. The Friend of
the Devil of the Friend shows that this Grateful Dead song has a significant
nonlinear component. On the other hand, similar rearrangements of the verse
and chorus are more disjoint, as Devil of a Friend [S: 129] shows. Thus the
linearity of the song is also strong.

10.3 The Maple Leaf Waltz, Julie’s March, and Take
Four

Perhaps the simplest beat-based manipulation is to delete beat intervals. For
example, if a piece is in a 4

8
time signature and one beat in every four is

removed, it is transformed into 3
8
. Thus the Maple Leaf Rag4 is transformed

into the Maple Leaf Waltz. Ragtime, which literally means “time in tatters,”
has been shredded even further. The procedure is shown schematically in
Fig. 10.1, and the results can be heard in the Maple Waltzes #1 and #2,
sound examples [S: 130] and in the more fully developed Maple Leaf Waltz
[S: 131].

Since there are four (eighth note) beats per measure, there are four possi-
bilities, only two of which are shown in Fig. 10.1. The top diagram omits the
4 As shown in Fig. 2.3 on p. 27, the notated time signature is 2

4
, with the quarter

note receiving one beat. The beat tracking of [S: 6] locates the beat at the eighth
note, which corresponds to an identified time signature of 4

8
.
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5 6 8 9 101 2 4
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j

Fig. 10.1. From the Maple Leaf Rag to the Maple Leaf Waltz: the black circles
represent the beat boundaries and the numbers represent the sound in the corre-
sponding beat interval. In both figures, every fourth beat interval is deleted. In the
top, the fourth beat of each measure is removed while in the bottom, the third beat
of each measure is removed. Listen to these examples in [S: 130] and [S: 131].

fourth beat interval of each measure. This can be heard in the Maple Waltz
#1. The bottom diagram deletes the third beat in each measure, resulting
in the Maple Waltz #2. The other two possibilities do not sound as smooth.
These two are combined and elaborated into the Maple Leaf Waltz in [S: 131].

More generally, it is possible to remove one out of every nth beat. If the
first deleted beat is n − k (with 0 ≤ k < n) then the jth beat in the output
can be written directly in terms of the ith beat of the input as

j = i + � i + k − 1
n − 1

�

where the floor function �·� rounds down to the nearest integer. The n = 4,
k = 0 case is shown in the top of Fig. 10.1 while the n = 4, k = 1 case is
shown in the bottom.

This provides a simple recipe for manipulating the meter of a piece, and
several other examples are presented. The Soul Waltzes [S: 132] reshape the
4
4

hard rock rhythm of [S: 7] into a hard rock 3
4
. The truncation of the lyrics

can be a bit disconcerting, but the rhythmic motion is as clear in 3
4

as in
4
4
. Observe that each of the four possible versions has a “different” rhythm.

Similarly, Bond’s Waltz [S: 133] drops one beat in each four. Somewhat more
absurdly, Take Four [S: 134] removes one out of every five beats from Grover
Washington’s [D: 45] version of Dave Brubeck’s classic Take Five. Both the
melody and rhythm work well in four, though perhaps something is lost from
an aesthetic perspective.

There are many ways to reorganize the metrical structure. For example,
to change from a triple to duple meter it is possible to duplicate one beat
in each measure (for instance, to perform beats 1 2 3 3 or 1 2 2 3) or to
omit one beat from each measure (hence to change from 3

4
to 2

4
). Deletion

tends to sound smoother because duplicated beats make it appear that the
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recording is skipping. Julie’s March [S: 135] removes one out of every three
beats from Julie’s Waltz [S: 8], leaving a clear 2

4
feel. Similarly, Howell in 2

4

[S: 136] appears to progress more rapidly in 2
4
. No time compression (other

than the removal of every third beat) is done.
Similarly, it is possible to remove even more than one beat per measure.

The Half Leaf Rags [S: 137] delete two out of every four beats from the Maple
Leaf Rag. While there are occasional glitches (especially at section bound-
aries), the overall flow is smooth and the essence of the piece is preserved.
These are further developed as the Magic Leaf Rag [S: 141] using the tech-
niques of Sects. 9.1 and 9.2. Half a Soul [S: 138] removes two out of every
four beats from Soul and the rhythmic drive is clear although the lyrics are
shredded. Even more extreme is to remove all but one beat from each mea-
sure. Quarter Soul [S: 140], which “fits” the complete two and a half minute
song into forty seconds, is somewhat more successful than the Quarter Leaf
Rag [S: 139]. When the Quarter Leaf Rag is processed using the beat-gating
and beat-filtering strategies of Sect. 9.2, the result is the inimitable Make It
Brief Rag [S: 142].

10.4 Beat-based Time Reversal II

The transformation of a piece in 5
4

into 4
4

(or 4
4

into 3
4
) preserves the basic

harmonic motion of the piece. Continuity is interrupted at only a single level,
the measure. Phrases still point in the same direction and tonal structures
are preserved. Thus, while these may be interesting metrical manipulations
of the compositions, they do not address the question of the linearity (or
nonlinearity) of the music.

Kramer [B: 117] writes: “When a composition blurs the distinction be-
tween past, present, and future, forwards and backwards become in some
sense the same.” By making time move backwards, the normal tonal flow is
disrupted. For example, the finalizing cadence C Am Dm F G C would be-
come C G F Dm Am C, which is no longer a finalizing cadence. This toys
with tonal progressions, turning them backwards. If a piece were truly non-
linear then this reversal should leave the overall effect of the piece unchanged.
Highly linear pieces should be destroyed beyond all recognition.

How linear is the Maple Leaf Rag? Using beat-based processing, it is easy
to reverse the temporal flow without unduly changing the timbre. Instead of
performing the beat intervals in numerical order, they are performed in reverse
numerical order in the Backwards Leaf Rag [S: 143]. Moment by moment, the
Backwards Leaf Rag is plausible. The rhythm bounces along much like normal
despite occasional glitches. In the large, however, the Backwards Leaf Rag
wanders aimlessly. There are moments that are clearly recognizable (such as
the prominent rhythmic motifs) and there are moments where the reversal is
surprisingly fresh, but overall the tonal progression is upset.



10.5 Beat Randomization 257

Backwards Soul [S: 144] provides another example. The driving rhythm is
as compelling backwards as forwards. Since there is little harmonic motion
in the original, the time reversal does not greatly perturb the chord pat-
terns. Perhaps the most interesting aspect of the Backwards Soul is Beil’s
voice. Many individual words fit within a single beat interval, and these are
preserved. Phrases are invariably sliced into incomprehensible bits. The scat
singing and the screaming are rearranged, but are not particularly disturbed
by the reversal. Similarly, Devil of a Friend [S: 129] and a beat reversal of the
Theme from James Bond [S: 145] play havoc with the semantic flow. Yet the
rhythmic motion persists.

10.5 Beat Randomization

Nonlinear composition occurs when a piece exists in “moment time,” when
the order of succession appears arbitrary. Rearranging the order of beats pro-
vides a concrete way to test the nonlinearity of a composition: if a rearranged
version appears qualitatively similar to the original, the order of succession is
unimportant. If the rearrangement fundamentally disturbs the piece, the or-
der of succession is crucial to the meaning of the piece. This section discusses
several ways that such rearrangements may be conducted.

Perhaps the most extreme way to reorder the beats of a piece is to choose
them randomly. To create the Random Leaf Rag #1 [S: 146], all the beat
intervals of the Maple Leaf Rag were numbered from 1 to N . Each beat interval
of the Random Leaf Rag #1 was chosen randomly (uniformly) from the list.
All sense of tonal progression is gone. The rhythm is intermittent and the flow
is broken. Only the timbre of the piano remains. Similarly, Random Soul #1
[S: 147] haphazardly rearranges the beats of Soul. Again, the rhythm of the
piece is fundamentally disturbed, though some of the aggressive feel remains.
The timbre of the voice and guitars is preserved.

Randomization is perhaps best applied judiciously and with constraints.
Cognitive studies suggest that items that occur at the start and the end of a
grouping are particularly important. Indeed, both the start and the end are
quite clearly important since they lie on boundaries. Consider the following
text:5

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer
in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is
taht the frist and lsat ltteer be at the rghit pclae. The rset can be a
total mses and you can sitll raed it wouthit probelm.

It is not much more difficult to read than if the words spelled correctly. A
musical analog of this might equate words with a measure or short phrase
5 I have been unable to document the original source of this text; it may not be

from “rscheearch at Cmabrigde Uinervtisy.”
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and letters with the beat. The idea would be that an arbitrary scrambling
might not make much sense but that if the most salient of the locations were
maintained, then the others could be safely randomized. Figure 10.2 shows
five of the 24 possible rearrangements of the four beats in a measure, and these
are applied to the Maple Leaf Rag in the Permutations of the Rag [S: 148].

1 2 3 4

1 23 4

1 2 3 4

2 14 3

1 2 3 4

4 23 1

1 2 3 4

1 234

1 2 3 4

1 2 34

Fig. 10.2. Several different local permutations of the beat intervals can be heard
in Permutations of the Rag [S: 148]

Somewhat more generally, the Permutation Leaf Rag [S: 149] applies a dif-
ferent randomly chosen permutation to each measure. Though these versions
have a somewhat wandering character, they are considerably more compre-
hensible than the Random Leaf Rag #1. Permutations of Soul [S: 150] applies
the same technique to Soul.

Another way to constrain the randomization is to choose beats randomly
from among those that occupy the same relative location in the measure.
Formally, let the beat intervals of a piece be labeled from 1 to N . Create n
subsets indexed by j = 1, 2, . . . , n

Bj = {j + ni}, for i = 0, 1, . . . , �N

n
�.

For example, if n is the number of beats in each measure, then B1 contains
all of the beat intervals that start each measure and Bn contains all the beat
intervals that end each measure. A piece may be recomposed from the Bj by
choosing the first beat randomly from B1, the second beat randomly from
B2, and the kth beat randomly from Bmod(k−1,n)+1. For example, n = 4 for
both the Maple Leaf Rag and Soul, and there are four such subsets. The
resulting pieces are Random Leaf Rag #2 and Random Souls #2 ([S: 151] and
[S: 152]). These are slightly more coherent than with complete randomization
of the beats. There are places in Random Souls #2 where the rhythm is quite
solid, though there are also odd glitches and unexpected halts.

Such random rearrangements of beats and measures sometimes makes mu-
sical sense and sometimes does not. When the piece has little goal-oriented mo-
tion, randomization is unlikely to cause substantial changes. Kramer [B: 117]
says: “Listening to a vertical music composition can be like looking at a piece
of sculpture. . . we determine for ourselves the pacing of our experience: we
are free to walk around the piece, view it from many angles, concentrate on
some details. . . leave the room when we wish, and return for further viewings.”
Randomization does not disturb such a leisurely viewing experience.
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On the other hand, if the piece is primarily linear (or horizontal), ran-
domization of the beat structure destroys the sense of directedness and strips
the sound of its tonal implications. This may freeze the piece into a nonlinear
sound collage where harmony becomes a static element akin to timbre. With-
out tonality as a driving force, the sense of time moving may be suspended.

Randomization can also be carried out at levels above and below that of the
beat. Randomizing larger segments is a time honored tradition in algorithmic
musical composition and stems back at least to Mozart’s “dice-game” in which
the performer rolls dice to determine the order of the measures to be played
[W: 36]. In the present setting, it is straightforward to paste the beats into
small clusters (i.e., into measures) and to then randomize the clusters.

Using snippets of sound much smaller than the beat tends to destroy the
integrity of the sound. For example, [S: 153] subdivides each beat of the Maple
Leaf Rag into N segments that can be rearranged at will. The subdivision into
N = 2 pieces has a bouncy rhythmic feel,6 but as N increases, the flutter-
ing sound of the fragmentation dominates. Since such granularization (recall
Sect. 2.2.3) tends to destroy the integrity of the beat (to change the timbre
in a fundamental way), this is typically thought of as a technique of sound
synthesis (or resynthesis) rather than a method of composition. Nonetheless,
Roads [B: 181] demonstrates that careful choice of materials and algorithms
can blur the distinction between sound synthesis and musical composition.

10.6 Beat-synchronous Sound Collages

Several musical performances can be simultaneously rearranged, reorganized,
combined, and recombined. Such sound collages juxtapose contrasting ele-
ments across time whereas collages in the visual arts juxtapose elements across
space. The Maple Leaf Rag is ideal for these experiments because it has been
performed in a large variety of styles over the years as indicated in Table A.2
on p. 290.

In preparation, the 27 versions of the Maple Leaf Rag were beat regular-
ized7 so that the beat interval in each performance was a constant 0.33 s.
When necessary, the performances were transposed so that all were in the
same key. The beat intervals were numbered and aligned so that the first
beat in each version occurred at the pick-up note indicated in the score (this
was necessary because some of the versions have introductions, which vary in
length).

Picking and choosing the beats from among the various renditions creates
a sound collage. The simplest procedure selects beats in their normal sequence
from versions chosen at random. For example,
6 For the Maple Leaf Rag, N = 2 represents the tatum level, which is the smallest

subdivision that does not display the characteristic fluttery boundaries of the
rearrangement.

7 See Sect. 11.2 for details.
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Beat 1 might be the first beat of Blumberg’s piano [S: 76](1)
Beat 2 could be the second beat of Dorsey’s big band [S: 76](14)
Beat 3 may be the third beat of Glennie’s marimba [S: 76](20)
Beat 4 might be the fourth beat of Van Niel’s guitar [S: 76](22)

And this is only the first measure! The resulting Maple Leaf Collage [S: 154]
sounds disjoint and discontinuous. Nonetheless, the motion through the rag
is clear. The timbral variations are extreme, but also somewhat fascinating.
The fragmentation in the Maple Leaf Collage is caused by several factors: the
lack of continuity of any single timbre, the sudden jumps in volume from beat
to beat, and the unevenness of the left/right balance. A smoother variation
addresses these issues by:

(i) normalizing the power in each beat
(ii) using four simultaneous versions of each beat (rather than one)
(iii) ensuring that there is always at least one piano version
(iv) balancing the four versions in the left/right mix
(v) encouraging versions to persist for more than one beat8

The results appear in Rag Bag #1 and Rag Bag #2 [S: 155] which presents
two runs of the collaging algorithm.9 Not only is the rhythmic and harmonic
motion of the Maple Leaf Rag clear in these examples, but the collage creates
a new kind of sound texture. While the two Rag Bags contain no sections that
are actually the same (except perhaps by accident of the random numbers)
they achieve an overall unity defined by the rapid changes in timbre.

A typical visual collage juxtaposes collections of photographs, fabric, and
papers by arranging them side by side in space to create a larger work. The
Rag Bags superimpose the beats of the various versions of the Maple Leaf Rag
in time and juxtapose them across time to create a beat-synchronous sound
collage.

10.7 Beat-synchronous Cross-performance

The superposition in the previous section was the simplest possible kind:
summation. There are many other interesting ways to combine simultane-
ous sounds. Merging two (or more) individual sounds is often called cross-
synthesis; merging two (or more) different musical performances is a kind of
cross-performance. This section discusses combining pairs of compositions in
a beat-synchronous manner. As in the collages of Sect. 10.6, the segments of
the performances are aligned with the beats and the temporal motion is lin-
ear throughout the piece. Thus the underlying composition is (more-or-less)

8 This is implemented in the following way: if version i is chosen to sound in beat
j, then i will also be chosen to sound in beat j + 1 with probability p = 0.7.

9 The algorithm was run twelve times; these two were my favorites.
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maintained while the timbres of the two performances interact to generate a
“new” performance.

To be concrete, let t1 and t2 be the ith beat interval of the two perfor-
mances and let M1, θ1 and M2, θ2 be the corresponding magnitude and phase
spectra. The merged performance t and the corresponding spectra M and θ
can be calculated in a variety of ways:

(i) summation: t = t1 + t2
(ii) convolution: M = M1M2, θ = θ1 + θ2

(iii) cross-modulation: M = M1, θ = θ2

(iv) square root convolution: M =
√

M1M2, θ = 1
2 (θ1 + θ2)

(v) cross-product #1: M = M1M2, θ = θ1

(vi) cross-product #2: M = M1M2, θ = θ2

(vii) cross-product #3: M = M1M2, θ = θ1 + θ2

Table 10.2 shows 22 cross-performances of the Maple Leaf Rag from [S: 156].
Each begins with two renditions (from Table A.2) and combines them in a
beat-synchronous manner using one of the methods (i)–(vii).

Table 10.2. Examples of beat-synchronous cross-performance in [S: 156]. Perfor-
mances refer to Table A.2 on p. 290 and methods refer to the ways (i)–(vii) of
combining the merged spectra.

Performances Method Sound File Comment

1 13, 23 (i) Bechet-GGate demonstrates synchronization
2 13, 20 (i) Bechet-Glennie

3 1, 18 (i) Blumberg-Bygon

4 1, 20 (i) Blumberg-Glennie

5 1, 23 (i) Blumberg-GGate

6 8, 1 (ii) Joplin-Blumberg method simplifies the sound
7 1, 20 (ii) Blumberg-Glennie marimba becomes a chime
8 8, 1 (iii) Joplin-Blumberg cross two pianos
9 1, 8 (iii) Blumberg-Joplin cross two pianos

10 18, 13 (iii) Bechet-Bygon instruments with vocal color
11 8, 14 (iii) Dorsey-Joplin horns take rhythm from piano
12 23, 18 (iii) GoldenGate-Bygon banjo strum applied to voices
13 26, 13 (iii) Kukuru-Bechet strumming horns
14 1, 26 (iii) Blumberg-Kukuru piano-banjo hybrid
15 18, 27 (iii) Bygon-MamaSue bluegrass with a wah-wah pedal
16 1, 22 (iii) Blumberg-VanNiel piano-guitar mixture
17 8, 1 (iv) Joplin-Blumberg beat boundaries perceptible
18 26 (iv) Kukuru-Kukuru rhythmic simplification
19 13, 1 (v) Bechet-Blumberg

20 13, 26 (vi) Bechet-Kukuru

21 1, 20 (vii) Blumberg-Glennie

22 18, 1 (vii) Bygon-Blumberg
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The first method, intended primarily for comparison, demonstrates the
amazing synchrony that is possible between independent performers. The mix-
ture of Bechet and Golden Gate (1) works because the banjos comp a relaxed
rhythm while the horns provide a frenetic lead. The mixture of Bechet and
Glennie (2) is surprising because the marimba plays in an apparently free
manner, that just happens to coincide with the horns. In many places in (1)–
(5), it is hard to believe that the performers are not listening carefully to each
other.

Method (ii) multiplies the magnitude spectra and adds the phase spectra.
This is a linear filter that convolves the beat of one song with the correspond-
ing beat of the second. Frequencies that are common to both performances are
emphasized; frequencies that are different are attenuated. This tends to “sim-
plify” the sound, to make it less complex. For example, cross-performances
(6) and (7) are typical; the pianos of Joplin and Blumberg combine to form
a calliope, the marimba merges with the piano to form a chime. Both follow
the basic harmonic progression of the rag, though with a somewhat simplified
rhythm.

The cross-modulation method (iii) combines the magnitude of one sound
with the phase of another. Thus cross-performance (8) differs from (9) in
which piano donates the magnitude and which donates the phase. Because
both are piano performances of the same piece, they retain their piano-like
quality, although (8) has gained some percussiveness and (9) has gained some
phasing artifacts. Crosses between different timbres are more interesting. For
example, (14) and (16) merge instrumental timbres to create piano-banjo and
piano-guitar hybrids. In (11), Dorsey’s horns assume some of the rhythmic
comping of Joplin’s piano while the horns in (13) bounce to the strumming of
the banjo. Bechet’s horn takes on a vocal character in (10) and Mama Sue’s
banjo band (15) acquires a “wah” sound.10

Method (iv) takes the square root of the product of the magnitudes. This
nonlinear filtering tends to equalize the power in all common frequencies and
to attenuate frequencies that are unique to one performance. The sound be-
comes richer, though noisier. As in cross-performances (17) and (18),11 the
rhythm is simplified to one strong stroke per beat, though again the harmonic
motion remains clear.

