
Getting Started with
Arduino, 1st Edition
By Massimo Banzi
.....................................
..........
Publisher: O'Reilly
Media, Inc.
Pub Date: October 23,
2008
Print ISBN-13:
978-0-596-15551-3
Pages: 128
Slots:
0.5

Table of Contents | Index | Errata

This valuable little book offers a thorough introduction to the open-source electronics prototyping
platform that's taking the design and hobbyist world by storm.
Getting Started with Arduino gives you lots of ideas for Arduino projects and helps you get going on
them right away. From getting organized to putting the final touches on your prototype, all the
information you need is right in the book. Inside, you'll learn about:

 Interaction design and physical computing

 The Arduino hardware and software development environment

 Basics of electricity and electronics

 Prototyping on a solderless breadboard

 Drawing a schematic diagram

And more. With inexpensive hardware and open-source software components that you can download
free, getting started with Arduino is a snap. To use the introductory examples in this book, all you need
is a USB Arduino, USB A-B cable, and an LED. Join the tens of thousands of hobbyists who have
discovered this incredible (and educational) platform. Written by the co-founder of the Arduino
project, with illustrations by Elisa Canducci,
Getting Started with Arduino gets you in on the fun! This 128-page book is a greatly expanded
follow-up to the author's original short PDF that's available on the Arduino website.

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreillynet.com/pub/au/3530?x-t=book.view
http://oreilly.com/catalog/9780596155513/errata/
http://www.processtext.com/abcchm.html

[Team Unknown]

Getting Started with
Arduino, 1st Edition
By Massimo Banzi
.....................................
..........
Publisher: O'Reilly
Media, Inc.
Pub Date: October 23,
2008
Print ISBN-13:
978-0-596-15551-3
Pages: 128
Slots:
0.5

Table of Contents | Index | Errata

Copyright
Preface
 Chapter 1. Introduction

Section 1.1. Intended Audience
Section 1.2. What Is Physical Computing?

 Chapter 2. The Arduino Way
Section 2.1. Prototyping
Section 2.2. Tinkering
Section 2.3. Patching
Section 2.4. Circuit Bending
Section 2.5. Keyboard Hacks
Section 2.6. We Love Junk!
Section 2.7. Hacking Toys
Section 2.8. Collaboration

 Chapter 3. The Arduino Platform
Section 3.1. The Arduino Hardware
Section 3.2. The Software (IDE)
Section 3.3. Installing Arduino on Your Computer
Section 3.4. Installing Drivers: Macintosh
Section 3.5. Installing Drivers: Windows
Section 3.6. Port Identification: Macintosh
Section 3.7. Port Identification: Windows

 Chapter 4. Really Getting Started with Arduino
Section 4.1. Anatomy of an Interactive Device
Section 4.2. Sensors and Actuators
Section 4.3. Blinking an LED
Section 4.4. Pass Me the Parmesan
Section 4.5. Arduino Is Not for Quitters
Section 4.6. Real Tinkerers Write Comments
Section 4.7. The Code, Step by Step
Section 4.8. What We Will Be Building

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreillynet.com/pub/au/3530?x-t=book.view
http://oreilly.com/catalog/9780596155513/errata/
http://www.processtext.com/abcchm.html

Section 4.9. What Is Electricity?
Section 4.10. Using a Pushbutton to Control the LED
Section 4.11. How Does This Work?
Section 4.12. One Circuit, A Thousand Behaviours

 Chapter 5. Advanced Input and Output
Section 5.1. Trying Out Other On/Off Sensors
Section 5.2. Controlling Light with PWM
Section 5.3. Use a Light Sensor Instead of the Pushbutton
Section 5.4. Analogue Input
Section 5.5. Try Other Analogue Sensors
Section 5.6. Serial Communication
Section 5.7. Driving Bigger Loads (Motors, Lamps, and the Like)
Section 5.8. Complex Sensors

 Chapter 6. Talking to the Cloud
Section 6.1. Digital Output
Section 6.2. Planning
Section 6.3. Coding
Section 6.4. Assembling the Circuit
Section 6.5. Here's How to Assemble It:

 Chapter 7. Troubleshooting
Section 7.1. Understanding
Section 7.2. Testing the Board
Section 7.3. Testing Your Breadboarded Circuit
Section 7.4. Isolating Problems
Section 7.5. Problems with the IDE
Section 7.6. How to Get Help Online

 Appendix A. The Breadboard
 Appendix B. Reading Resistors and Capacitors
 Appendix C. Arduino Quick Reference

Section C.1. STRUCTURE
Section C.2. SPECIAL SYMBOLS
Section C.3. CONSTANTS
Section C.4. VARIABLES
Section C.5. CONTROL STRUCTURES
Section C.6. ARITHMETIC AND FORMULAS
Section C.7. COMPARISON OPERATORS
Section C.8. BOOLEAN OPERATORS
Section C.9. COMPOUND OPERATORS
Section C.10. INPUT AND OUTPUT FUNCTIONS
Section C.11. TIME FUNCTIONS
Section C.12. MATH FUNCTIONS
Section C.13. RANDOM NUMBER FUNCTIONS
Section C.14. SERIAL COMMUNICATION