The cross-product methods (v)–(vii) do not sound radically different: all
tend to emphasize the beat boundaries. All tend to have a calliope-like timbre
and a straight rhythmic feel, though the mixture with Glennie in (21) has a
chime-like quality and the vocal accents of (22) are engaging.

At the risk of crossing into absurdity, it is also possible to apply the sound
collaging technique of Sect. 10.6 to these cross-performances. Three collages
of cross-performances appear in the Grab Bag Rags of [S: 157].

10 Recall the discussion of the wah-wah pedal surrounding Fig. 9.4 on p. 227.
11 This piece is not really a cross-performance except in the sense that it crosses the

same piece with itself.
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Musical Analysis via Feature Scores

Traditional musical analysis often focuses on the use
of note-based musical scores. Since scores only exist for
a small subset of the world’s music, it is helpful to be
able to analyze performances directly, to probe both the
literal and the symbolic levels. This chapter uses the
beat tracking of Chap. 8 to provide a skeletal tempo
score that captures some of the salient aspects of the
rhythm. By conducting analyses in a beat-synchronous
manner, it is possible to track changes in a number
of psychoacoustically significant musical variables. This
allows the automatic extraction of new kinds of symbolic
feature scores directly from the performances.

While there is a long history of speculation about the meaning and impor-
tance of rhythms, the first scientific investigations of the perception of rhythm
began in the last few years of the 19th century. Much of our current knowl-
edge builds on the foundations laid by researchers such as Bolton, Woodrow,
Meumann and their colleagues. For example, Bolton [B: 17] documented the
subjective rhythm that arises when listening to a perfectly uniform sequence
(recall [S: 33] and the discussion in Sect. 4.3.1). Meumann [B: 147] discussed
the role of accents in rhythm and Woodrow [B: 245] considered the inter-
actions between pitch and rhythmic perception. Investigators such as Hall
and Jastrow [B: 86] began to try to understand the limits of human abilities:
how well do people estimate short durations and what is the just noticeable
difference for duration? Observing that people sometimes overestimate and
sometimes underestimate durations, Woodrow [B: 244] investigated the “in-
difference interval,” that is neither over- nor under-estimated.

Over the years, there are clear shifts in the methods of investigation. As
the questions became more difficult, the experiments became increasingly rig-
orous. While early authors might be content to write based on reflection and
to run tests based on common musical pieces, later authors needed to con-
duct controlled experiments. In order to achieve unambiguous results that
are easily reproducible at other laboratories, researchers needed to simplify
the experimental methods: “probe tones” and “sine waves” replaced instru-
mental sounds, simplified patterns of “pure duration” replaced rhythmic per-
formances. While early papers such as [B: 215] have an appendix listing the
musical pieces used in the experiments, later papers have tables with lists of
frequencies and durations. Thus, as the results become more concrete and less
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arguable, they also become narrower and less applicable. This tension haunts
us today.

The beat-finding techniques of Rhythm and Transforms provide a tool for
the investigation of rhythmic and temporal features of musical performances
directly from a sound recording. This allows a return to the analysis of music in
place of the analysis of artificially generated patterns of duration. The methods
are necessarily an analysis of musical performance, and only incidentally of the
underlying musical work. It provides a tool for those interested in comparing
rhythmic features of different performances of the same piece.

The central idea of this chapter is to use the output of the beat tracking
algorithms of Chap. 8 (the beat timepoints and the beat intervals) as a start-
ing point for further inquiry. In one approach, the beat timepoints are used
directly to examine the temporal structure of a piece: how the tempo changes
over time and how long sections endure. This provides an ideal tool for the
comparison of different performances of the same piece. In another approach,
the beat intervals are used to define a psychoacoustically sensible segmenta-
tion over which various features of the piece can be measured. For example,
it is possible to quantify how the “brightness” of a performance changes over
time by comparing the number of high harmonics to the number of low har-
monics within each beat interval, to quantify the “noisiness” of a performance
by measuring the noise-to-signal ratio within beat intervals, and to calculate
the “sensory roughness” in a beat-synchronous manner.

11.1 Accuracy of Performance

A recurrent theme in rhythm analysis is to try to determine how accurately
performers play. No one can perform a sequence with exact regularity, play
from a musical score with clockwork precision, or repeat any performance
exactly. The deviations shed light on the motor skills of the performer, on the
expectations of the listener, and on the idea of expressive deviations.

Sears’ [B: 192] preliminary experiments looked at the regularity of a me-
chanical music box. By attaching a mechanical counter to a rotating fan within
the box, it was possible to calculate the time interval between adjacent notes
and measures very accurately. The average length of the measures in one piece
was 578 ms (with a mean variation (MV) of 16.8 ms), quarter notes averaged
190 ms with MV 10.7 ms, eighth notes averaged 105 ms with MV 16.7 ms.
Sears observes some trends in the deviations: eighth notes tend to be longer
than half the length of quarter notes. These provide an indicator of the kinds
of errors (deviations from the score) that would normally go unobserved.

Sears then constructed a special keyboard that tracked the depressions of
the keys of a keyboard as performers played. The output was a trace on a
scrolling piece of paper that could be read to an accuracy of a few hundredths
of a second. Of course, electronic musical instruments now provide more ac-
curate methods of measuring the timing accuracies of performers, but Sears
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basic conclusion still holds: that the relative lengths of the tones were variable
and “do not follow exactly the ratios expressed by the written notes. They
were sometimes too great and sometimes too small.” In studying the perfor-
mance practices of violin players, Small [B: 215] came to essentially the same
conclusion: “. . . the violinists use of pitch and intensity involves deviations
from the score, interpolations of unindicated factors, and a rather constant
but orderly flux around certain variable levels.” More recently, Noorden and
Moelants investigate the most natural rates at which people tap [B: 156] while
Snyder and Krumhansl explore the cues needed to invoke the sensation of a
pulse [B: 220].

How steady is a steady beat? It should be no surprise that the length
of time occupied by a beat is not completely fixed throughout a performance
(except perhaps in some modern dance styles where the rhythm is dictated by
a drum machine). For example, Fig. 11.1 shows a plot of the beat interval (the
difference between successive beat timepoints) vs. the beat number for the 27
performances of the Maple Leaf Rag in [S: 76] (as described in Table A.2 on
p. 290). Such tempo scores show how the tempo evolves over time. Each trace
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Fig. 11.1. A tempo score is a plot of the duration of each beat vs. the beat number;
it shows how the tempo changes over time. In this plot, 27 performances of the Maple
Leaf Rag are played in a variety of tempos ranging from T = 0.22 to T = 0.4 s per
beat. The plot shows how the tempo of each performance varies over time.

represents a single performance. The rapid big band renditions by Sidney
Bechet [S: 76](13) and Tommy Dorsey [S: 76](14) at the bottom are longer
than the others because they repeat sections and include solos by individual
band members. The two slowest renditions (at the top) are played on guitar
by Van Ronk [S: 76](21) and Van Niel [S: 76](22). Using the data in the plot,
it is easy to gather statistics on the performances and the mean and standard
deviation of the tempo are tabulated in Table A.2. Despite the similarity in
tempo, the two guitar performances are among the most varied in terms of
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expressiveness: the Van Niel1 performance has the lowest standard deviation
while Van Ronk’s fluid solo guitar is among the most variable. The piano
versions (the instrument for which the rag was composed) tend to cluster
with a tempo around T ≈ 0.33 s, though there are large differences in the
steadiness of the tempos among the different renditions.

Accuracy of beat tracking

The discussion surrounding Fig. 11.1 should give an idea of some of the uses
of tempo scores, but before it is possible to use the technique to seriously
investigate musical performances, it is necessary to “calibrate” the method,
to determine the accuracy to which the beat locations can be found. There
are two parts to this: how repeatable is the output from one simulation to
another,2 and how closely does the output of the algorithm correspond to the
beat points identified by a typical listener.

To investigate the repeatability, Julie’s Waltz [S: 8] was beat-tracked eight
times using eight different frame sizes between 4 and 13 s. The output of the
algorithm is plotted as a tempo score in Fig. 11.2. The beat interval begins at
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Fig. 11.2. Eight runs of the statistical method of beat tracking (from Chap. 8)
differ by the frame size, which is varied between 4 and 13 s. The estimates follow
similar trajectories throughout the analysis of Julie’s Waltz [S: 73].

T ≈ 0.59 s and increases slowly to T ≈ 0.60. At beat 97, there is a jump to
T ≈ 0.62 and then a long slow decline to T ≈ 0.61. The last few beats slow
again. (The musical significance of these tempo variations is explored further
in Sect. 11.4.) These T values represent the mean of the eight tempo estimates
1 Since the recording consists of two acoustic guitars both played by Van Niel,

it may have been recorded using a metronome or click track. This would be
consistent with the remarkable steadiness.

2 Recall that the algorithm relies on random “particles” and hence does not return
exactly the same results each time it is run even when all parameters are fixed.
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as the piece progresses. The standard deviation about this mean (averaged
over all beats) is 0.017, which quantifies the repeatability. Each of the tracks
is piecewise linear because the state is only estimated once per frame. Thus
the short plateaus show the widths of the frames which vary between the
different runs. The narrowest and the widest frames have the highest variance,
suggesting that intermediate values might generally be preferred.

To compare the output of the algorithm to listeners perceptions, eight am-
ateur musicians agreed to participate in a beat tracking exercise. The subjects
(adults of both sexes with an average of about 12 years practice on a musi-
cal instrument) listened to Julie’s Waltz through headphones and “tapped
along” by hitting keys on a laptop computer. The program TapTimes [B: 209]
instructed participants to “Strike any key(s) on the keyboard to indicate the
foot-tapping beat (i.e., tap on the beat as you hear it).” When the subject
reached the end of the piece, they were given the option to save the tapping
or to repeat. Most repeated the procedure two or three times before saving.

Figure 11.3 compares the means and standard deviations (the error bars)
at each beat for the manual tapping experiment (on the left) and for the eight
runs of the algorithm (on the right). Since the vertical scale is the same, it
is clear that the algorithm centers around the same mean(s) but has much
smaller deviation(s) than the subjects. The eight listeners did not all tap at
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Fig. 11.3. Julie’s Waltz [S: 73] is used to compare experimental data (listener’s
tapping on the left) to the output of the algorithm (on the right). The mean tempos
are comparable, but the algorithm has significantly smaller standard deviation, as
shown by the error bars.

the same metrical level. Six tapped at the beat level (i.e., near T = 0.6)
which can be compared directly to the output of the algorithm. One chose to
tap at the measure (near T = 1.8 s). This subject’s taps were amalgamated
with the others by aligning the beats in time (thus this subject had only 1

3
as many data points as the others). The final subject chose to tap primarily
at the beat level but also tapped intermittently at the tatum level between
beats 121 and 145. This is the source of the large variance indicated between
the two brackets. With this data included, the average standard deviation
for the experiment was 0.042. With this data removed, the average deviation
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was 0.036. Both are much greater than the analogous term (0.017) for the
automated beat tracking.

Of course, this is only a preliminary experiment designed to give some
confidence in the use of the output of the beat tracking algorithm. Additional
investigation is needed to untangle more subtle effects such as the difference
between the accuracy of the perception of a passage and the motor ability of
listeners to synchronize their tapping with that perception.

11.2 Beat Regularization

When the beat is fixed throughout a piece, the Periodicity Transform (PT)
can often reveal important relationships between various levels of the metrical
structure. For example, Jit Jive, Take Five, and the Baris War Dance were
all analyzed successfully in Sect. 8.3.1 (recall Figs. 8.21–8.23 on pp. 213–215).
But when the underlying tempo changes, the periodicity transform may fail
to provide a meaningful analysis. For example, the PT of Julie’s Waltz [D: 40]
is shown in the left hand plot of Fig. 11.4; it shows no recognizable features.
This should not be unexpected because the tempo of the waltz changes slowly
over time as revealed in the tempo score Fig. 11.2.
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Fig. 11.4. Applying the Periodicity Transform to Julie’s Waltz. Without regular-
ization of the beat, the transform is unable to provide a meaningful analysis. After
regularization, the PT locates several levels of the metrical hierarchy: the eighth-note
tatum, the quarter-note beat, the 3

4
measure, and the 4-bar phrase.

Using the output of the beat tracking algorithm, an unsteady tempo can
be regularized by changing the duration of each (varying) beat interval to
a desired steady value.3 Thus, when the tempo is slow the beat intervals
can be shortened. When the tempo is fast, the beat intervals can be length-
ened, creating a performance with a completely regular pulse. (The proce-
dure is diagrammed in Fig. 9.2 on p. 225 and applied to the Maple Leaf Rag
3 Alternatively, the beat tracking information can be used to resample (and regu-

larize) the feature vectors rather than the audio. This offers only a slight improve-
ment in computation since the bulk of the calculations occur in the PT itself and
not in the regularization.
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in [S: 77].) The PT can then be applied to the processed (regularized) per-
formance. Julie’s Waltz was regularized so that each beat occupies exactly
T = 0.61 s, which is the mean value of the period parameter over the com-
plete performance. The PT of the regularized version is shown in the right
hand plot of Fig. 11.2. It clearly displays regularities at several levels: the
tatum, the beat, the 3

4
measure and the 4-bar (12 beat) phrase.

11.3 Beat-synchronous Feature Scores

Traditional musical scores focus on notes, each with their own pitch and (ap-
proximate) timing. Tempo scores such as Figs. 11.1 and 11.2 focus on the
performed timing of the flow of a musical passage. Missing from these is any
notion of the quality, timbre, or color of the sound. Bañuelos [B: 8] comments:

Ironically, sound color is one of the elements of music for which our vo-
cabulary is most limited and least precise, perhaps because the prop-
erty itself is one of the most elusive and hardest to define and pin-
point. Thus far it has been difficult to talk objectively about sound
color due to the complexity of factors that affect its structure. And
yet, its impact on the listener is usually immediate and powerful. A
single texture played for as little as one bar before any melodic mate-
rial in the proper sense is introduced can serve to set up the tone or
mood of an entire movement.

A significant amount of effort (for example, [B: 83, B: 85, B: 167, B: 196])
has been devoted to the attempt to define what timbre is, and what it is
not. Timbre involves spectral characteristics of a sound, but it is also heavily
influenced by temporal features. Timbre involves the number and distribution
of the peaks of the spectrum as well as the way the peaks evolve over time.
Spectrograms (such as Fig. 4.5) provide one tool for the visualization of sound
color, but (like all literal notations) they contain too much information that
is either irrelevant or redundant. Accordingly, Bañuelos suggests focusing “on
specific qualitative properties of sound and tracing their development through
time within a musical context.”

Feature vectors (such as those of Fig. 4.19 used to accomplish the beat
tracking) are an example of “tracing a particular property through time” and
the four feature vectors of Sect. 4.4.3 were designed specifically to extract
auditory boundaries. By choosing to measure aspects of the signal that are
relevant to the perception of timbre (rather than to the detection of audi-
tory boundaries), it is possible to create “scores” that demonstrate concrete
changes over time. Bañuelos provides an example:

For instance, we can determine how much energy is contained in the
higher frequencies compared to that in the lower frequencies. This
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gives a reading that could be called the “brightness” or the “acute-
ness” of a sound. If we analyze in this way an entire beat. . . we will
get a single number assessing its “brightness.” Naturally, this number
itself is irrelevant as far as its magnitude is concerned, but we can
perform the same operation on a number of consecutive beats within
a musical context and plot them over time. With the new graph – a
kind of “brightness score” – we can gather invaluable insight on the
way this aspect of sound develops over the course of a passage.

Conducting the analysis over a time span comparable to a beat is impor-
tant because the beat interval is among the largest units of time over which
a musical signal is likely to remain uniform. Since the beat forms a coherent
perceptual unit, there is a greater chance that the sound remains consistent
within a single beat than across beat boundaries. For example, Fig. 11.5 shows
a small snippet of audio with the beat timepoints identified. Segmenting the
audio into frames j that are aligned with the beats i allows the analysis to
reflect only the contents of a single beat. In contrast, if the segments cross
beat boundaries like the frames labeled k, the analysis will amalgamate and
confuse the contents of the two beats. This is particularly important when
trying to measure timbrally relevant parameters because the timbre is more
likely to change at the beat boundaries than within a single beat.

waveform

aligned frames

misaligned
frames

identified beat
locations

beat interval
i

beat interval
i+1

j j+1

k k+1k-1

Fig. 11.5. When the frames are
aligned with the beat intervals,
each frame represents a single
sound entity. When misaligned,
the frames blend and confuse in-
formation from adjacent beats.

Bañuelos [B: 8] details several psychoacoustically motivated features that
are particularly useful in an analysis of Alban Berg’s Violin Concerto, subti-
tled In Memory of an Angel, that merges standard analytical techniques with
new feature scores in an elegant and insightful way. Bañuelos’ Beyond the
Spectrum appears on the CD and adds considerable depth to the use of beat-
synchronous feature scores in musical analysis. He comments on the goals of
such a study:

A number of graphs and alternate “scores” . . . enable me to discuss
comprehensively the ways in which sound color is used in the concerto
to dramatize its program and to provide unity and form. . . In the end,
the point is to incorporate the concrete information acquired about
the particular sounds in a piece of music into a comprehensive and
living-breathing interpretation. . .
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The remainder of this section describes four measures useful in the creation
of feature scores.

Brightness Score: Grey and Gordon [B: 84] observe that the balance in
spectral energy between the low and high registers is a significant indicator
of the perception of the steady-state character of a sound. Suppose that the
spectral peaks P in a given beat are at frequencies f1 < f2 < . . . < fn with
amplitudes a1, a2, . . . , an, which may be calculated using the peak picking
technique of Sect. 9.5. Define the function

B(P) =
log(pn) − log(c)
log(c) − log(p1)

where c is the centroid of the frequencies. This quantifies the closeness of the
centroid to both the upper and lower limits of the sound and corresponds
roughly to the perception of the brightness of a sound.4 A plot of B(P) over
time (one value for each beat interval) is called a “brightness score.” The
brightness score for Julie’s Waltz is shown in Fig. 11.6 along with several
other feature scores. These are interpreted in Sect. 11.4.

Beat Number

section

se
ns

or
y

ro
ug

hn
es

s
no

is
e 

to
si

gn
al

 r
at

io
pe

ak
va

ria
tio

n
br

ig
ht

ne
ss

1 49 7325 97 121 145 169 193 217 241

A1 A2 A2B1 B2 B2 B2A1 B1B1

Fig. 11.6. Four feature scores for Julie’s Waltz demonstrate how simple beat-
synchronous measurements can reflect various timbral aspects of a musical per-
formance

Peak Variation Score: The “peak variation” measures fluctuations in the
height of adjacent spectral peaks on a decibel scale
4 Bañuelos suggests two variations called registral and timbral brightness.
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PV (P) =
1
n

n−1∑
i=1

| log10(
ai+1

ai
)|.

This relates to the perception of poignancy or saturation of the sound within
the beat. A plot of PV (P) over time (one value for each beat interval) is called
a “peak variation score.” Figure 11.6 demonstrates.

Noise-to-Signal Score: The “noise-to-signal ratio” calculates the ratio of
the amount of energy not in the partials (i.e., the energy in the noise) to the
total energy. Using the median-based strategy of Sect. 9.5 to calculate the
noise spectrum5 N(k), define

NSR(P) =
∑

k N2(k)
E

where E is the total energy of sound in the beat interval. A plot of NSR(P)
over time (one value for each beat interval) is called a “noise-to-signal score,”
as in Fig. 11.6.

Sensory Roughness Score: The final feature score exploits recent psychoa-
coustical work on “sensory roughness,” though the idea that the beating of
sine wave partials is related to the tone quality of a sound was introduced by
Helmholtz more than a century ago [B: 94]. Plomp and Levelt [B: 166] quanti-
fied this observation experimentally and related the range of frequencies over
which the roughness occurs to the width of the critical band, thus providing
a physically plausible mechanism. The roughness between two sinusoids with
frequencies f1 and f2 (for f1 < f2) can be conveniently parameterized [B: 200]
by an equation of the form

d(f1, f2, �1, �2) = min(�1, �2)[e−b1s(f2−f1) − e−b2s(f2−f1)]

where s = 0.24
s1f1+s2

, �1 and �2 represent the loudnesses of the two sinusoids,
and where the exponents b1 = 3.5 and b2 = 5.75 specify the rates at which
the function rises and falls. A typical plot of this function is shown in Fig. 1 of
[B: 200], which is included on the CD. When a sound contains many partials,
the sensory roughness is the sum of all the d()s over all pairs of partials

SR(P) =
1
2

n∑
i=1

n∑
j=1

d(fi, fj , �i, �j),

If the sound happens to be harmonic with fundamental g, then the ith partial
is ig. For such a sound, a typical curve (a plot of SR(P) over all intervals of
interest) looks like Fig. 3 of [B: 200]. Minima of the curve occur at or near mu-
sically sensible locations: the fifths, thirds, and sixths of familiar usage and the
general contour of the curve mimics common musical intuitions regarding con-
sonance and dissonance. This model is discussed at length in Tuning, Timbre,
5 This can be done as in Eqn. (9.1), and the results depicted in Fig. 9.6 on p. 231.



11.4 Julie’s Waltz: An Analysis 273

Spectrum, Scale [B: 196], where it is used to draw “dissonance scores” which
trace the sensory roughness of a musical performance through time. This chap-
ter refines this idea by requiring that the segmentation of sound used to carry
out the calculations be defined by the beat intervals. This allows “sensory
roughness scores” to be much smoother and more accurate than the earlier
“dissonance scores.”

11.4 Julie’s Waltz: An Analysis

The previous sections have shown how the tempo score and the feature scores
display a variety of surface features of a musical performance. These are quite
different from what is normally available in a musicological analysis, and this
section compares the output of the algorithms with a more conventional view.

Tempo scores display temporal aspects of a performance and the stately
variation in the tempo of Julie’s Waltz is readily observable in Fig. 11.2.
Though the changes are subtle and might go unnoticed in a casual listening,
they add to the relaxed and informal feeling.6 When the slide guitar begins
its solo (at beat 97, the start of section B), the tempo slows by about 5%,
but it is heard as the arrival of a new voice, or perhaps the return of an old
friend (the coming of the slide is foreshadowed by its background appearance
in the first presentation of B). This new voice slowly gathers momentum and
eventually passes the theme to the violin when section A returns. The melody
continues to accelerate until the final presentation of B and the tag. Despite
the objective slowing at beat 97, the motion does not flounder because the
instrumentation becomes more dense and the melody becomes more active.
This increased activity is reflected in the brightness and noise-to-signal feature
scores, which exhibit increased variance as time progresses.

Several levels of the metrical hierarchy appear in the periodicity transform
of the beat-regularized version in Fig. 11.4. The beat at T ≈ 0.61 s is the
strongest periodicity, and it is divided into two equal parts by the tatum.
Three beats (or, equivalently, six tatum timepoints) are clustered together
into the next highest level. If the beat is notated as a quarter note, then the
time signature7 of the measure would be 3

4
. The highest level is the four-bar

phrase at T ≈ 7.3 s, which contains twelve beats.
The tempo score in Fig. 11.2 and the feature score in Fig. 11.6 have been

annotated with section numbers; these are formal sections of the piece, each
eight measures long. The harmony changes steadily each measure, and the
6 The conversation-like interplay between the instruments emphasizes the easy-

going tone.
7 The time signature 3

8
, where the beat would be represented as an eighth note, is

also consistent with the data. The important clustering of the beats into groups
of three (or tatum timepoints into sixes) remains consistent through any such
representation.
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chord pattern within each section is clearly divided into two phrases (separated
by ||)

A1 : I IIIm IV V || IV I II7sus4 V7
A2 : I IIIm I IV || VI� I IIm/V I
B1 : VIm VIm V I || IV I II7sus4 V7
B2 : I IIIm I IV || VI� I IV/V I

where I represents the tonic, V the dominant, etc. Given the tight two-phrase
structure of the sections, it is not surprising that the rhythmic analysis detects
groupings of four bars (twelve beats). The internal structure of the sections
emphasizes the phrases by repetition: the last four measures of A1 and the
last four measures of B1 are identical; sections A2 and B2 are the same but
for the penultimate chord. The first phrase of A1 and the first phrase of A2

make analogous statements: the first two chords are the same while the last
two move by a fifth (IV to V vs. I to IV). The most unusual harmony is the
VI� that begins the final cadences in A2 and B2. The use of the II7sus4 to
lead back to the V is also notable: the suspension anticipates the root of the
V chord and the 7th suspends (and resolves to) the third from above.

The sections are often distinguished by instrumentation, which is listed
in Table 11.1. The plucked mandolin and finger-picked guitar begin together,
and continue throughout the piece. They are joined by slide guitar (in B1) and
by bass and violin in B2. The lead instruments alternate melody and harmony
throughout the remainder of the piece. The feature scores of Fig. 11.6 show
some of the timbral changes due to variations in instrumentation. For example,
all four features become more active and exhibit greater variance as the piece
progresses, reflecting the increased complexity8 and density of the sound. The
brightness score, for instance, often has small peaks at the ends of the sections.
Such peaks can occur because there is more energy in the treble or because
there is less energy in the bass (since it shows the ratio of the location of the
centroid in terms of the highest and lowest peaks). The noise-to-signal score
clearly shows the increase in complexity (increase in variance or wiggliness of
the curve) as the piece proceeds.

The roughness curve is interesting because of what it shows and because
of what it fails to show. In many circumstances, roughness can be interpreted
as a crude measure of the dissonance (it is also called “sensory dissonance”
[B: 196]) since intervals such as octaves, thirds and fifths tend to have small
values while seconds and sevenths tend to have larger values. Since the VI�
chord that starts the final cadence is outside the key of I, it would appear to
be a point of tension. Yet the roughness score does not show large values at
these points. This is because the calculations are done moment-by-moment
(beat-by-beat, to be exact) and so the roughness calculation during the VI�
chord has no way of “knowing” that it is imbedded inside a piece in the
8 This is not the same as loudness, which is removed from these curves. Loudness

could be used to form another, independent feature score.
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Table 11.1. Sections in Julie’s Waltz are differentiated by instrumentation as well
as harmonic motion

Section Beat Time Instrumentation Comment

A1 1 0:00 mandolin & guitar statement
A2 25 0:14 answer
B1 49 0:28 slide in background alternate (minor) theme
B2 73 0:43 add bass & violin answer
B1 97 0:57 slide melody alternate
B2 121 1:12 answer
A1 145 1:27 violin melody statement
A2 169 1:42 answer
B1 193 1:57 mandolin & violin & slide alternate
B2 217 2:11 mandolin & violin in unison final answer

241 2:26 mandolin & guitar tag (last phrase of A2)

key of I. Hence its roughness is comparable to that of other major chords
throughout the piece. Also interesting are the peaks that occur as the I moves
to the IV in the middle of each C section. This is hardly a chord pattern where
roughness would be expected. However, in each case, there are a number of
passing tones (on mandolin and/or on slide) that are outside the I − −IV
chords. These passing tones increase the tension and create the roughness
peaks. Perhaps most striking is the overall trend of the roughness: it begins
low, builds to a climax (in the final C section) and then relaxes. This is one
of the characteristic trademarks of Western music, and it is clearly displayed
(along with a few subsidiary peaks and valleys) in the roughness score.

Feature and tempo scores depict surface features of a performance that
are quite different from the deeper analyses possible from a close reading
of the score. The tempo score quantifies the temporal motion by depicting
the time interval of each beat. The transform methods can, with suitable
care, sensibly cluster the beats into groups that correspond to measures and
phrases. The feature scores present a variety of properties that often correlate
with subjective impressions such as changes in timbre, density, complexity,
and/or dissonance.

This analysis of Julie’s Waltz is intended only as a “teaser” to show
the kinds of insights that are possible when using tempo scores and beat-
synchronous feature scores. The interested reader will find a more complete
(and, from a musical point of view, far more compelling), analysis of Berg’s
Violin Concerto that uses many of the same techniques in Bañuelos [B: 8].
This is included on the CD.
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Speculations, Interpretations, Conclusions

Rhythm and Transforms begins with a review of basic
psychoacoustic principles and a brief survey of musical
rhythms throughout the world. The three different
pattern finding techniques of Chaps. 5–7 lead to a
series of algorithms that show promise in solving the
automated beat tracking problem. Chapters 9–11 explore
the uses of a beat-based viewpoint in audio signal
processing, composition, and musical analysis. Most of
the book stays fairly close to “the facts,” without undue
speculation. This final chapter ventures further.

The beat tracking methods of Rhythm and Transforms identify regular succes-
sions directly from feature vectors and not through the intermediary of a list
of note events. Section 12.1 wrestles with the question of whether notes are
a perceptual experience or a conceptual phenomenon. Do “notes” correspond
to primary sensory experiences, or are they cognitive events assembled by a
listening mind? Section 12.2 suggests how beat intervals may represent one
of the primary constituents of musical meaning. The resulting hierarchy of
musical structures has clear perceptual correlates, and the beat-level analysis
is not bound to a single musical culture. The distinction between a musical
composition and a performance of that composition in Sect. 12.3 sets the stage
for a discussion of the implications of the beat manipulation techniques. These
are not only technologies of processing audio signals but also of creating per-
formances and even compositions. The many ways to combine existing beats
into new patterns and new structures raise questions about the integrity of a
musical piece: at what point does the piece cease to be the “the same” as the
original(s) from which it is derived? Some practical suggestions are made in
Sect. 12.4. There is an obvious relationship between musical rhythms and the
nature of time. Section 12.5 looks at some of the implications of Rhythm and
Transforms in terms of how time is perceived. Finally, the three technologies
for locating temporal patterns are summarized. Each has its particular area
of applicability and its own weaknesses.

12.1 Which Comes First, the Notes or the Beat?

One of the peculiarities of the methods in Rhythm and Transforms is the
avoidance of individual note events. Instead, the methods parse feature vec-
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tors to find templates that fit well, to find regular successions hidden within
the feature vectors. In terms of perception, this presents a chicken-or-egg ques-
tion. Do we perceive a collection of individual note events and then observe
that these events happen to form a regular succession? Or do we perceive a
regular succession of auditory boundaries which is then resolved by the au-
ditory system into a collection of aligned note events? Said another way: are
note events primary elements of perception, or do we first perceive a rhythmic
flux that is later resolved into notes?

At first glance, the question seems nonsensical since “notes” feature so
prominently in the human conception of music. Notes are used to generate
music by striking keys, plucking strings, or blowing through air columns; in
each case producing a recognizable note event. Notes are used in musical
“notation” to record collections of such events. Notes are enshrined in language
as the primary syntactic level of musical meaning. But, as a practical matter,
it has turned out to be a very difficult task to reliably detect note events from
the audio as the recent MIREX note detection contest shows1 [W: 32].

The experience of Rhythm and Transforms suggests that a psychological
theory of the perception of meter need not operate at the level of notes. Peo-
ple directly perceive sound waves, and the detection of notes and/or regular
successions are acts of cognition. To the extent that computational methods
are capable of tracking the beat of musical performances without recourse to
note-like structures, the “note” and “interonset” levels of interpretation may
not be a necessary component of rhythmic detection. This reinforces the ar-
gument in Scheirer [B: 188] where metric perceptions are retained by a signal
containing only noisy pulses derived from the amplitude envelope of audio
passed through a collection of comb filters. Similarly, the “listening to feature
vectors” sound examples [S: 57]–[S: 59] are able to evoke rhythmic percepts
using only noisy versions of feature vectors.

Nevertheless, most beat tracking and rhythm finding algorithms operate
on interonset intervals (for instance [B: 43, B: 48, B: 76]), which presuppose
either a priori knowledge of note onsets (such as are provided by MIDI) or
their accurate detection. The methods of Rhythm and Transforms, by ignoring
the “notes” of the piece, bypass (or ignore) this level of rhythmic interpreta-
tion. This is both a strength and a weakness. Without a score, the detection
of “notes” is a nontrivial task, and errors such as missing notes (or falsely de-
tecting notes that are not actually present) can bias the detected beats. Since
Rhythm and Transforms does not detect notes it cannot make such mistakes.
The price is that the explanatory power of a note-based approach to musical
understanding remains unexploited. Thus the beat tracking technologies of
1 When the performance has clearly delineated amplitude envelopes such as per-

cussion, the algorithms work well, with the best methods detecting (for example)
321 notes with only three false positives and three false negatives in the solo-bars-
and-bells category. When the input is more complex, however, even the best of
the algorithms reported (for example) 143 detected notes with 286 false positives
and 86 false negatives in the solo-singing-voice category.
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Rhythm and Transforms are more methods of signal processing at the level
of sound waveforms than of symbol manipulation at the note level. Though
the methods do not attempt to decode pitches (which are closely tied to a
note level representation), they are not insensitive to frequency information.
Indeed, the feature vectors of Sect. 4.4.1 process each critical band separately,
which allows the timbre (or spectrum) of the sounds to directly influence the
search for appropriate regularities in a way that is lost if only note events
and/or interonset interval encoding is used.

Beat tracking is a form of audio segmentation, and may also have uses
in the processing of language. One of the major problems confronting auto-
mated speech recognition systems is the difficulty of detecting the boundaries
between words. As the rhythm finding methods locate regular successions
in music without detecting notes, perhaps it is possible to use some kind
of rhythmic parsing to help segment speech without (or before) recognizing
words: to parse the audio stream searching for rhythmic patterns that can
later be resolved into their constituent phonemes and word events.

12.2 Name That Tune

The fundamental unit of analysis in Rhythm and Transforms is the individ-
ual “beat interval” (a short duration of time delineated by adjacent metrical
positions on the timeline) rather than the “note.” “Notes” are relegated to
their proper role in the notation of common practice music. Indeed, much
of the writing about musical rhythm is not about the experience of sound
but about its symbolic representation. An emphasis on beat intervals as the
primary rhythmic experience is one way to counterbalance this tendency. Of
course, notes remain a convenient way to talk about the kind of auditory
events initiated by the pressing of a key on a piano or by the striking of a
stick against the side of a bell. The following two anecdotes highlight some
of the differences between the note-level conception of music and a beat-level
conception.

Contestants in the television game show Name That Tune [W: 37] compete
to name a song in the fewest notes. As the announcer presents clues to the
identity of the song, a contestant might bid “I can name that tune in five
notes,” and bidding continues until one contestant challenges the other to
“Name that tune.” The first five notes of the melody are then performed and
the contestant must correctly identify the song. Even with the hints, this is an
extraordinary ability, and it obviously relies heavily on a shared background of
melodies: chosen by the producers, performed by the pianist, and recognized
(rapidly and with few clues) by the contestants.

In my family, a favorite pastime on car trips is to compete to name each
new song as it comes on the radio. When listening to a familiar station playing
a well known musical genre, it is often possible to identify a piece within only
a beat or two, well before the “melody” has even begun. This is identification
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of the timbre or tone color of a familiar recording. Similarly, if you have been
listening along to the sound examples, you are by now very familiar with the
Maple Leaf Rag. The four short sounds in [S: 158] each contain a single beat
interval. Most likely, you can recognize the rag, and moreover, where in the
rag the beat occurs. Somewhat more challenging are the 39 short sounds in
[S: 159]. Again, each is one beat long. They are randomly selected from among
thirteen of the pieces in Tables A.1 and A.2. Can you tell which sound belongs
to which performance? Good luck!2

Thus it is often possible to recognize a performance of a song from a single
beat of sound. On the other hand, the brief sound snippets of [S: 153] (recall
the discussion on p. 259) show how the timbre is changed when the duration
is significantly shorter than a beat. Together, these suggest that the beat (or
perhaps the tatum) is the smallest atom of musical “meaning,” the shortest
duration over which the character of a piece is maintained. A beat interval
contains information about the timbre, the instrumentation, the instantaneous
harmonization, and the sound density. It also contains information about the
recording process itself: room reverberation, compression, noises, etc. The
beat is capable of reflecting the piece on a larger scale. All of these are lacking
from a symbolic note-oriented analysis. This extra information may explain
why the “name that tune” contestants need several notes and extensive verbal
hints while the teenager in the car needs to hear only the downbeat3 before
exclaiming “it’s my favorite tune. . . ”

In this conception, the hierarchy of musical structures is:

(i) Audio rate samples are nearly inaudible
(ii) Grains are individually devoid of meaning, but can be easily com-

bined in masses, clouds (and other higher level structures) to con-
vey density and timbre

(iii) The beat (or tatum) intervals convey information about timbre and
instrumentation as well as the recording process

(iv) Rhythms are built from sequences of beat (or tatum) intervals

This also reflects a perceptual hierarchy. The continuous ebb and flow of neural
messages that lies beneath awareness parallels audio rate samples. Elementary
sense impressions, which have no intrinsic meaning until they are bound into
larger structures, are analogous to grains. For example, the puff of air that
initiates a flute sound and the following sinusoidal tone are bound together
into the perception of “a flute playing middle C.” The beat corresponds to the
lowest level of musical meaning, and lies fully within the perceptual present.
2 Perhaps because I have become hypersensitized to the music in Tables A.1 and

A.2 from working with them for so long, I can tell instantly (i.e., within one beat),
which piece a random beat is from (excluding the many similar-sounding piano
renditions).

3 An analogous feat is the ability to recognize a friend on the telephone after hearing
only a brief “hello.”
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To be understood, rhythms typically involve interaction with long term mem-
ory.4 Rhythms evoke expectations (anticipation of future events) and require
attention (e.g., the will of the observer must focus on the rhythmic pattern).

Finally, by focusing on the beat (or tatum) level, it is possible for the
results in Rhythm and Transforms to aim for a kind of cultural independence
that is rare in musical studies. While not all of the world’s music is beat-
based (recall Sect. 3.1), a large portion is. The Western conception of meter,
the African conception of the timeline, the Latin use of the clave, the Indian
tala, and the rhythmic cycles of the gamelan, are all built on a repetitive
beat structure. All depend on a regular succession of timepoints that may be
sounded directly or may be implicit in the “mind’s ear” of the performer and
listener. While the basic rhythm of a timeline or clave is provided by an ir-
regular pattern of sounded events, the events synchronize with the underlying
lattice of tatum timepoints.

12.3 Variations on a Theme

While the distinction may sometimes be blurred in common usage, it is im-
portant to distinguish the performance of a piece from the piece itself. The
hierarchy of musical structures continues:

(v) A musical performance is the act of making music and, by exten-
sion, the results of this action

(vi) A musical composition is an abstract form from which a variety of
performances may be realized

Thus the Maple Leaf Rag, a composition by Scott Joplin, provides a set of
instructions (in this case, a musical score) that musicians can follow in order
to make a variety of different performances5 of the Maple Leaf Rag. The 27
versions in Table A.2 demonstrate the wide variety of possible realizations of
this same composition.