 Appendix D. Reading Schematic Diagrams
Index

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Copyright
Copyright © 2008, O'Reilly Media. All
rights reserved.
Published by O'Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol,
CA 95472.
O'Reilly books may be purchased for
educational, business, or sales promotional
use. For more information, contact our
corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com
.
The O'Reilly logo is a registered trademark
of O'Reilly Media, Inc. The Make:
Projects series designations and related
trade dress are trademarks of O'Reilly
Media, Inc. The trademarks of third
parties used in this work are the property
of their respective owners.
Important Message to Our Readers: Your
safety is your own responsibility, including
proper use of equipment and safety gear,
and determining whether you have
adequate skill and experience. Electricity
and other resources used for these
projects are dangerous unless used
properly and with adequate precautions,
including safety gear. Some illustrative
photos do not depict safety precautions or
equipment, in order to show the project
steps more clearly. These projects are not
intended for use by children.
Use of the instructions and suggestions in
Getting Started with Arduino is at your
own risk. O'Reilly Media, Inc. and the
author disclaim all responsibility for any
resulting damage, injury, or expense. It is
your responsibility to make sure that your
activities comply with applicable laws,

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:corporate@oreilly.com
http://www.processtext.com/abcchm.html

including copyright.

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Preface
A few years ago I was given a very
interesting challenge: teach designers the
bare minimum in electronics so that they
could build interactive prototypes of the
objects they were designing.
I started following a subconscious instinct
to teach electronics the same way I was
taught in school. Later on I realised that it
simply wasn't working as well as I would
like, and started to remember sitting in a
class, bored like hell, listening to all that
theory being thrown at me without any
practical application for it.
In reality, when I was in school I already
knew electronics in a very empirical way:
very little theory, but a lot of hands-on
experience.
I started thinking about the process by
which I really learned electronics:

 I took apart any electronic device I

could put my hands on.

 I slowly learned what all those

components were.

 I began to tinker with them,

changing some of the connections
inside of them and seeing what
happened to the device: usually
something between an explosion
and a puff of smoke.

 I started building some kits sold by

electronics magazines.

 I combined devices I had hacked,

and repurposed kits and other

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

circuits that I found in magazines to
make them do new things.

As a little kid, I was always fascinated by
discovering how things work; therefore, I
used to take them apart. This passion grew
as I targeted any unused object in the
house and then took it apart into small bits.
Eventually, people brought all sorts of
devices for me to dissect. My biggest
projects at the time were a dishwasher and
an early computer that came from an
insurance office, which had a huge printer,
electronics cards, magnetic card readers,
and many other parts that proved very
interesting and challenging to completely
take apart.
After quite a lot of this dissecting, I knew
what electronic components were and
roughly what they did. On top of that, my
house was full of old electronics magazines
that my father must have bought at the
beginning of the 1970s. I spent hours
reading the articles and looking at the
circuit diagrams without understanding very
much.
This process of reading the articles over
and over, with the benefit of knowledge
acquired while taking apart circuits,
created a slow virtuous circle.
A great breakthrough came one Christmas,
when my dad gave me a kit that allowed
teenagers to learn about electronics. Every
component was housed in a plastic cube
that would magnetically snap together with
other cubes, establishing a connection; the
electronic symbol was written on top. Little
did I know that the toy was also a
landmark of German design, because
Dieter Rams designed it back in the 1960s.
With this new tool, I could quickly put
together circuits and try them out to see
what happened. The prototyping cycle was
getting shorter and shorter.
After that, I built radios, amplifiers, circuits
that would produce horrible noises and
nice sounds, rain sensors, and tiny robots.
I've spent a long time looking for an
English word that would sum up that way
of working without a specific plan, starting
with one idea and ending up with a

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

completely unexpected result. Finally,
"tinkering" came along. I recognised how
this word has been used in many other
fields to describe a way of operating and
to portray people who set out on a path of
exploration. For example, the generation of
French directors who gave birth to the
"Nouvelle Vague" were called the
"tinkerers". The best definition of tinkering
that I've ever found comes from an
exhibition held at the Exploratorium in San
Francisco:
Tinkering is what happens when you try
something you don't quite know how to
do, guided by whim, imagination, and
curiosity. When you tinker, there are no
instructions—but there are also no failures,
no right or wrong ways of doing things. It's
about figuring out how things work and
reworking them.
Contraptions, machines, wildly mismatched
objects working in harmony—this is the
stuff of tinkering.
Tinkering is, at its most basic, a process
that marries play and inquiry.
—www.exploratorium.edu/tinkering
From my early experiments I knew how
much experience you would need in order
to be able to create a circuit that would do
what you wanted starting from the basic
components.
Another breakthrough came in the summer
of 1982, when I went to London with my
parents and spent many hours visiting the
Science Museum. They had just opened a
new wing dedicated to computers, and by
following a series of guided experiments, I
learned the basics of binary math and
programming.
There I realised that in many applications,
engineers were no longer building circuits
from basic components, but were instead
implementing a lot of the intelligence in their
products using microprocessors. Software
was replacing many hours of electronic
design, and would allow a shorter tinkering
cycle.
When I came back I started to save
money, because I wanted to buy a
computer and learn how to program.