There are many ways to compose. The classic image of a tortured master
sitting in a silent room with staff paper and quill pen is but one compositional
paradigm. An important alternative is improvisation, where the composer
plays an instrument or sings during the compositional process, often in a
setting with other musicians. Improvisational composition necessarily involves
performance, though improvisational performance need not be composition.

There is a long tradition of composition using algorithmic processes. In
Mozart’s musical dice game [W: 36], chance determines which measures will
be played. In recent years, the use of randomness and deterministic chaos
4 Recall Fig. 4.1 on p. 77.
5 It is sometimes useful to also distinguish the act of making music from the record

of that act (for example, to distinguish the concert hall experience from a CD
recording of the concert). The present discussion blurs these two levels, referring
to both as the same “performance.”
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have been extended to other levels of the compositional process. Xenakis
[B: 247] creates the form of the composition Analogique B using Markov
chains. Roads [B: 181] creates compositions from stochastically generated col-
lections of sound grains. In these techniques, the audible result is dictated by
the formal specifications of the composer; the composition is embodied in an
algorithm, not in a score.

Many modern compositional trends emphasize the creation and selection
of sound materials such as the collage aesthetic in musique concrète [B: 210]
and the multi-layering of rhythmic loops and samples in hip-hop [B: 119].
These methods transform existing sound into rhythmic, tonal, and timbral
variations that form the raw material for new pieces. The chapters on beat-
based signal processing and beat-based composition arrange, cross, mutate,
and rearrange pre-existing beats to generate a surprising array of sounds that
are variations of both the performance and the composition. These may remain
faithful to the original composition (as in the Rag Bags [S: 155]) or may appear
unrelated (as in the Pentatonic Rag [S: 111] or the Atonal Leaf Rags [S: 98]).
The continuum of novelty in recomposition extends from pieces that are clearly
related to the original to those that disguise the source completely.

Typically, the form of a composition allows for many possible perfor-
mances, each a variation on the original. The beat-level techniques extend
the idea of “variations on a theme” in two ways. First, new performances
of a composition can be created directly from existing performances with-
out explicit reference to the underlying composition. Thus the Rag Bags and
the Grab Bag Rags generate new performances automatically by rearranging
beats, without using the composition as a guide. Second, new compositions
can arise from the manipulation and rearrangements of a performance. Thus
the Make Believe Rag [S: 115] has little apparent connection to the Maple
Leaf Rag [S: 5], Local Variations [S: 117] has little perceptual affinity to Local
Anomaly [S: 116] and Mirror Go Round [S: 122] is not obviously related to
Three Ears [S: 121]. Yet, in all three cases, one is derived from the other via
an algorithmic process.

12.4 What is a Song?

Compositions only exist in symbolic form, while performances are literal ren-
derings. Notations help musicians learn new music, help performers realize a
composers vision, and help clarify the internal structure of music. Each kind
of notation has strengths and weaknesses in terms of its ability to represent
high level features in ways that are easy for composers and musicians to com-
prehend and manipulate. Each notation has its own aesthetics and ways of
composing: with pencil and paper for musical scores, with sequencers for MIDI
notation, by algorithm for granular synthesis, by image editing software for
spectrograms.
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Notations also reflect attitudes and values about music, and raise questions
of musical ownership. Aristotle might have laughed at the idea that someone
could claim ownership of a song. The US copyright office does not find it
funny at all. Western music has adopted the musical score as a primary form
for the dissemination and preservation of compositions. In order to copyright
a musical piece in the US under the copyright act of 1909, it was necessary to
write the music in standard notation and to send it (along with a registration
fee) to the copyright office. Thus a musical composition was defined, legally, to
require a symbolic representation. The law was changed in 1976 to allow literal
notations (sound recordings), and now recognizes two kinds of copyright: the
copyright of a performance and the copyright of a composition (the underlying
work) [W: 11]. The two kinds of copyright are very different. For example,
while the underlying composition of the Maple Leaf Rag has passed into the
public domain (is now out of copyright), most of the versions in Table A.2 are
under performance copyright by their creators.

Thus, prior to 1976, it was only possible to legally protect music that was
represented in symbolic form. Since then, it has become possible to legally pro-
tect music represented in either symbolic or literal form. While the copyright
office tries to be clear, there are many gray areas. What criteria distinguish
two performances of the same underlying work? For example, there is very
little to distinguish my version of the Maple Leaf Rag [S: 5] from the versions
by Blumberg A.2(1), Copeland A.2(3), and Joplin A.2(8). The tone of the
piano varies somewhat, the detailed timing is subtly different, but all four are
played in a straightforward manner from the sheet music. Yet “clearly,” these
four are separately eligible for performance copyright since they are performed
by different artists.

In contrast, consider the Beat Filtered Rag [S: 84] and the Beat Gated Rag
[S: 85]; both are derived algorithmically from [S: 5]. In a logical sense they
are “clearly” derivative works; hence they would infringe on the performance
copyright.6 Yet the Beat Filtered Rag and the Beat Gated Rag sound very
different from the original and from each other; far more different than the
four straightforward piano versions! Hence the performance copyright rewards
(with legal protections) versions that sound nearly identical and refuses such
protection to versions that sound as different as any two renditions in Ta-
ble A.2.

Even more difficult is the question of how to distinguish compositions. Is
the Beat Gated Rag a performance of the same work as the Maple Leaf Rag?
Yes, since the chord pattern and occasionally the rhythm are maintained.
But neither the Make Believe Rag nor the Atonal Leaf Rag #2 inherit the
harmony and rhythm from the Maple Leaf Rag. A naive listener would be
unlikely to judge them to be “the same piece.” Yet the algorithmic relationship
6 This is not actually a problem in this particular case, because I am the creator

(and hence automatically the owner of the copyright) of the performance [S: 5].
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argues that they are derived from the Maple Leaf Rag and hence that they
are “derivative” works.

An old conundrum asks how many trees can be removed from a forest
and still remain a forest. Similarly, it is tempting to ask how many beats
can be removed from a song and still remain the same song. Are the Maple
Leaf Waltz’s [S: 130, S: 131] the “same” as the Maple Leaf Rag? How about
the Half Leaf Rag [S: 137]? The Quarter Leaf Rag [S: 139]? By their timbre,
these are clearly derived from the original performances. Logically, they are
derived from the original composition, but this is not at all clear perceptually.
Because the Quarter Leaf Rag moves four times as fast as the Maple Leaf Rag,
the basic feel of the rhythm changes. Removal of three quarters of the melody
renders it unrecognizable. The Make It Brief Rag [S: 142] is constructed from
the Quarter Leaf Rag using the beat-level delay, filter, and gating techniques
of Sect. 9.2, to remove the timbral similarity. If the melody is different and
the rhythm is different, and the timbre is different, in what way is the Make
It Brief Rag the same composition as the Maple Leaf Rag? The issue here is
the fundamental “identity” of a song; what it means to be a composition.

As Kivy [B: 112] points out, in the art of painting there is an original
physical object that represents the work. In music, where there is no single
original, it is not even clear what it means to “be” a piece of music. Here are
some possibilities:

(i) a CD on which music is recorded
(ii) a pattern of sound waves
(iii) a mind perceiving the sound waves
(iv) a mind (silently) rehearsing and remembering the performance
(v) a musical score, MIDI file, or other high level symbolic represen-

tation
(vi) an idea (or algorithm) specifying some set of meaningful musical

actions or parameters

Possibilities (i) and (ii) represent performances while (v) and (vi) lie at the
compositional level. Yet (iii) (and possibly (iv)) are the levels at which deci-
sions about the “sameness” and “difference” of musical works must necessarily
be made. Undoubtedly, the legal situation will continue to evolve, and it is
not clear how the kinds of sound manipulations represented by beat-oriented
processing will fit into the legal framework, either at the performance or the
compositional levels.

Some modern artists are offering listeners the chance to participate more
in the formation of the final sound. For example, Todd Rundgren’s interactive
CD New World Order [D: 38] allows users to manipulate various components
of the music as they listen. David Bowie has sponsored a series of “mash-up”
competitions [W: 6] where fans remix Bowie’s songs. What part of the final
sound is Rundgren or Bowie, and what part is the listener-participant? Again,
this raises the question of how a musical work is defined.
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12.5 Time and Perceived Time

What is time? As long as no one asks me, I know what it is; but if I
wish to explain it to someone, then I do not know. – St. Augustine,
Confessions XIV.

St. Augustine is not alone. It is almost impossible to define time in a way that
is not essentially circular. Definitions made in terms of motion (a year defined
as one revolution of the Earth around the sun, a day as one rotation of the
Earth) are problematic because motion is itself defined in terms of time. The
Oxford English Dictionary defines time as a “continuous duration regarded as
that in which a sequence of events takes place.” But can one really know what
a “duration” is, unless one already understands time? The modern scientific
definition of one second as

the duration of 9, 192, 631, 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state
of the cesium 133 atom at 0K.

is no more enlightening, though it is very precise.
For Aristotle, “time does not exist without change.” For Kant, the changes

are in the mind (not in the world), implying that the understanding of time
is not a matter of knowledge but of psychology. Time, according to Clifton
[B: 32] is a relationship between people and the events they perceive; time
is that which orders our experiences. Bergson [B: 12] writes that rhythm is a
“pure impression of succession, the way that we directly apprehend the flow of
time.” Even more recent is the idea that time arises through perception. But
how exactly do we perceive the passage of time? Unlike all the other senses,
there is no (known) sensory apparatus that perceives time. Gibson [B: 73]
argues that “time is an intellectual achievement, not a perceptual category.”

Much of the early philosophical interest in rhythm arises from its obvious
relationship with the passage of time. Music reflects the structures of time.
Music, like time, unfolds linearly. As in time, there is repetition. Time is
punctuated by the eternal cycles of day and night; music is punctuated by the
recurrence of rhythmic structures such as meter, timecycles and timelines.

Music is temporal: abstract sounds “move” through time, interpenetrating
each other in ways that objects in space cannot. Music takes place in time,
but also helps to shape our perception of time. An enjoyable piece can flow
by in an instant while a loud song overheard from a neighbor appears to last
an eternity. Thus time as experienced may differ from “clock time,” and we
may experience both kinds of time simultaneously. Observation of this close
connection between rhythm and time is not limited to the Western philo-
sophical tradition. Blacking [B: 16] writes that “Venda music is distinguished
from nonmusic by the creation of a special world of time.” Here, the ability of
music to shape the perception of the flow of time is presented as the defining
characteristic of music.
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There is little that Rhythm and Transforms can say about time (whatever
it may be), but there are some tantalizing possibilities concerning the way
time is perceived. Models of time perception are either based on the idea of
an internal clock that marks the passage of time [B: 120], or on the idea that
perceived duration is related to the amount of information processed or stored
[B: 65]. This division parallels the event/boundary dichotomy of Fig. 4.12 (on
p. 94) and the two models seem to explain different aspects of time perception.
The clock models explain the ability of performers to maintain steady tempos,
while the information models are consistent with studies where the apparent
duration of intervals changes depending on the content of the interval. Clark
and Krumhansl [B: 31] suggest that both mechanisms may be important, with
the clock models addressing short durations (and performance behaviors that
involve motor skills), and the information models addressing phenomena with
longer durations. The ability to process and rearrange sound may provide
interesting ways to process the sound for further testing such hypotheses.
For example, consider stretched and compressed versions of the same piece.
Presumably these contain (approximately) the same amount of information,
and so they might be used to test models of perceived duration.

The duration of the perceived present depends on the richness of its con-
tents and the possibilities for its organization into groups. In general, the more
changes perceived in a stimulus, the longer it tends to appear. The order is
important in terms of the ability to organize and cluster the elements (recall
Figs. 3.1 and 3.2). The ability to reorder segments of a piece in a simple fashion
could be used to investigate the perceptions of duration as a function of the
ease of clustering. Presumably sensible orderings should be easier to remember
and reproduce, while nonsense orderings should be more difficult. Similarly,
it may be possible to use the beat-splicing techniques as a way to concretely
test the linearity (goal directedness) or the nonlinearity of a particular piece
or of a musical genre.

Cross-cultural misunderstandings are common when talking about rhythm.
The Westerner listens for the steady beat and the regular metrical group-
ing. The Indian searches for the tala, the underlying circular pattern with its
characteristic downbeats (sam) and unaccented beats (kali). The Indonesian
searches for the regularly punctuated gong cycle, and without it cannot find
the inner melody. The African searches for the timeline, the uneven repetitive
pattern against which all other musical lines play and are heard.

What is the organizing principle underlying rhythmic structures? Rhythm
and Transforms takes an approach one level below the grouping of the meter/
tala/ gong/ timeline, at the level of the beat. This is one of the major fea-
tures that distinguishes the present work from most other studies of rhythmic
structure: music is conceived as sound waves (that can be searched for beats)
rather than as notes. This has disadvantages: all the power of a note-based
representation are lost. But there are also advantages. From a perceptual per-
spective, it bypasses a very difficult stage of processing, that of detecting notes
from a continuous sound. From a philosophical perspective it is interesting to
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see what can be done without the concept of notes. The short answer is: a
lot more than is at first apparent. The focus is on direct interpretation of the
sound, and not of a symbolic representation of the sound.

12.6 The Technologies for Finding Patterns

The location of beats in a musical passage presents a challenging technologi-
cal problem and Rhythm and Transforms has approached it from three quite
different points of view. Transforms represent the classical method of locat-
ing periodicities in data as a linear combination of basis (or frame) elements.
Dynamical systems consisting of clusters of adaptive oscillators mimic the
biologically inspired idea that a listener follows a musical rhythm by synchro-
nizing an internal clock to the pulsations of the music. Probabilistic methods
are based on parameterized models of repetitive phenomena and statistical
techniques help locate optimal values for those parameters. Applying all three
methods to the same set of problems highlights the strengths and weaknesses
of each approach.

Transforms appear to be good at finding large scale patterns and at lo-
cating multiple patterns simultaneously. They fail, however, when confronted
with repetitive phenomenon that are not really periodic, as when the under-
lying pulse of the music changes over time. Oscillators operate very rapidly,
both in terms of computation time and in terms of the speed with which they
can respond. But they tend to fail when there are certain kinds of (common)
noises that may contaminate the data. The statistical methods seem to provide
workable solutions for the location of the desired parameters, but they em-
ploy oversimplified models whose assumptions are clearly violated in practice
(for example, that successive data points in a feature vector are statistically
independent of each other).

In terms of the musical problem, this suggests that transforms should be
used whenever possible, though with the realization that they may often be
inapplicable. When the data is noise free (as in a MIDI rendition or when
following a musical score), adaptive oscillators may be the method of choice,
especially if the pulse is likely to change rapidly. The more difficult problem of
locating beats from low level audio features may require the more sophisticated
statistical methods.

The field of beat tracking is just beginning to approach maturity. The
yearly MIREX competitions [W: 32] provide a challenging playground on
which various methods can be tested. A special session of the IEEE confer-
ence on acoustics, speech, and signal processing, organized by Mark Plumbley
and Matthew Davies (to occur in mid 2007), will bring researchers together
to plan for future directions. Cemgil and coauthors will be talking about
generalizing from tracking beats to following complete rhythms using a “bar
pointer” [B: 239]. Dixon and Gouyon, winners of the 2005 MIREX beat track-
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ing competition, will be talking about their recent work. Eck will be discussing
innovative kinds of feature vectors.

Finding temporal patterns in nature and extrapolating into the future is
one of the essences of intelligent behavior; it is the kind of thing that people
master intuitively but that often stymies machines. Surely there are other
problem areas where the three technologies for locating temporal patterns
can be put to good use. Hopefully this case study will be of some use to those
trying to automate solutions to these other problems.



Beat Tracked Musical Performances

The statistical method of audio beat tracking, detailed in Sects. 7.5 and 7.6
and discussed in Sect. 8.3.2, has been successfully applied to a large number of
musical pieces (about 300). Table A.1 shows 16 pieces that are representative
of the various musical genres that have been attempted. Excerpts (approx-
imately thirty seconds each) can be heard in [S: 71] with the detected beat
locations indicated by short bursts of noise.

Table A.1. Audio beat tracking of a variety of musical excerpts is demonstrated
by superimposing a burst of white noise at each detected beat [S: 71]

Style Title Artist File Ref.

1 Pop Michelle The Beatles Tap-Michelle [D: 2]
2 Tambourine Man The Byrds Tap-Tambman [D: 7]
3 Jazz Take Five Dave Brubeck Tap-Take5Bru [D: 9]
4 Take Five Grover Washington Tap-Take5Wash [D: 45]
5 Maple Leaf Rag Scott Joplin Tap-Maple1916 [D: 41]
6 Classical K517 D. Scarlatti Tap-ScarK517 [D: 39]
7 Water Music G. Handel Tap-Water [D: 21]
8 Pieces of Africa Kronos Quartet Tap-Kronos [D: 28]
9 Film James Bond Theme Soundtrack Tap-Bond [D: 6]

10 Rock Soul Blip Tap-Soul [S: 7]
11 Folk Friend of the Devil The Grateful Dead Tap-Friend [D: 19]
12 Howell’s Delight Baltimore Consort Tap-Howell [D: 1]
13 Country Angry Young Man Steve Earl Tap-Angry [D: 14]
14 Dance Lion Says Prince Buster Tap-Ska [D: 10]
15 Bluegrass Julie’s Waltz M. Schatz Tap-Julie [D: 40]
16 Gamelan Hu Djan Gong Kebyar Tap-HuDjan [D: 17]

The Maple Leaf Rag has been performed many times by many artists in
many styles over the years. In addition to CDs in shops and over the web, many
versions are available using the gnutella file sharing network [W: 15]. Table A.2
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details 27 different performances, showing the artist, instrumentation and
style. Excerpts (approximately thirty seconds of each) can be heard in [S: 76]
with the detected beat locations indicated by short bursts of noise.

The mean value of the length of the beat intervals is given (in seconds)
for each version and the column labeled “STD” gives the standard deviation
about this mean (the number is multiplied by 1000 for easier comparison).
See Fig. 11.1 on p. 265 (and the surrounding discussion) for a more detailed
analysis.

Table A.2. Audio beat tracking of excerpts from a variety of performances of the
Maple Leaf Rag is demonstrated by superimposing a burst of white noise at each
detected beat [S: 76]

Instrument Artist File Mean STD Ref.

1 piano D. Blumberg Tap-MapleBlumberg 0.32 5.36 [W: 5]
2 C. Bolling Tap-MapleBolling 0.30 4.42 [D: 5]
3 Copeland Tap-MapleCopeland 0.32 5.75 [W: 10]
4 Cramer Tap-MapleCramer 0.35 3.32 [D: 12]
5 Entertainer Tap-MapleEnter 0.33 12.54 [D: 18]
6 G. Gershwin Tap-MapleGershwin 0.30 8.23
7 D. Hyman Tap-MapleHyman 0.24 9.95 [D: 26]
8 S. Joplin Tap-Maple1916 0.34 4.49 [D: 41]
9 Jelly Roll Morton Tap-MapleMorton 0.33 10.50 [D: 32]

10 Motta Junior Tap-MapleMotta 0.31 10.93 [W: 34]
11 M. Reichle Tap-MapleReichle 0.36 2.16 [D: 34]
12 J. Rifkin Tap-MapleRifkin 0.33 6.80 [D: 35]
13 big band S. Bechet Tap-MapleBechet 0.22 7.31 [D: 3]
14 Dorsey Tap-MapleDorsey 0.22 4.48 [D: 13]
15 Butch Thompson Tap-MapleButch 0.34 4.84 [D: 44]
16 symphonic Unknown Tap-MapleOrch 0.34 9.33
17 Unknown Tap-MapleQLK 0.25 3.92
18 a capella Unknown Tap-MapleBygon 0.33 9.43
19 brass Canadian Brass Tap-MapleBrass 0.33 10.14 [D: 11]
20 marimba Glennie Tap-MapleGlennie 0.26 3.89 [D: 16]
21 guitar D. Van Ronk Tap-MapleRonk 0.40 12.51 [D: 37]
22 Van Neil Tap-MapleVanNiel 0.38 1.79 [W: 55]
23 banjo Golden Gate Tap-MapleGGate 0.33 9.97
24 Heftone Banjo Orch. Tap-MapleHeftone 0.28 5.72 [W: 17]
25 Klezmer Tap-MapleKlez 0.30 3.63
26 Kukuruza Tap-MapleKukuruza 0.27 5.01 [D: 30]
27 Big Mama Sue Tap-MapleMamaSue 0.23 3.85 [W: 4]

I have been unable to locate proper references for several of the versions
in this table. I apologize to these artists and would be happy to complete the
references in a future edition.



Glossary

The usage of many terms in the literature of rhythm and meter is not com-
pletely consistent. This glossary provides definitions of terms as used in
Rhythm and Transforms. Sources for the definitions are noted where they
have been taken verbatim.

absolute time: the time that is shared by most people in a given society
and by physical processes [B: 117]

accent: a rhythmic event that stands out clearly from surrounding events;
regularly recurring patterns of accented beats are the basis of meter
[B: 219], see also p. 54

agogic accent: accents caused by changes in duration
attack point: the perceived location in time of the beginning of an event

[B: 219]
auditory boundary: a timepoint at which a perceptible change occurs in

the acoustic environment, see Sect. 4.2
auditory event: a way of talking about what happens at an auditory bound-

ary; a perceptible change in the acoustic environment, see p. 85
“a” beat1: a single timepoint that is musically significant because of its im-

portance in a metric hierarchy [B: 117], beats mark off equal durational
time units [B: 21]. Informally, the times at which a listener taps the foot
to the music, see p. 87 and Fig. 1.9 on p. 15

“the” beat2: a succession of beat timepoints (see beat1) that are approx-
imately equally spaced in time, commonly used in phrases such as “the
beat of the song” or “keeping the beat”

beating3: the slow undulation of the envelope of a sound caused by repeated
cancellation and reinforcement, see p. 32

beat interval: a short duration of time delineated by adjacent metrical po-
sitions on the timeline, the duration between adjacent beat1 timepoints

beat location: same as a beat1 timepoint
boundary: see auditory boundary
bps: number of beats1 per second
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bpm: number of beats1 per minute
cent: there are 100 cents in a musical semitone, 1200 cents in an octave;

hence one cent represents an interval of 1200
√

2 ≈ 1.0005779 to 1
chunking: mental grouping of stimuli (or events) in a manner conducive to

understanding and remembering them [B: 117]
clock time: absolute time as measured by a clock [B: 117]
composition: an abstract (symbolic) form from which a variety of perfor-

mances may be realized, see Sect. 12.3
duration: the perceptual correlate of the passage of time
entrainment: the mutual synchronization of two or more oscillators
event: see auditory event
Fast Fourier Transform (FFT): an algorithm that transforms signals from

the time domain into the frequency domain
feature vector: a method of highlighting relevant properties of a signal and

de-emphasizing irrelevant aspects, see Sect. 4.4
feature score: a feature vector calculated in a beat2-synchronous manner as

discussed in Sect. 11.3
frequency: measured in cycles per second (Hz), frequency is the physical

correlate of pitch
Gaussian: the familiar bell-shaped noise distribution
Gestalt: a structure or pattern of phenomena that constitute a complete unit

with properties that are not derivable from the sum of its parts (from
German, literally, shape or form)

harmonic sound: a sound is harmonic if its spectrum consists of a funda-
mental frequency f and partials (overtones) at integer multiples of f

Inverse Fast Fourier Transform (IFFT): an algorithm that transforms
signals from the frequency domain into the time domain

interonset interval (IOI): the time interval between adjacent note events
layering: the process of building elaborate musical textures by overlapping

multiple looped tracks [B: 119]
linear music: principle of musical composition and of listening under which

events are understood as outgrowths or consequences of earlier events
[B: 117]

literal notation: a representation of music from which the performance can
be recovered completely, for example, a .wav file or a spectrogram, see
Sect. 2.2

loudness: or volume, the perceptual correlate of sound pressure level, see
p. 80

median: in a list of numbers, there are exactly as many numbers larger than
the median as there are numbers that are smaller; the middle value

meter: the grouping of beats into recurrent patterns formed by a regular
temporal hierarchy of subdivisions, beats and bars; meter is maintained by
performers and inferred by listeners and functions as a dynamic temporal
framework for the production and comprehension of musical durations in
the Western tradition
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noise1: a sound without pitch; the spectrum will typically be continuous,
with significant energy spread across a range of frequencies

noise2: random changes to a sequence, signal, or sound
nonlinear music: principle of musical composition and of listening under

which events are understood as outgrowths of general principles that gov-
ern the entire piece [B: 117] (contrast with linear music)

normal: the Gaussian distribution
overtone: synonym for partial
partials (of a sound): the sinusoidal constituents of the sound, often de-

rived from the peaks of the magnitude spectrum
perception: the process whereby sensory impressions are translated into or-

ganized experience, see Chap. 4
perceptual present: the time span over which short term memory organizes

perceptions, see p. 77
performance1: the act of making music, see footnote on p. 281
performance2: a recording (or other literal notation) resulting from a mu-

sical performance1, see Sect. 12.3
pitch: that aspect of a tone whereby it may be ordered from low to high, the

perceptual correlate of frequency
pulse: an event in music that is directly sensed by the listener and typically

reflected in the physical signal, see Fig. 1.9 on p. 15
pulse train: a sequence of pulses that may give rise to the beat and/or the

tatum
phase vocoder (PV): a variation on the short-time Fourier transform that

extracts accurate frequency estimates from the phase differences of suc-
cessive windowed FFTs

regular succession: any grid of equal time durations such as the tatum, the
beat, or the measure, see pp. 54 and 86

rhythm1: a temporally extended pattern of durational and accentual rela-
tionships [B: 21]

rhythm2: a musical rhythm is a sound that evokes the sensation of a regular
succession of beats [B: 158], see Sect. 4.3.6

short time Fourier transform (STFT): takes the FFT of widowed seg-
ments of a longer signal, see Fig. 5.8 on p. 124

sound pressure level (SPL): roughly equal to signal power, SPL is the
physical correlate of loudness, see p. 80

spike train: see pulse train
symbolic notation: a representation of music which depicts salient features

in pictorial, numeric, or geometric form, for example, a note-based musical
score, a MIDI file, or a functional notation, see Sect. 2.1

synchronization: an oscillator synchronizes with a repetitive phenomenon
when it locks its frequency (and/or phase) to the period (and/or phase)
of the phenomenon

tactus: synonym for beat
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tatum: the regular repetition of the smallest temporal unit in a performance,
the “temporal atom” [B: 15] or most rapid beat2, see Fig. 1.9 on p. 15

tempo: the rate at which the beats occur, see p. 87
timecycle: a circle that represents the passage of time; each circuit of the

circle represents one repetition
timeline: an axis or dimension representing the passage of absolute time
timepoint: an instant, a point on a timeline or timecycle analogous to a

geometric point in space, see Fig. 1.9 on p. 15
vertical time: temporal continuum of the unchanging, in which everything

seems part of an eternal present [B: 117]



Sound Examples on the CD-ROM

The sound examples may be accessed using a
web browser by opening the file html/soundex.html

on the CD-ROM and navigating using the html
interface. Alternatively, the sound files, which are
saved in the .mp3 format, are playable using Windows

Media Player, Quicktime, or iTunes. Navigate to
Sounds/Chapter/ and launch the *.mp3 file by double
clicking, or by opening the file from within the player.
References in the body of the text to sound examples are
coded with [S:] to distinguish them from references to
the bibliography, discography, and web links.

Sound Examples for Chapter 1

[S: 1] A Heartbeat (Heartbeat.mp3 0:32) The well known rhythmic “lub-dub” of a
beating heart. See Fig. 1.1 on p. 2.

[S: 2] Where does it start? (TickPhaseN.mp3 0:20) This series of sound examples
N=0,1,...,8 performs the rhythmic pattern shown in Fig. 1.3. When N=0, all
notes are struck equally. Which note does the pattern appear to begin on? For
N=1,...,7, the Nth note is emphasized. How many different starting positions
are there? For N=8, All notes are struck equally, but the timing between notes is
not exact. Does timing change the perceived starting position?

[S: 3] Regular Interval 750 (RegInt750.mp3 0:15) This series of identical clicks with
exactly 750 ms between each click is diagrammed in Fig. 1.4(a) on p. 6. Does the
sequence sound identical? Observe the natural tendency of the perceptual system
to collect the sounds into groups of 2, 3, or 4.

[S: 4] Ever-Ascending Sound (EverRise.mp3 5:19) The pitch of this organ-like
sounds rises continuously, yet paradoxically returns to the place where is started.
See p. 12.

[S: 5] Maple Leaf Rag (MapleLeafRag.mp3 1:52) Scott Joplin’s (1868–1917) most
famous ragtime piano piece, the Maple Leaf Rag was one of the first instrumental
sheet music hits in America, selling over a million copies. For other versions, see
Table A.2 on p. 290.

[S: 6] Maple Tap Rag (MapleTapRag.mp3 1:51) Audio beat tracking of the Maple
Leaf Rag is demonstrated by superimposing a burst of white noise at each detected
beat. In terms of the musical score, Fig. 2.3, the detected beat coincides with the
eighth note pulse. See Sect. 8.3.2 for more detail.

[S: 7] Soul (Soul.mp3 2:47) Soul is used to illustrate various sound manipulations
throughout Rhythm and Transforms in a “hard rock” context. Soul is written by
Ruby Beil and Phil Schniter, who are joined by Ami Ben-Yaacov (on bass) and
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Bill Huston (on drums) in this energetic performance by the band Blip. The song
is used (and abused) with permission of the authors.

[S: 8] Julie’s Waltz (JuliesWaltz.mp3 2:39) Julie’s Waltz is used in Chap. 11 as
a case study showing how beat-based feature scores can display detailed infor-
mation about the timing and timbre of a performance. Julie’s Waltz, written by
Mark Schatz, appears in Brand New Old Tyme Way [D: 40]. The song is used
with permission of the author. See also [W: 47].

Sound Examples for Chapter 2

[S: 9] Variations of King’s “Standard Pattern” (StanPat(a)G.mp3 0:32),
(StanPat(a)N.mp3 0:32), and (StanPat(a)CA.mp3 0:32) These demonstrate
part (a) of Fig. 2.5 on p. 29; G refers to the starting point of the Ghana pattern
using the high bell, N refers to the Nigerian starting point and CA to the Central
African. (StanPat(b).mp3 0:32) and (StanPat(c).mp3 0:32) perform parts (b)
and (c) using a bell for the outer ring and a drum for the inner ring.

[S: 10] Patterns in and of Time (TimePat.mp3 0:25) Demonstrates the various nu-
merical notations of Fig. 2.6 on p. 30.

[S: 11] Example of Drum Tablature (DrumTab.mp3 0:38) This rhythmic pattern is
described in Fig. 2.8 on p. 32.

[S: 12] First two measures of Bach’s Invention No. 8 (Invention8.mp3 0:11) Used
in Fig. 2.9 on p. 32 to demonstrate Schillinger’s notation.

[S: 13] 4

4
Bell (Bell44.mp3 0:09) This bell pattern in 4

4
is shown in timeline notation

in Fig. 2.11. It is given as a MIDI event list in Table 2.2, and is shown in piano-roll
notation in the first measure of Fig. 2.12. See p. 35.

[S: 14] Midi Drums (MidiDrums.mp3 0:11) MIDI piano roll notation, such as shown
in Fig. 2.12 can be used to specify percussive pieces by assigning each MIDI “note”
to a different drum sound. This sound example repeats measures 2, 3, and 4 of
Fig. 2.12. See p. 35.

[S: 15] Sonification of an Image (StretchedGirlSound.mp3 0:24) Metasynth turns
any picture into sound. This is the sound associated with Fig. 2.21 on p. 45.

[S: 16] Filtering with an Image (MapleFiltN.mp3 0:06) for N=1,2. Metasynth uses
an image to filter a sound. The first few seconds of the Maple Leaf Rag [S: 5] are
filtered by the images (a) (and (c)) in Fig. 2.22. The resulting spectrogram is
shown in (b) (and (d)). See p. 46.

[S: 17] Listening to Gabor Grains (GaborGrains.mp3 0:53) and (Grains2.mp3
0:36) Individual grains as well as small sound-cloud clusters appear in these
examples. See p. 47.

[S: 18] Grains Synchronized to a Rhythmic Pattern (GrainRhythm.mp3 5:06) A va-
riety of different grain shapes are chosen at random and then synchronized to a
shuffle pattern, creating an ever changing (but ever the same) rhythmic motif.

Sound Examples for Chapter 3

[S: 19] Clustering of a Melody (ClusterMel.mp3 0:24) One possible realization of
the melody in Fig. 3.1 on p. 55.



Sound Examples on the CD-ROM 297

[S: 20] Playing Divisions (PlayDiv.mp3 0:39) A melody is divided into simple and
compound rhythm, melody, and time as described in Fig. 3.3 on p. 58.

[S: 21] Agbekor Timelines (Agbekor(a).mp3 0:29) and (Agbekor(b).mp3 0:29)
Renditions of the timelines of Fig. 3.4 on p. 59.

[S: 22] Drum Gahu (DrumGahu.mp3 0:32) The gankogui bell, the axatse rattle, and a
drum simulate this rhythmic pattern from Ghana called drum Gahu. See Fig. 3.5
on p. 60.

[S: 23] Three Clave Patterns (Clave(a).mp3 0:19), (Clave(b).mp3 0:32), and
(Clave(c).mp3 0:19) from Fig. 3.7 on p. 62.

[S: 24] The Samba (Samba(a).mp3 0:32) and (Samba(b).mp3 0:32) simulate the two
rhythmic patterns of Fig. 3.8 on p. 64.

[S: 25] Vodou Drumming (Vodou(a).mp3 0:32) and (Vodou(b).mp3 0:32) demon-
strate the two rhythmic patterns of Fig. 3.9 on p. 65.

[S: 26] Tala (TalaN.mp3 0:30) for N=(a),(b),(c),(d),(e) simulate the five tala of
Fig. 3.10 on p. 66.

[S: 27] Polyrhythms See p. 68.
(i) (Poly32-1200.mp3 0:10) The three vs. two polyrhythm of Fig. 3.11(a) is

performed at a rate of 1.2 s per cycle. Typically, the cycle is heard as a single
perceptual unit rather than as two independent time cycles.

(ii) (Poly32-120.mp3 0:05) The three vs. two polyrhythm is performed at a rate
of 120 ms per cycle. The rhythm has become a rapid jangling.

(iii) (Poly32-12.mp3 0:05) The three vs. two polyrhythm is performed at a rate
of 12 ms per cycle. The rhythm has become pitched, and the two rates are
individually perceptible as two notes a fifth apart.

(iv) (Poly32-12000.mp3 0:30) The three vs. two polyrhythm is performed at a
rate of 12 s per cycle. All rhythmic feel is lost.

(v) (Poly32b.mp3 0:15) The three vs. two polyrhythm of Fig. 3.11(b) is per-
formed at a rate of 1.0 s per cycle. Typically, the cycle is heard as a single
perceptual unit rather than as two independent time cycles.

(vi) (Poly43.mp3 0:20) The four vs. three polyrhythm of Fig. 3.11(c) is per-
formed at a rate of 2.0 s per cycle.

(vii) (Poly52.mp3 0:20) The five vs. two polyrhythm.
(viii) (Poly53.mp3 0:20) The five vs. three polyrhythm.
(ix) (Poly54.mp3 0:20) The five vs. four polyrhythm.
(x) (Poly65.mp3 0:20) The six vs. five polyrhythm.

[S: 28] Persistence of Time (PersistenceofTime.mp3 4:55) This composition ex-
ploits the three against two polyrhythm as its basic rhythmic element.

[S: 29] Gamelan Cycle (GamelanCycle.mp3 0:36) A four-part realization of a balun-
gan melody. See Fig. 3.12 on p. 70.

[S: 30] Funk (Funk(a).mp3 0:15) and (Funk(b).mp3 0:15) excerpt single cycles from
James Brown’s Out of Sight and Papa’s Got a Brand New Bag [D: 8] to highlight
the relationship between the funk groove and the African timeline. See Fig. 3.13
on p. 71.

[S: 31] The Hip-hop Sublime (Sublime.mp3 0:15) The rhythmic patterns of the sub-
lime parallel the interlocking structures of traditional African timelines. Further
examples appear in [S: 89]. See Fig. 3.14 on p. 73.



298 Sound Examples on the CD-ROM

Sound Examples for Chapter 4

[S: 32] Equal Power Noises (EqualPower.mp3 0:16) The sound alternates between a
Gaussian noise and a Uniform noise every second. The noises have been equalized
to have the same power. Though the waveform clearly shows the distinction (see
Fig. 4.3 on p. 81), it sounds steady and undifferentiated to the ear.

[S: 33] Regular Interval T (RegIntT.mp3 0:20) This series of sound examples
T=2,5,10,20,33,50,100,333,500,750,1000,3000,5000 performs a regular se-
quence of identical clicks with exactly T ms between each click, as diagrammed
in Fig. 4.12(a) on p. 94. Perceptions vary by tempo. Tones are heard with small
T, rhythms for medium T, and unconnected isolated clicks for large T.

[S: 34] Speed-Up Events (SpeedUpEvent.mp3 2:33) As the tempo increases, the
events become closer together, eventually passing through the various regimes
of perception. Condenses the examples of [S: 33] into one sound file.

[S: 35] Randomly Spaced Ticks (GeoTick.mp3 0:20) (NormTick.mp3 0:20) The in-
terval between successive clicks in these examples is random, defined by either
the geometric distribution or the normal distribution.

[S: 36] Irregular Successions (IrregT.mp3 1:00) for T=40,400,4000,40000. The
normal (Gaussian) distribution is used to specify the times for the events. The
T values specify the average number of events per second that occur at the peak
of the distribution.

[S: 37] Sweeping Sinusoids (SineSweep.mp3 0:15) Three sinusoids begin at frequen-
cies 150, 500, and 550 and move smoothly to 200, 400, and 600 Hz, respectively.
Many complex interactions can be heard as the sinusoids change frequency. When
they come to rest on the harmonic series, they merge into one perceptual entity:
a note with pitch at 200 Hz. See Fig. 4.9 on p. 89.

[S: 38] Sweeping Rhythms (SweepRhyN.mp3 1:18) Three steady beats begin with
periods 0.38, 0.44, and 0.9 per second and move smoothly to 0.33, 0.5, and 1.0 per
second, respectively. Many complex interactions can be heard as the successions
change period. When they come to rest on the periodic sequence (about 2/3
of the way through) they merge into one perceptual entity: a single rhythmic
pattern with period 1 s. The example is repeated N=4 times. For N=1, the phases
of the three beats are aligned when they synchronize. For N=2,3, the phases
take on arbitrary values (though the periods remain synchronized). For N=4, the
three sequences are performed on different sounds (stick.wav, clave.wav, and
tube.wav). See Fig. 4.10 on p. 90 for a visual representation.

[S: 39] Windchime (WindChime1.mp3 1:33) The “ding” separates from the “hum”
in these wind chimes as the sound initially fuses and then separates. See p. 92.

[S: 40] A Single Chime (WindChime2.mp3 1:20) Created using a normal distribution
to specify the times for the events as in [S: 36]. Each strike is allowed to ring for
its full length. As in [S: 39], the “hum” separates from the “strike” though both
are clearly present throughout. See p. 92.

[S: 41] Streaming Demo (Streaming.mp3 1:57) The three notes defining a major
chord are repeated. The notes alternate in timbre, a synthetic trumpet followed by
a synthetic flute. When played slowly, the outline of the major chord is prominent.
When played more rapidly, the instruments break into two perceptual streams.
See Fig. 4.11 on p. 93.

[S: 42] Regular Durations T (RegDurT.mp3 0:20) This series of sound examples
T=2,5,10,20,33,50,100,333,500,1000,3000,5000 performs a regular sequence
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of durations, each of length T ms, as diagrammed in Fig. 4.12(b) on p. 94. The
sounds are a guitar pluck and a synth chord. Perceptions vary by tempo. Tones
are heard with small T, rhythms for medium T, and unconnected isolated clicks
for large T. Thus the perceptions of rhythms may be elicited equally from empty
time sequences (like the clicks of [S: 33]) or from filled-time durations.

[S: 43] Speed-Up Durations (SpeedUpDuration.mp3 2:33) As the tempo increases,
the durations occur closer together, eventually passing through the various
regimes of perception. Condenses the examples of [S: 42] into one file.

[S: 44] Irregular Successions of Durations (IrregDurT.mp3 1:00) for T=40, 400,

4000. The normal (Gaussian) distribution is used to specify the durations. The
T values specify the average number of durations per second that occur at the
peak of the distribution. See Sect. 4.3.5 on p. 93.

[S: 45] Best Temporal Grid (TempGrid(N).mp3 0:20) for N=b,c,d. These perform
the sequences shown in Fig. 4.13 parts (b), (c), and (d) on p. 95.

[S: 46] Changing Only Pitch (ChangePitch.mp3 0:32) The loudness of each note is
equalized; notes are defined by changes in pitch. See p. 97.

[S: 47] Changing Only Bandwidth (ChangeBWN.mp3 0:32) for N=1,2,3. Each “note”
is generated by a noise passed through a filter with a specified bandwidth. Loud-
nesses are equalized and there is no sense of pitch. Each of the three examples
uses a different set of bandwidths: all lowpass filters in the first, and two kinds
of bandpass filters for the second and third. See p. 97.

[S: 48] Amplitude Modulations (ChangeModAMN.mp3 0:32) for N=1,2. Each “note” is
generated by a different rate of amplitude modulation. Loudnesses are equalized
and all pitches are the same in the first example. Pitch contours follow those of
[S: 46] and [S: 47] in the second example. See p. 97.

[S: 49] Frequency Modulations (ChangeModFMN.mp3 0:32) for N= sin, sq, tri.
Each “note” is generated by a different rate of frequency modulation. Loud-
nesses are equalized and all pitches are the same (but for pitch shifts induced by
the FM). The three versions use sine wave, square wave and triangular wave as
the carrier. See p. 97.

[S: 50] Pulsing Silences (PulsingSilences.mp3 3:34) A single harmonic tone en-
during throughout the piece is filtered, modulated, made noisy and otherwise
manipulated into a “song with one note.” Originally from [D: 43]. See p. 97.

[S: 51] Two Periodic Sequences with Phase Differences (PhaseN.mp3 0:10) for
N=0,2,10,20,30,40,50. Two regular successions are played each with 0.5 s be-
tween clicks. The two sequences are out of phase by N percent, so that N=50 is
a equivalent to a double speed sequence with 0.25 s per click. Several rhythmic
regimes occur, including the flam (2%), rapid doublets (10%), doublets (20%),
and a galloping rhythm (30 and 40%). See Fig. 4.15 on p. 100.

[S: 52] Two Periodic Sequences with T1 ≈ T2. (PhaseLong.mp3 1:40) Two se-
quences with periods T1 = 0.5 and T2 = 0.503 are played. Over time, the sound
shifts through all the perceptual regimes of [S: 51]: flamming, doublets, galloping,
and double speed. See Fig. 4.16 on p. 101.

[S: 53] Three Periodic Sequences (Metro3N.mp3 1:40) for N=a,b,c. In a, the three
rates are T1 = 0.5 and T2,3 = 0.5 ± 0.003 s. In b, the three rates are T1 = 0.5,
T2 = 0.48, and T3 = 0.51 s. In c, the three rates are T1 = 0.5, T2 = 0.63, and
T3 = 0.29 s. The latter two contain some patterns that make rhythmic sense and
others that are incomprehensibly complex. See p. 102.



300 Sound Examples on the CD-ROM

[S: 54] Nothing Broken in Seven (Broken7.mp3 3:29) A single six-note isorhythmic
melody is repeated over and over, played simultaneously at five different speeds.
See Fig. 4.16 on p. 101.

[S: 55] Phase Seven (PhaseSeven.mp3 3:41) A single eight-note isorhythmic melody
is repeated over and over, played simultaneously at five different speeds. See
Fig. 4.16 on p. 101.

[S: 56] One-hundred Metronomes (MetroN.mp3 2:00) for N=10,50,100. These three
examples play N simultaneous regular successions, each with a randomly chosen
period. The appearance is of a random cacophony. Inspired by György Ligeti’s
Poeme Symphonique [D: 31]. See p. 102.

[S: 57] Listening to Individual Feature Vectors #1 Feature vectors for the Maple Leaf
Rag are made audible using the technique of Fig. 4.18 on p. 105. See Sect. 4.4.2.
(i) (MapleCBFeature9.mp3 0:44) The feature vector from the ninth critical band

(before the derivative) gives one of the clearest rhythmic percepts.
(ii) (MapleCBFeature9diff.mp3 0:44) The feature vector from the ninth critical

band (after the derivative) gives one of the clearest rhythmic percepts.
(iii) (MapleCBFeature2.mp3 0:44) The feature vector from the second critical

band (before the derivative) gives almost no rhythmic percept.
(iv) (MapleCBFeature2diff.mp3 0:44) The feature vector from the second criti-

cal band (after the derivative) gives almost no rhythmic percept.
[S: 58] Listening to Feature Vectors Feature vectors for the Maple Leaf Rag are made

audible using the technique of Fig. 4.18 on p. 105. See Sect. 4.4.2.
(i) (MapleFeatureAll.mp3 0:44) All the feature vectors (before the derivative)

from all the critical bands are summed, leaving a clear rhythmic percept.
(ii) (MapleFeatureAlldiff.mp3 0:44) All the feature vectors (after the deriva-

tive) from all the critical bands are summed, leaving a clear rhythmic percept.
[S: 59] Listening to Individual Feature Vectors #2 Feature vectors for the Maple Leaf

Rag are made audible using the technique of Fig. 4.18 on p. 105. See Sect. 4.4.4.
(i) (MapleFeature1.mp3 0:44) The energy feature vector.
(ii) (MapleFeature2.mp3 0:44) The group delay feature vector.
(iii) (MapleFeature3.mp3 0:44) The spectral center feature vector.
(iv) (MapleFeature4.mp3 0:44) The spectral dispersion feature vector.

[S: 60] Povel’s Sequences (PovelN.mp3 0:20), N=1,2,...,35. The thirty-five se-
quences from Povel and Essens [B: 174] are ordered from simplest to most com-
plex. See [B: 202] for further discussion.

Sound Examples for Chapter 8

[S: 61] La Marseillaise (Marseillaise.mp3 0:09) The first four bars of the French
National anthem. See Fig. 8.1 on p. 196.

[S: 62] MIDI Beat Tracking with Oscillators I (Michelle-MIDIOscN.mp3 0:50),
N=1,2. The “jazz” version jazz1 fast-rep 1.mid of the Beatles’ Michelle from
the MIDI collection [W: 35] is beat tracked using an adaptive phase-reset os-
cillator in 1 and using a wavetable oscillator in 2. A burst of white noise is
superimposed at each detected beat. See Sect. 8.2.1.

[S: 63] MIDI Beat Tracking with Oscillators II (Maple-DrisceoilOsc.mp3),
(Maple-RoacheOsc.mp3), and (Maple-TrachtmanOsc.mp3) Three MIDI versions
of the Maple Leaf Rag by T. O. Drisceoil (at [W: 9]), J. Roache [W: 43], and
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W. Trachtman [W: 51] are beat tracked using an adaptive wavetable oscillator.
The detected beat locations are indicated by the superimposed stick sound. See
Sect. 8.2.1.

[S: 64] MIDI Beat Tracking with Oscillators III (Maple-MIDIOscSlow.mp3) Tracht-
man’s [W: 51] version of the Maple Leaf Rag is beat tracked using an adaptive
wavetable oscillator initialized near the eighth-note rate. The detected beat lo-
cations are indicated by the superimposed stick sound. See Sect. 8.2.1.

[S: 65] Statistical MIDI Beat Tracking I (Maple-T-Stat.mp3 2:53) and
(Maple-R-Stat.mp3 2:53) Two MIDI versions of the Maple Leaf Rag by
Trachtman [W: 51] (indicated by T) and Roache [W: 43] (indicated by R) are
beat tracked using the statistical approach of Sects. 7.5 and 8.2.2. The detected
beat locations are indicated by the superimposed stick sound.

[S: 66] Michelle-MIDIStat (Michelle-MIDIStat.mp3 0:50) A MIDI version of the
Beatles’ Michelle is beat tracked using the statistical approach. The detected
beat locations are indicated by the superimposed stick sound. See Sect. 8.2.2.

[S: 67] Statistical MIDI Beat Tracking II (Maple-T-StatSlow.mp3) and
(Maple-R-StatSlow.mp3) Two MIDI versions of the Maple Leaf Rag by
Trachtman [W: 51] and Roache [W: 43] are beat tracked using the statistical
approach. The procedure is initialized near the eighth-note pulse. See Sect. 8.2.2.

[S: 68] Statistical MIDI Beat Tracking III (Maple-T-VerySlow.mp3) and
(Maple-T-Fast.mp3) The Maple Leaf Rag is beat tracked using the statis-
tical approach. The procedure is initialized near the sixteenth-note tatum (fast)
and near the 2

4
measure (very slow). Observe that the phase of the slow tracking

is locked to the syncopated “and” rather than the “one.” See Fig. 8.15 on p. 208.
[S: 69] Three Against Two Polyrhythm (Poly32.mp3 0:15) The polyrhythm of

Fig. 8.17 on p. 211 is analyzed from the audio in Fig. 8.18 using the DFT and in
Fig. 8.19 using the PT.

[S: 70] Three Against Two Polyrhythm Accelerating (Poly32acc.mp3 0:15) The
polyrhythm of [S: 69] depicted in Fig. 8.17 on p. 211 is slowly accelerated. The
audio is analyzed in Fig. 8.20 using various transform methods, which fail due to
the unsteady pulse.

[S: 71] Audio Beat Tracking is demonstrated on 16 musical works by superimpos-
ing a burst of white noise at each detected beat. The excerpts are described in
Table A.1 on p. 289 and discussed at length in Sect. 8.3.2.

[S: 72] Howell’s Delight II (Tap-Howell2.mp3 0:58) Audio beat tracking of the song
by the Baltimore Consort [D: 1]. In this version, the initial value of the period T is
doubled to [0.4, 0.8] and the method locates the 6

8
measure at about T = 0.72 s.

Observe how much musical activity occurs between each detected timepoint.
Compare to [S: 71](12). See Sect. 8.3.2.

[S: 73] Julie’s Waltz II (Tap-Julie2.mp3 0:58) Audio beat tracking of Julie’s Waltz
[D: 40], [S: 8]. In this version, the initial value of the period T is doubled to
[0.4, 0.8] and the method locates the quarter note pulse at T ≈ 0.61 s. instead of
the eighth note tatum at T ≈ 0.30 as in [S: 71](15). See Sect. 8.3.2.

[S: 74] Ska Tap (Tap-SkaOn.mp3 0:44) and (Tap-SkaOff.mp3 0:44) Audio beat
tracking of Lion Says by Prince Buster and the Ska [D: 10]. When the initial
period T is doubled to [0.4, 0.8], the method can converge to either of two phases
which correspond to the “on-” and the “off-” beat. Compare to [S: 71](14). See
Sect. 8.3.2.

[S: 75] Maple Tap 3
2

(MapleTap3-2.mp3 0:44) Audio beat tracking of the Maple
Leaf Rag with a tightly constrained initial period causes the algorithm to lock
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onto a 3 : 2 entrainment at T ≈ 0.52 instead of the actual pulse at T ≈ 0.34.
Compare to [S: 71](5). See Sect. 8.3.2.

[S: 76] Audio Beat Tracking of 27 performances of the Maple Leaf Rag are demon-
strated by superimposing a burst of white noise at each detected beat. The ex-
cerpts are described in Table A.2 on p. 290 and discussed at length in Sect. 8.3.2.

Sound Examples for Chapter 9

[S: 77] Maple Drums (MapleDrums.mp3 1:51) The beat of the Maple Leaf Rag is
regularized so that each beat interval contains the same number of samples. A
preprogrammed drum line is superimposed to emphasize the metronomic regu-
larity. See Fig. 9.2 on p. 225.

[S: 78] Rhythmic Beat Manipulations (MapleBeatMod(N).mp3 1:41) for N = a, b,

c. Individual beats of the Maple Leaf Rag are stretched and compressed and then
played together with the original. See Fig. 9.3 on p. 225.

[S: 79] Polyrhythmic Rags #1 and #2 (PolyrhythmicRagsN.mp3 1:36) for N = 1,

2. Individual beats of the Maple Leaf Rag are stretched by a factor of 4
3

and every
fourth beat is removed. This is then played simultaneously with the original. See
Fig. 9.3(d) on p. 225.

[S: 80] Changing Tempo The tempo of the Maple Leaf Rag is changed in a variety
of ways using the phase vocoder PV.m. See Sect. 9.1.
(i) Maple Leaf Rag at quarter speed (MapleQuarter.mp3 1:00)
(ii) Maple Leaf Rag at half speed (MapleHalf.mp3 1:00)
(iii) Maple Leaf Rag at double speed (MapleDouble.mp3 1:00)
(iv) Maple Leaf Rag at four times normal tempo (Maple4x.mp3 0:27)
(v) Maple Leaf Rag at eight times normal tempo (Maple8x.mp3 0:14)
(vi) Maple Leaf Rag at 16 times normal tempo (Maple16x.mp3 0:07)
(vii) Maple Leaf Rag at 32 times normal tempo (Maple32x.mp3 0:03)
(viii) Maple Leaf Rag at 64 times normal tempo (Maple64x.mp3 0:01)

[S: 81] Maple Sleep Rag (MapleSleepRag.mp3 3:53) An elaboration of the half speed
version of the Maple Leaf Rag [S: 80](ii). See Sect. 9.1.

[S: 82] Time Stretching I Extreme time stretching can be an interesting special effect
even when not synchronized with the beat. See Sect. 9.1.
(i) Gong (Gong.mp3 0:05) A single strike of a gong.
(ii) Long Gong (LongGong.mp3 2:26) The same gong, stretched in a variety of

ways to bring out details of the evolution of the sound that are impossible
to hear at the normal rate.

[S: 83] Time Stretching II Extreme time stretching using beat boundaries. See
Sect. 9.1.
(i) Very Slow #1 (VerySlow1.mp3 4:00) A melange of beats chosen from several

different songs, all equalized in time and then stretched by a factor of eight.
(ii) Very Slow #2 (VerySlow2.mp3 4:00) The same as (i), but modified with a

variety of beat-based filters.
(iii) Very Slow #3 (VerySlowInspective.mp3 3:55) The piece in (iv) is slowed

by a factor of eight.
(iv) Inspective Latency (InspectiveLatency.mp3 3:47) An adaptively tuned

piece from [B: 196] is presented here for comparison with its time stretched
version in (iii).
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[S: 84] Beat Filtered Rag (BeatFilteredRag.mp3 1:51) A variety of beat-based fil-
ters and delay effects are applied to the Maple Leaf Rag. See Sect. 9.2.

[S: 85] Beat Gated Rag (BeatGatedRag.mp3 1:51) A variety of beat-based gates and
envelopes are applied to the Maple Leaf Rag. See Sect. 9.2.

[S: 86] Gar Fael Elpam (GarFaelElpam.mp3 0:44) The first 44 seconds of the Maple
Leaf Rag is played backwards. See Sect. 9.3.

[S: 87] Beat Reversed Rag (BeatReversedRag.mp3 3:44) The audio in each beat
interval is reversed in time so that the sounds are backwards but the piece itself
moves forwards. It appears as the Maple Leaf Rag is played on an organ or
calliope. See Sect. 9.3 and Fig. 9.5 on p. 229.

[S: 88] Wrongly Reversed Rag (WronglyReversedRag.mp3 1:44) The audio is re-
versed in approximately beat-sized chunks, but with boundaries that bear no
relationship to the beat boundaries. See Sect. 9.3.

[S: 89] Averaged Sublimes (SublimeN.mp3 0:30) for N=2,5,30,50. In each case, N

successive 8-beat cycles (measures) of the “hip-hop sublime”[S: 31] are averaged
together. See Sect. 9.4.

[S: 90] Noisy Leaf Rag (NoisyLeafRag.mp3 1:06) The noise floor (9.1) is calculated
at each beat and all information above the noise floor is removed. When trans-
formed (via the IFFT) back into the time domain, only the noisy parts of the
sound remain. See Sect. 9.5 and Fig. 9.6 on p. 231.

[S: 91] Maple Noise Rag (MapleNoiseRag.mp3 1:52) The Noisy Leaf Rag [S: 90]
(the only sound source used in this composition) is augmented with a variety of
beat-based techniques such as those of Sect. 9.2. See Sect. 9.5.

[S: 92] Just Noise Rag (JustNoiseRag.mp3 1:30) Another elaboration of the Noisy
Leaf Rag [S: 90]. See Sect. 9.5.

[S: 93] Noisy Souls (NoisySouls.mp3 2:39) Soul [S: 7] (the only sound source used
in this composition) is augmented with a variety of beat-based techniques such
as those of Sect. 9.2. See Sect. 9.5.

[S: 94] Noisy StrangeTree (NoisyStrangetree.mp3 1:01) All information above the
noise floor of [S: 95] is removed at each beat. The voice is particularly striking.
In the verse, the consonants are (almost) identifiable. In the chorus, where long
notes are sustained, the voice effectively disappears. See Sect. 9.5 and Fig. 9.6 on
p. 231.

[S: 95] StrangeTree (StrangeTree.mp3 3:36) An early composition by the author
in a straightforward “pop” style used here to demonstrate many of the signal
processing techniques such as [S: 94], [S: 106], and [S: 123].

[S: 96] Signal Leaf Rag (SignalLeafRag.mp3 1:06) All information below the noise
floor is removed. When transformed (via the IFFT) back into the time domain,
the noisy percussive elements have been removed, leaving the tonal material
intact. See Sect. 9.5 and Fig. 9.6 on p. 231.

[S: 97] Listening to Peaks (MapleNPeaks.mp3 1:06) for N=1,3,15,50,250. N peaks
are identified within each beat interval in the Maple Leaf Rag. All other informa-
tion is removed. See Sect. 9.5.

[S: 98] Atonal Leaf Rag (AtonalLeafRag.mp3 1:38) The peaks are identified and
removed within each beat interval in the Maple Leaf Rag, leaving an atonal rhyth-
mic bed. See Sect. 9.5.

[S: 99] Atonal Leaf Rag #2 (AtonalLeafRag2.mp3 1:53) The rhythmic bed with
beat-based filters applied. See Sect. 9.5.
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[S: 100] Atonal Soul (AtonalSoul.mp3 2:39) The peaks are identified and removed
within each beat interval in the Maple Leaf Rag, leaving an atonal rhythmic bed
that is processed with beat-based filters. See Sect. 9.5.

[S: 101] Sixty-Five Hertz Gong (Gong65.mp3 0:05) Spectral mapping of the gong
[S: 82](i) into a harmonic template with fundamental at 65 Hz. See Sect. 9.6.1.

[S: 102] Harmonic Cymbals (HarmCymbal.mp3 0:23) and (HarmCymbal.avi 0:23)
An inharmonic cymbal is spectrally mapped into a harmonic spectrum. The re-
sulting sound is pitched and capable of supporting melodies and chords. See
Sect. 9.6.1.
(i) The original sample contrasted with the spectrally mapped version
(ii) A simple “chord” pattern played with the original sample, and then with the

spectrally mapped version
[S: 103] Maple in 65 Hz (Maple65.mp3 1:52) Spectral mapping of the Maple Leaf

Rag into a harmonic template with fundamental at 65 Hz. See Sect. 9.6.1.
[S: 104] Sixty-Five Maples (SixtyFiveMaples.mp3 1:57) Spectral mapping of the

Maple Leaf Rag into a harmonic template with fundamental at 65 Hz. The only
sound source is [S: 103] which is rearranged and post-processed. See Sect. 9.6.1.

[S: 105] Sixty-Five Souls (Soul65N.mp3 2:47) for N=PV,FFT. Spectral mapping of
Soul [S: 7] into a harmonic template with fundamental at 65 Hz using the phase
vocoder and using the beat-synchronous FFT. See Sects. 9.6.1 and 9.8.2.

[S: 106] Sixty-Five StrangeTrees (StrangeTree65.mp3 3:35) Spectral mapping of
StrangeTree [S: 95] into a harmonic template with fundamental at 65 Hz. See
Sect. 9.6.1.

[S: 107] Spectral Mappings of Harmonic Sounds to 11-tet Sounds (Tim11tet.mp3
1:20) Several different instrumental sounds alternate with their 11-tet spectrally
mapped versions: See Sect. 9.6.2.
(i) Harmonic trumpet compared with 11-tet trumpet
(ii) Harmonic bass compared with 11-tet bass
(iii) Harmonic guitar compared with 11-tet guitar
(iv) Harmonic pan flute compared with 11-tet pan flute
(v) Harmonic oboe compared with 11-tet oboe
(vi) Harmonic “moog” synth compared with 11-tet “moog” synth
(vii) Harmonic “phase” synth compared with 11-tet “phase” synth

[S: 108] The Turquoise Dabo Girl (DaboGirl.mp3 4:16) The spectrally mapped in-
strumental sounds of [S: 107] are sequenced into an 11-tet piece. Many of the
kinds of effects normally associated with (harmonic) tonal music can occur, even
in such strange settings as 11-tet. See Sect. 9.6.2.

[S: 109] Maple N-tet PV (MapleNtetPV.mp3 0:16) for N=4,5,10,100. Spectral map-
ping of the Maple Leaf Rag into a N-tet destination template using the phase
vocoder. See Sects. 9.6.2 and 9.8.2.

[S: 110] Maple N-tet FFT (MapleNtetFFT.mp3 0:16) for N=4,5,10,100. Spectral
mapping of the Maple Leaf Rag into a N-tet destination template using the beat-
based FFT. See Sects. 9.6.2 and 9.8.2.

[S: 111] Pentatonic Rag (PentatonicRag 2:34) Spectral mapping of the Maple Leaf
Rag into a 5-tet destination spectrum, augmented with beat-based filters and
gates. See Sect. 9.6.2.

[S: 112] Maple 5-tet Video (Maple5tet.avi 0:38) The first five seconds of the spec-
tral mapping of the Maple Leaf Rag into a 5-tet destination template. See Fig. 9.9
on p. 238.
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[S: 113] Pentatonic Souls (PentatonicSoulN 2:48) for N=PV,FFT. Spectral mapping
of Soul [S: 7] into a 5-tet destination spectrum by the phase vocoder and by the
beat-synchronous FFT. See Sects. 9.6.2 and 9.8.2.

[S: 114] Scarlatti 5-tet (Scarlatti5tet 1:40) Spectral mapping of Scarlatti’s K517
sonata into a 5-tet destination spectrum. See Sect. 9.6.2.

[S: 115] Make Believe Rag (MakeBelieveRag.mp3 3:37) Spectral mappings of the
Maple Leaf Rag into 3, 4, 5, and 7-tet are combined and sequenced in a beat-
synchronous manner. Changes in tuning play a role analogous to chord changes
in a tonal context. See Sect. 9.6.3.

[S: 116] Local Anomaly (LocalAnomaly.mp3 3:27) Adaptively tuned from a re-
orchestrated standard MIDI file drum track, Local Anomaly first appeared in
[D: 43] and is discussed at length in Chap. 9 of [B: 196].

[S: 117] Local Variations (LocalVariations.mp3 2:19) A single fixed spectral band
filter is applied to [S: 116]. See Sect. 9.7.1.

[S: 118] Maple Freeze Rags (MapleFreezeRag(N).mp3 1:28) for N=a,b. A spectral
freeze is applied to the Maple Leaf Rag, with the left and right tracks frozen rhyth-
mically according to the necklace diagrams of Fig. 9.12 on p. 241. See Sect. 9.7.2.

[S: 119] Soul Freezes (SoulFreeze(N).mp3 2:37) for N=a,b. A spectral freeze is ap-
plied to Soul, with the left and right tracks frozen rhythmically according to the
necklace diagrams of Fig. 9.12 on p. 241. See Sect. 9.7.2.

[S: 120] Frozen Souls (FrozenSouls.mp3 2:37) The Soul Freezes of [S: 119] are used
as raw material for this elaboration. See Sect. 9.7.2.

[S: 121] Three Ears (ThreeEars.mp3 4:24) As each new note sounds, its pitch (and
that of all currently sounding notes) is adjusted microtonally (based on its spec-
trum) to maximize consonance. The adaptation causes interesting glides and
microtonal pitch adjustments in a perceptually sensible fashion. Three Ears first
appeared in [D: 42] and is discussed in Chap. 8 of [B: 196].

[S: 122] Mirror Go Round (MirrorGoRound.mp3 3:25) The harmonic sieve is applied
to Three Ears [S: 121]. See Sect. 9.7.3.

[S: 123] Sievetree (SieveTree.mp3 3:48) The harmonic sieve is applied to Strange-
tree [S: 95]. Compare especially to Sixty-Five StrangeTrees [S: 106] which spec-
trally maps the same piece into a harmonic series. See Sect. 9.7.3.

[S: 124] Phase Space (PhaseSpace.mp3 3:10) Used for comparison with [S: 125].
[S: 125] Reflective Phase (ReflectivePhase.mp3 3:26) The harmonic sieve is ap-

plied to Phase Space [S: 124]. See Sect. 9.7.3.
[S: 126] Instant Leaf Rag (InstantLeafRag.mp3 1:51) A pitch extraction algorithm

is applied to each beat interval of the Maple Leaf Rag. The sound is spectrally
mapped to a destination spectrum that has a fundamental equal to the identified
pitch. See Sect. 9.7.4.

[S: 127] Instant Nightmare (InstantNightmare.mp3 3:36) The periodicity trans-
form identifies the three periodicities with greatest power in each beat interval.
These periodicities define the destination spectrum (consisting of all harmonics
of the three basic periods). The sound is spectrally mapped to this destination
spectrum. Percussion is added and the beats of the piece are rearranged. Ligon
comments [B: 129] “Outrageously cool; Beefheart on controlled substances!” See
Sect. 9.7.4.
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Sound Examples for Chapter 10

[S: 128] Friend of the Devil of the Friend (FriendneirF.mp3 0:40) The first twenty
seconds of the classic song by the Grateful Dead [D: 19] is played forwards and
then backwards. Can you hear where the change is made? See Sect. 10.1.

[S: 129] Devil of a Friend (DevilofaFriend.mp3 0:46) A verse and chorus of the
classic song by the Grateful Dead [D: 19] is played backwards. The disjoint and
sometimes amusing lyrics indicate a stronger sense of linearity than the instru-
mental sections alone. See Sect. 10.1.

[S: 130] Maple Waltzes #1 and #2 (MapleWaltzN.mp3 1:06) for N=1,2. By remov-
ing every fourth beat, the 4

8
time signature of the Maple Leaf Rag is transformed

into 3

8
. The N=1 version removes the final beat of each measure. The N=2 version

removes the third beat of each measure. See Sect. 10.3 and Fig. 10.1 on p. 255.
[S: 131] Maple Leaf Waltz (MapleLeafWaltz.mp3 2:03) The two waltzes in [S: 130]

are merged, combined, and elaborated. See Sect. 10.3 and Fig. 10.1 on p. 255.
[S: 132] Soul Waltzes (SoulWaltzN.mp3 2:18), N=1,2,3,4. By removing every

fourth beat, the 4

4
time signature of Soul [S: 7] is transformed into 3

4
. Except

for vocal sections where lyrics are truncated, the change is quite smooth. The
four versions remove different beats, causing different rhythmic patterns. See
Sect. 10.3.

[S: 133] Bond’s Waltz (BondsWaltz.mp3 0:33) By removing every fourth beat, the
4

4
time signature of the James Bond Theme [D: 6] is transformed into 3

4
. See

Sect. 10.3.
[S: 134] Take Four (TakeFour.mp3 1:18) By removing every fifth beat from Grover

Washington’s classic Take Five [D: 45], the 5

4
time signature is transformed into

4

4
. See Sect. 10.3.

[S: 135] Julie’s March (JuliesMarch.mp3 1:06) By removing every third beat from
Julie’s Waltz ([D: 40], [S: 8]), the 3

4
time signature is transformed into 2

4
. See

Sect. 10.3.
[S: 136] Howell in 2

4
(Howell24.mp3 0:58) By removing every third beat from How-

ell’s Delight [D: 1], the 3

4
time signature is transformed into 2

4
. See Sect. 10.3.

[S: 137] Half Leaf Rags (HalfLeafRag1.mp3 0:49), (HalfLeafRag2.mp3 0:49) Two
out of every four beats are removed from the Maple Leaf Rag. See Sect. 10.3.

[S: 138] Half a Soul (HalfSoul1.mp3 1:17), (HalfSoul2.mp3 1:17) Two out of ev-
ery four beats are removed from Soul [S: 7]. See Sect. 10.3.

[S: 139] Quarter Leaf Rag (QuarterLeafRag.mp3 0:25) Three out of every four
beats are removed from the Maple Leaf Rag. See Sect. 10.3.

[S: 140] Quarter Soul (QuarterSoul.mp3 0:40) Three out of every four beats are re-
moved from Soul [S: 7]. The complete song “fits” into forty seconds. See Sect. 10.3.

[S: 141] Magic Leaf Rag (MagicLeafRag.mp3 2:29) The Half Leaf Rags [S: 137]
are processed using beat-based filters and gates in conjunction with the beat-
synchronous time delays of Fig. 9.3. See Sects. 9.1, 9.2 and 10.3.

[S: 142] Make It Brief Rag (MakeItBriefRag.mp3 2:01) The Quarter Leaf Rag
[S: 139] is processed using the beat-based filters and gates of Sect. 9.2. See
Sect. 10.3.

[S: 143] Backwards Leaf Rag (BackwardsLeafRag.mp3 1:39) The beats of the Maple
Leaf Rag are played in reverse order: the song begins with the final beat interval
and progresses in orderly fashion to the first beat interval. See Sect. 10.4.

[S: 144] Backwards Soul (BackwardsSoul.mp3 2:16) The beats of Soul [S: 7] are
played in reverse order: the vocals are especially interesting. See Sect. 10.4.
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[S: 145] Backwards Bond (BackwardsBond.mp3 0:52) The beats of the Theme from
James Bond [D: 6] are played in reverse order. See Sect. 10.4.

[S: 146] Random Leaf Rag #1 (RandomLeafRag.mp3 1:30) The beats of the Maple
Leaf Rag are played in random order. All sense of tonal progression is gone. The
rhythm and flow of the piece is fundamentally disturbed. Only the timbre of the
piano remains. See Sect. 10.5.

[S: 147] Random Soul #1 (RandomSoul.mp3 1:27) The beats of Soul [S: 7] are
played in random order. The rhythm of the piece is fundamentally disturbed,
though some of the feel remains. The timbre of the guitars and voice remain. See
Sect. 10.5.

[S: 148] Permutations of the Rag The beats of the Maple Leaf Rag are permuted on
a measure-by-measure basis.
(i) 1234 → 1324 (Maple1324.mp3 0:43)
(ii) 1234 → 1423 (Maple1423.mp3 0:43)
(iii) 1234 → 1432 (Maple1432.mp3 0:43)
(iv) 1234 → 2413 (Maple2413.mp3 0:43)
(v) 1234 → 4321 (Maple4321.mp3 0:43)
See Sect. 10.5 and Fig. 10.2 on p. 258.

[S: 149] Permutation Leaf Rag (PermutationLeafRag.mp3 0:43) A randomly cho-
sen permutation is applied to each measure. See Sect. 10.5.

[S: 150] Permutations of Soul (PermutationsofSoul.mp3 2:22) A randomly chosen
permutation is applied to each measure. See Sect. 10.5.

[S: 151] Random Leaf Rag #2 (RandomLeafRag2.mp3 0:37) Choose beats randomly
from among those that occupy the same relative location in the measure. See
Sect. 10.5.

[S: 152] Random Souls #2 (RandomSouls2.mp3 2:37) Choose beats randomly from
among those that occupy the same relative location in the measure. See Sect. 10.5.

[S: 153] Subdividing the Beat (MapleSnippetsN.mp3 0:37) for N=2,3,4,8, 12. For
larger N, the sound reflects the process of subdivision and destroys the original
timbre.

[S: 154] Maple Leaf Collage (MapleLeafCollage.mp3 0:37) Choose each beat ran-
domly from different versions of the Maple Leaf Rag. Ligon [B: 129] says, “Made
me laugh out loud.” See Sect. 10.6.

[S: 155] Rag Bag #1 and Rag Bag #2 (RagBag1.mp3 1:27) (RagBag2.mp3 1:33)
Choose each beat randomly from different versions of the Maple Leaf Rag. See
Sect. 10.6.

[S: 156] Beat-Synchronous Cross-Performances (nX*Y.mp3 1:23) X and Y are per-
formances of the Maple Leaf Rag from Table A.2 on p. 290. Beats are chosen
sequentially from the two performances and merged using one of the methods n,
which can be (i)--(vii), as described on p. 261. The 22 soundfiles are listed in
Table 10.2 on p. 261 and discussed in Sect. 10.7.

[S: 157] Grab Bag Rags #1, #2, and #3 (GrabBagRagN.mp3 1:27) for N=1,2,3.
Choose each beat randomly from different versions of the beat-synchronous cross-
performances of [S: 156]. See Sect. 10.7.

Sound Examples for Chapter 12

[S: 158] Maple Beats (MapleBeatsN.mp3 0:01), N=1,2,3,4. Individual beats from
the Maple Leaf Rag are readily identifiable once the piece is well known. See
Sect. 12.2.
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[S: 159] Beat Game (BeatGameN.mp3 0:01), N=1,2,...,39. Individual beats are
chosen randomly from 13 of the pieces in Tables A.1 and A.2. Can you tell
which beat is from which piece? See Sect. 12.2.
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References in the body of Rhythm and Transforms to
the discography are coded with [D:] to distinguish them
from references to the bibliography, websites, and sound
examples.

[D: 1] Baltimore Consort, A Baltimore Consort Collection, Dorian Recordings,
98101, 1995.

[D: 2] The Beatles, Rubber Soul, Capitol, CD #46440, 1990.
[D: 3] S. Bechet, Legendary Sidney Bechet, RCA, CD #6590, 1990.
[D: 4] Bhundu Boys, True Jit, Mango Records CCD 9812, 1988.
[D: 5] C. Bolling, Original Ragtime, Polygram Int., CD #558024.
[D: 6] Best of Bond James Bond, Capitol, ASIN: B00006I0BO, 2002.
[D: 7] The Byrds, Mr. Tambourine Man, Sony CD #64845 1996.
[D: 8] James Brown, Foundations Of Funk: A Brand New Bag: 1964-1969, Polydor,

1996.
[D: 9] Dave Brubeck Quartet, Time Out, Sony/Columbia, CK65122, 1997.
[D: 10] Prince Buster and the Ska
[D: 11] Canadian Brass, Red Hot Jazz: The Dixieland Album, Philips, ASIN:

B000004140, 1993.
[D: 12] F. Cramer, Piano Masterpieces (1900-1975), RCA, CD #53745, 1995.
[D: 13] T. Dorsey, 1935-1939, Spv U.S., CD #31102, 2000.
[D: 14] S. Earl, The Very Best Of Steve Earle, Telstar TV, ASIN: B00000INIX,

1999.
[D: 15] Gamelan Gong Kebyar, Music from the Morning of the World, Elek-

tra/Nonesuch 9 79196-2, 1988.
[D: 16] E. Glennie, Rhythm Song, RCA, CD #RD60242, 1990.
[D: 17] Bali: Golden Rain, Nonesuch, 1969.
[D: 18] The Sting: Original Motion Picture Soundtrack MCA, ASIN: B00000DD02,

1998.
[D: 19] Grateful Dead, American Beauty, Rhino Records, 1970.
[D: 20] C. Halaris, Byzantine secular classical music, Orata, Ltd., Athens, Greece.
[D: 21] Handel, Water Music; Concerto Grosso, Delta, CD #15658, 1990.
[D: 22] I. Hayes, Shaft: Music From The Soundtrack, Stax, 88002, 1971.
[D: 23] J. Hendrix, Electric Ladyland, 1968.
[D: 24] A. J. M. Houtsma, T. D. Rossing, and W. M. Wagenaars, Auditory Demon-

strations (Philips compact disc No. 1126-061 and text) Acoustical Society of
America, Woodbury NY 1987.

[D: 25] T. Hosokawa, deep silence, WER 6801 2, Mainz, Germany, 2004.
[D: 26] D. Hyman, Joplin: Piano Works 1899-1904, RCA #87993, 1988.
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[D: 27] Ice Cube, AmeriKKKa’s Most Wanted, Priority Records, 1990.
[D: 28] Kronos Quartet, Pieces of Africa, Nonesuch, CD #79275, 1992.
[D: 29] KRS-One, Jive Records, 1995.
[D: 30] Kukuruza, Where The Sunshine Is, Solid Records, 1993.

http://www.kukuruza.info/
[D: 31] P. Charial and J. Hocker, György Ligeti Edition 5: Mechanical Music, Sony,

CD #62310, 1997.
[D: 32] Jelly Roll Morton, The Complete Library of Congress Recordings, Disc 3,

Rounder Records, ASIN: B000AOF9W0, 2003.
[D: 33] S. Reich, Steve Reich 1965-1995, Nonesuch, 1997.
[D: 34] M. Reichle, Scott Joplin Complete Piano Works Volume One 1896-1902,

ASIN: B00004U2HE, 2000.
[D: 35] J. Rifkin, Ragtime: Music of Scott Joplin, Angel Records, ASIN:

B0009YA43A, 2005.
[D: 36] M. Roberts, Joy of Joplin, Sony, CD #60554, 1998.
[D: 37] D. Van Ronk, Sunday Street, Philo Records, ASIN: B00000GWY9, 1999.
[D: 38] Todd Rundgren, No World Order, Rhino Records, 1993.
[D: 39] D. Scarlatti, Complete Keyboard Sonatas, Vol. 2, Michael Lewin, Naxos, CD

#8553067, 1999.
[D: 40] M. Schatz, Brand New Old Tyme Way, Rounder, ASIN: B0000002N8, 1995.

See also [W: 47].
[D: 41] Spirit Of Ragtime, ASV/Living Era, ASIN: B000006167, 1998.
[D: 42] W. A. Sethares, Xentonality, Odyssey Records XEN2001 1997.
[D: 43] W. A. Sethares, Exomusicology, Odyssey Records EXO2002 2002.
[D: 44] Butch Thompson, The Butch Thompson Trio Plays Favorites, Solo Art,

ASIN: B00005Y894, 1994.
[D: 45] Grover Washington, Jr. Prime Cuts: The Greatest Hits 1987-1999, Sony

1999.



World Wide Web and Internet References

This section contains all web links referred to throughout
Rhythm and Transforms. References in the body of the
text to websites are coded with [W:] to distinguish them
from references to the bibliography, discography, and
sound examples. The web examples may also be accessed
using a web browser. Open the file html/weblinks.html

on the CD-ROM and navigate using the html interface.

[W: 1] 9 Beet Stretch, Ludwig van Beethoven’s 9th Symphony stretched to 24 hours
http://www.notam02.no/9/

[W: 2] Alternate tuning mailing list, http://groups.yahoo.com/group/tuning/
[W: 3] D. Bañuelos, Beyond the Spectrum of Music

http://eceserv0.ece.wisc.edu/∼sethares/banuelos/
[W: 4] Big Mama Sue, Big Mama Sue and Mr. Excitement

http://www.bigmamasue.com/
[W: 5] D. Blumberg, tunesmith 2002

http://freeaudioplayer.freeservers.com/radio2002.html
[W: 6] David Bowie’s Mashup Contest, http://www.davidbowie.com/neverFollow/
[W: 7] S. Brandorff and P. Møller-Nielsen, Sound Manipulation in the Frequency

Domain, http://www.daimi.au.dk/∼pmn/sound/pVoc/index.html
[W: 8] CamelSpace http://www.camelaudio.com/
[W: 9] Classical MIDI Archives, http://www.classicalarchives.com/
[W: 10] P. Copeland, Classic Cat,

http://www.classiccat.net/performers/copeland paul.htm
[W: 11] U. S. Copyright Office, http://www.copyright.gov/
[W: 12] Dance Notation Bureau, http://dancenotation.org/DNB/
[W: 13] Database of drums tablature, http://drumbum.com/drumtabs/
[W: 14] D. Ellis, A phase vocoder in MATLABR©,

http://www.ee.columbia.edu/∼dpwe/resources/matlab/pvoc/
[W: 15] Gnutella File Sharing Software, http://www.gnutella.com
[W: 16] R. Hall, Mathematics of Musical Rhythm

http://www.sju.edu/ rhall/research.html
[W: 17] Heftone Banjo Orchestra, http://heftone.com/orchestra
[W: 18] Institute for Psychoacoustics and Music, http://www.ipem.rug.ac.be/
[W: 19] Internet Juggling Database, http://www.jugglingdb.com/
[W: 20] S. Jay, The Theory of Harmonic Rhythm,

http://www.stephenjay.com/hr.html
[W: 21] Keyfax Software, http://www.keyfax.com
[W: 22] M. Klingbeil, SPEAR: Sinusoidal Partial Editing Analysis and Resynthesis,

http://klingbeil.com/spear/
[W: 23] Kyma from Symbolic Sound Corp., http://www.symbolicsound.com/
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[W: 24] Introduction to Labanotation,
http://user.uni-frankfurt.de/∼griesbec/LABANE.HTML

[W: 25] A. Maag, Tango,
http://www.maagical.ch/maagicalGmbH/andreasmaagprivat laban.html

[W: 26] Make Micro Music mailing list, http:// groups.yahoo.com/ group/ MakeMi-
croMusic/

[W: 27] Making Microtonal Music Website, http://www.microtonal.org/
[W: 28] Mark of the Unicorn, http://www.motu.com/
[W: 29] Matlab, http://www.mathworks.com/
[W: 30] Max 4.0 Reference Manual, http://www.cycling74.com/products/dldoc.html
[W: 31] Metasynth, http://www.uisoftware.com/
[W: 32] MIREX 2005, Music Information Retrieval Contest in Audio Onset Detec-

tion http://www.music-ir.org/mirex2005/index.php/Audio Onset Detection
[W: 33] P. Møller-Nielsen and S. Brandorff, Sound Manipulation in the Frequency

Domain, http://www.daimi.au.dk/∼pmn/sound/
[W: 34] Motta Junior, http://music.download.com/mottajunior/
[W: 35] Music, Mind, Machine, http://www.nici.kun.nl/mmm
[W: 36] Musical Dice Game with a computer implementation,

http://www.nationwide.net/ amaranth/MozartDiceGame.htm
[W: 37] Name That Tune http://en.wikipedia.org/wiki/Name That Tune
[W: 38] Native Instrument’s Traktor implements extensive looping features.

http://www.native-instruments.com/
[W: 39] J. Paterson, Music Files http://www.mfiles.co.uk/
[W: 40] A. Pertout’s samba lessons, http://pertout.customer.netspace.net.au/
[W: 41] Propellerhead software’s ReCycle is a tool for working with sampled loops.

http://www.propellerheads.se/
[W: 42] M. S. Puckette, Theory and Techniques of Electronic Music, March 2006,

http://www.crca.ucsd.edu/∼msp/techniques/v0.08/book-html/
[W: 43] John Roache’s Ragtime MIDI Library,

http://www.johnroachemusic.com/mapleaf.html
[W: 44] M. Op de Coul, Scala Homepage, http://www.xs4all.nl/∼huygensf/scala/
[W: 45] Rhythm and Transforms, http://eceserv0.ece.wisc.edu/∼sethares/
[W: 46] SFX Machine http://www.sfxmachine.com/
[W: 47] Mark Schatz, http://www.yellowcarmusic.com/markschatz/
[W: 48] Siteswap Juggling Notation,

http://jugglinglab.sourceforge.net/html/ssnotation.html
[W: 49] Standard MIDI File Specification,

http://www.sonicspot.com/guide/midifiles.html
[W: 50] Sony’s Acid looping software

http://www.sonymediasoftware.com/products/acidfamily.asp
[W: 51] Ragtime Piano MIDI files by Warren Trachtman,

http://www.trachtman.org/ragtime/
[W: 52] Dynamic Spectrograms of Music, http://nastechservices.com/Spectrograms
[W: 53] MATLABR© routines for the calculation of the Periodicity Transforms are

available at http://eceserv0.ece.wisc.edu/∼sethares/
[W: 54] Sunspot data is available at

http://www.spaceweather.com/java/archive.html
[W: 55] R. Van Niel, http://www.soundclick.com/
[W: 56] T. Wishart, Composer’s Desktop Project,

http://www.bath.ac.uk/∼masjpf/ CDP/CDP.htm
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accent, 56, 291

agogic, 291

weighting, 30

accuracy

of performance, see performance

of spectral estimation, see spectrum

Acid, 252

Acropolis, 51

activation sharpening, 165

adaptive

clock, 166

convergence, 165, 168, 200

oscillator, see oscillator, adaptive

phase-reset oscillator, 165–166

tuning, 69, 303, 305

wavetable oscillator, 161–165

additive rhythm, 57

Adzenyah, A., 58

Agawu, K., 61

algorithmic composition, 48

aliasing, 151

Alternate Tuning Group, vii

amphibrach, 24

amplitude modulation, 97

analog synthesizer, 228

analysis-resynthesis, 123, 124

anapest, 24

angle, see inner, product

Anku, W., 29, 58

anticipation, 78, 88

Aristotle, 285
Aristoxenes, 54

ARP synthesizer, 228

artifacts of spectrum, see spectrum,
artifacts

Atonal Leaf Rag, 22, 233, 282, 284, 303
Atonal Soul, 22, 233, 304
attack point, 291
Audiomulch, 49
auditory

boundary, 84–86, 93, 94, 97, 99, 103,
120, 188, 194, 291

event, 13, 85, 291
illusions, see illusions
models, see computational models

autocorrelation, 115, 178, 196

Bañuelos, D., vii, 269–271, 275, 309, 323
Bach, J. S., 32
backwards music, 229, 253, 256
Backwards Soul, 257, 306
ball and urn, see urn models
bandwidth, 91, 97
basilar membrane, 79, 82, 103
basis function, 128, 131, 144, 184, 213,

287
Bayes’ rule, 176, 180, 181, 183, 186, 190,

198
Bayesian, see statistical
beat, 14, 55, 74, 280, 291

deletion, 254, 284
detection, 248
duration, 34
finder, see foot-tapping machine
interference, 33
interval, 15, 252, 270, 291

and meaning, 280
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randomization, 257

rate, see tempo

regularization, 224, 259, 268

subjective, 5, 53, 58, 61, 63, 67–70,
74, 75

timepoint, see time, point

beat synchronous

averaging, 229

collage, 226, 259–262, 282

composition, 251–262

convolution, 262

cross-modulation, 262

cross-performance, 260–262

delay, 225, 228

deletion, 254, 284

envelopes, 228

FFT, 238, 244–249

filter, 227–228

flanging, 228

gating, 228

harmonic sieve, 241

instantaneous harmonic templates,
243

noise separation, 230–233

panning, 228

polyrhythm, 226

reversal, see backwards music

spectral filter, 240

spectral freeze, 240

spectral mapping, 233

stretching, 224

transform, 230–239

variations, 251, 282

windows, 223

beat tracking, 2, 14–16, 20, 21, 193–221

accuracy, 266–268

applications, 18

audio, 209–221

by listeners, 267

comparison, 221

MIDI, 201–209

modes of failure, 219

oscillators, 199–201, 203–206, 219–221

statistical, 198, 206–209, 215–219,
289–290

symbolic, 193–209

symbolic vs. literal, 194

technologies, 19, 194

transforms, 196–198, 203–206,
209–215, 268, 273

without note identification, 98, 209,
277, 287

Beat Filtered Rag, 227, 283, 303
Beat Gated Rag, 21, 228, 283, 303
Beat Reversed Rag, 229, 253, 303
Beever, B., 40
Beil, R., vii, 22, 257, 296
Bemba, 29
Benjamin, W. E., 57
Berg, A., 270, 275
Bergson, H., 285
Bernoulli random variables, 179, 183
Berry, W., 57
Best-Correlation Algorithm, 139, 213,

214
Best-Frequency Algorithm, 140
Beyond the Spectrum, 270
bins, see quantization of frequency
biological clock, see oscillator
biological spectrum analyzer, see

spectral analysis, by ear
Blacking, J., 61, 68, 285
Blip, 22, 289, 296
bols, 25, 66
Bolton, T. L., 87, 263
Book of Cycles, 28
Bossa Nova, 63
Bowie, D., 284
Bregman, A., 91
brightness score, 271, 274
Brown, J., 30, 71, 123, 196
Brubeck, D., 214
Bunnisattva, viii
Burrage, L., 40

Cariani, P., 83
carnival, 63
carrier wave, 158
cascade, 40
categorical perception, see perception,

categorical
CCMIX, vii
Cemgil, A. T., 184, 204, 209, 288
cent, 82, 292
chant, 25
Chernoff, J. M., 58
chunking, see perception, clustering
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circadian rhythm, 148
Clark, E. F., 285
clave, 74
clicks, 47, 223, 253
Clifton, T., 285
clock, see oscillator

adaptive, see adaptive, clock
closeness of two signals, see inner

product
clustering, see perception, clustering
cochlea, 79
cognition, 3
Coifman, R. R., 144
collage, see beat synchronous, collage

auditory vs. visual, 260
colotomic motion, 70
composition, 292

beat based, 251, 262
random, 257
reversal, see backwards music
time scale, 7, 252
vs. performance, 218, 264, 281

computational models, 2, 82, 83, 103
conditional probability, 176
construction kit, 252
continuity

illusions, see illusions, continuity
perception, see perception, continuity

of
continuous wavelet transform, 129
continuum of novelty, 282
convergence of adaptation, see adaptive,

convergence
Cooper, G., 26, 56
correlation, 113–116
correlation cost, see objective, function
cost function, see objective, function
Costas loop, 161, 163
Cowell, H., 36, 68
critical band, 81, 103
cross-performance, 260
cross-rhythms, 59
Csound, 49
cultural independence, 281
cyclostationary, 178

D’Arezzo, G., 25
dactyl, 24
dance notation, 38

Dance Notation Bureau, 39
data alignment, 246
Davies, M., 288
decomposing sound, 115
delta function, 116
density, see sound, density
Desain, P., 202
deviations from periodicity, see noise
Devil of a Friend, 254, 257, 306
DFT, see transform, Fourier
Diamond, J., 17
dice game, 259, 281
difference equations, 150
diffusion model, 186
dispersion, 106
dissonance, see sensory roughness
divisive rhythm, 57
Dixon, S., 209, 288
Dobson, I., vii
dolphins, 2
Dolson, M., 125
Dorsey, T., 266
downsampling, 103
drone, 235
drum

Gahu, 60
machine, 18
tablature, 31

duration, 79, 86, 98, 292
filled vs. empty, 93
weighting, 30

dynamic tuning, see adaptive, tuning
dynamical system, 20, 150

Eck, D., 154, 288
editing music, 18
education and the gamelan, 17
effective sampling rate, 143, 210, 213
eighth note, 26
elastic tuning, see adaptive, tuning
end effects, see spectrum, artifacts
energy, 105
entrainment, 292

definition, 148
in music, 149

envelope, 47, 91
equal temperament

n-tet, 236, 248
10-tet, 237
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11-tet, 236
4-tet, 237
5-tet, 237
7-tet, 102, 239
Scarlatti in 5-tet, 239

Erbe, T., 49
escapement, 153
Euler’s formula, 115
event list, 34, 182, 194, 199
Ewe, 29
expectancy function, 202
expectation, 88

Fa, 195
feature

score, 22, 263–275, 292
brightness, 271
noise to signal, 272
peak variation, 271
sensory roughness, 272
tempo, 266, 273
vs musical score, 273–275

vector, 15, 98, 103–108, 188, 194, 219,
292

artificial, 190
made audible, 104, 108
normalization, 216
vs. note identification, 209

FFT, see transform, Fourier
field, 251
filter bank, 82, 103
fireflies, 148
Flanagan, J. L., 125
flow of time, see perception, flow of

time
fluttering, 8, 88
FM, see frequency, modulation
foot-tapping machine, vi, 2
formants, 91
Fourier transform, see transform,

Fourier
Fraisse, P., 86, 108
freeze

spectrum, see beat synchronous
time, see perception, flow of time

frequency, 292
bins, see quantization of frequency
modulation, 97

frequency estimation via PLL, 159

Friend of the Devil of the Friend, 253,
254, 306

frozen music, 51
Frozen Souls, 22, 241, 305
fundamental bass, 100
funk, 71

Gabor, D., 47, 131
gagaku, 54, 76
Gahu, 60
gamelan, 69

Gong Kebyar, 215
and education, 17
inner melody, 53

Ganassi, S., 26, 58
gap, 29
generative grammar, 195
Gestalt, 292
ghost tones, 195
Gibson, J. J., 17, 285
Goethe, J. W., 51
Gordon, J. W., 271
Gouyon, F., 209, 210, 288
Grab Bag Rag, 262, 307
gradient method, 159, 162, 167, 168,

206
grains of sound, see sound, grains
granular synthesis, 49
Grateful Dead, 253, 254, 289
Grey, J. M., 271
groove, 53, 71
group delay, 106
grouping, see perception, clustering
guitar spectrum, see spectrum, guitar,

43

half tone, 26
Hall, G. S., 263
Hall, R., 31
harmonic

definition, 292
instantaneous, see beat synchronous
overtones, 89, 234
rhythm, 36, 69
series, 89
sieve, see beat synchronous
template, 142, 234–235

harmonics of guitar, see spectrum,
guitar
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harmony vs. rhythm, 53, 67
Hayes, I., 227
heartbeat, 1
Helmholtz, H., 81, 272
Hendrix, J., 227
Hertz, 79
hidden rhythm, see beat, subjective
hierarchy, see metric, musical,

perception, or rhythm
hill-climbing method, see gradient

method
hip-hop, 72, 230, 253, 282
Hornbostel, E. M. von, 57, 62
Hutchinson, A., 38
Huygens, C., 148, 153

iamb, 24
Ice Cube, 72, 230
identical clicks, see perception, identical

clicks
illusions

auditory, 9–14, 108
continuity, 6, 10
pitch, 11
visual, 10
why they happen, 12

image
filter, 46
synthesis, 45

indifference interval, 263
inference, 176
infinite loop, see loop, infinite
information retrieval, 18
In Memory of an Angel, 270, 275
inner melody, see beat, subjective
inner product, 111–113, 116, 129, 132
Inspective Latency, 226, 303
instantaneous harmonic templates, see

beat synchronous
Instant Nightmare, 244, 305
integrate-and-fire, see oscillator,

phase-reset
interference pattern, 33
internal clock, 88, 95
interonset interval, 194, 202, 292
interpolation, 157
intrinsic properties, 252
IOI, see interonset interval
irregular succession, 88

Jackendoff, R., 57
James Bond Theme, 219, 255, 257, 289,

306, 307
Jastrow, J., 263
Jay, S., 37
Jim and Janet, vii
Jit Jive, 213
Jobim, A. C., 63
Jones, M. J., 96
Jones, M. R., 30, 147
Joplin, S., 14, 21, 27, 281
juggling, 39
Julie’s Waltz, vii, 22, 216, 256, 266–268,

271, 273–275, 289, 296, 301
just noticeable difference, 81
Just Noise Rag, 232, 303

Kalman filter, 184, 209
Kant, I., 285
kinetographi, 39
King, A., 29
Kivy, P., 284
Kolen, J. F., 163, 206
Kramer, J. D., 17, 101, 226, 254, 256,

258
Krims, A., 72
Kronos Quartet, 217
KRS-One, 73
Krumhansl, C. L., 265, 285
Kuleshov, L., 253
Kunst, J., 70
Kyma, 49

Labanotation, 38
Langer, S., 17
Large, E. W., 163, 206
Laroche, J., 125
layering, 292
least squares, see objective, function
Leman, M., vii, 103
Lepper, I., vii
Lerdahl, F., 57
Levelt, W. J. M., 272
Ligeti, G., 102
Ligon, J., vii, 69
likelihood, 177, 180, 181, 183, 187,

190–192, 198, 217
linear

music, 254, 256–258, 286, 292
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oscillator, see oscillator, linear
literal notation, see notation, literal
Local Anomaly, 240, 282, 305
Locke, D., 61
log-likelihood, see likelihood
Longuet-Higgins, H. C., 195
loop

infinite, see infinite loop
properties, 252

loudness, 80, 92, 292
Luenberger, D. G., 134, 150

Maag, A., 39
Magic Leaf Rag, 22, 228, 256, 306
Make Believe Rag, 22, 239, 248, 282,

305
Make it Brief Rag, 22, 228, 256, 284,

306
MakeMicroMusic, vii
Malm, W. P., 67, 70
mambo, 62
Maple Leaf Rag, 21, 22, 295

n-tet, 237, 239, 305
5-tet, 238, 282, 304
accuracy of performance, 265
atonal, 233, 303
beat deletion, 256
beat filters, 228, 303
beat gating, 228
beat manipulation, 224, 302
beat tracking, 204, 205, 207, 217, 218,

221, 301, 302
collage, 259, 307
comparison of performances, 290
copyright, 283
cross-performance, 262, 307
delay modulation, 225
feature vectors, 300
harmonic template, 235, 304
identity, 281, 282, 284
image filtered, 46, 296
individual beats, 280, 307
instantaneous, 305
interonset interval, 202
linearity, 256, 257
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