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.exploratorium.edu/tinkering
http://www.processtext.com/abcchm.html

My first and most important project after
that was using my brand-new ZX81
computer to control a welding machine. I
know it doesn't sound like a very exciting
project, but there was a need for it and it
was a great challenge for me, because I
had just learned how to program. At this
point, it became clear that writing lines of
code would take less time than modifying
complex circuits.
Twenty-odd years later, I'd like to think
that this experience allows me to teach
people who don't even remember taking
any math class and to infuse them with the
same enthusiasm and ability to tinker that I
had in my youth and have kept ever since.
—Massimo

P.1. Acknowledgments
This book is dedicated to Luisa and
Alexandra.
First of all I want to thank my partners in
the Arduino Team: David Cuartielles,
David Mellis, Gianluca Martino, and Tom
Igoe. It is an amazing experience working
with you guys.
Barbara Ghella, she doesn't know but,
without her precious advice, Arduino and
this book might have never happened.
Bill Verplank for having taught me more
than Physical Computing.
Gillian Crampton-Smith for giving me a
chance and for all I have learned from her.
Hernando Barragan for the work he has
done on Wiring.
Brian Jepson for being a great editor and
enthusiastic supporter all along.
Nancy Kotary, Brian Scott, Terry
Bronson, and Patti Schiendelman for
turning what I wrote into a finished book.
I want to thank a lot more people but
Brian tells me I'm running out of space so
I'll just list a small number of people I have
to thank for many reasons:
Adam Somlai-Fisher, Ailadi Cortelletti,
Alberto Pezzotti, Alessandro Germinasi,
Alessandro Masserdotti, Andrea Piccolo,
Anna Capellini, Casey Reas, Chris
Anderson, Claudio Moderini, Clementina
Coppini, Concetta Capecchi, Csaba

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Waldhauser, Dario Buzzini, Dario
Molinari, Dario Parravicini, Donata
Piccolo, Edoardo Brambilla, Elisa
Canducci, Fabio Violante, Fabio Zanola,
Fabrizio Pignoloni, Flavio Mauri,
Francesca Mocellin, Francesco Monico,
Giorgio Olivero, Giovanna Gardi, Giovanni
Battistini, Heather Martin, Jennifer Bove,
Laura Dellamotta, Lorenzo Parravicini,
Luca Rocco, Marco Baioni, Marco
Eynard, Maria Teresa Longoni,
Massimiliano Bolondi, Matteo Rivolta,
Matthias Richter, Maurizio Pirola, Michael
Thorpe, Natalia Jordan, Ombretta Banzi,
Oreste Banzi, Oscar Zoggia, Pietro Dore,
Prof Salvioni, Raffaella Ferrara, Renzo
Giusti, Sandi Athanas, Sara Carpentieri,
Sigrid Wiederhecker, Stefano Mirti, Ubi
De Feo, Veronika Bucko.

P.2. How to Contact Us
We have verified the information in this
book to the best of our ability, but you
may find things that have changed (or even
that we made mistakes!). As a reader of
this book, you can help us to improve
future editions by sending us your
feedback. Please let us know about any
errors, inaccuracies, misleading or
confusing statements, and typos that you
find anywhere in this book.
Please also let us know what we can do to
make this book more useful to you. We
take your comments seriously and will try
to incorporate reasonable suggestions into
future editions.
You can write to us at:Maker Media1005
Gravenstein Highway NorthSebastopol,
CA 95472(800) 998-9938 (in the U.S. or
Canada)(707) 829-0515
(international/local)(707) 829-0104 (fax)
Maker Media is a division of O'Reilly
Media devoted entirely to the growing
community of resourceful people who
believe that if you can imagine it, you can
make it. Consisting of Make magazine,
Craft magazine, Maker Faire, as well as
the Hacks, Make:Projects, and DIY
Science book series, Maker Media
encourages the Do-It-Yourself mentality

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

by providing creative inspiration and
instruction.
For more information about Maker Media,
visit us online:

MAKE www.makezine.co
m

CRAFT: www.craftzine.com

Maker Faire: www.makerfaire.c
om

Hacks: www.hackszine.co
m

To comment on the book, send email to
bookquestions@oreilly.com.
The O'Reilly web site for Getting Started
with Arduino lists examples, errata, and
plans for future editions. You can find this
page at
www.makezine.com/getstartedarduino
.
For more information about this book and
others, see the O'Reilly web site:
www.oreilly.com
.
For more information about Arduino,
including discussion forums and further
documentation, see www.arduino.cc
.

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com
http://www.makezine.com
http://www.craftzine.com
http://www.makerfaire.com
http://www.makerfaire.com
http://www.hackszine.com
http://www.hackszine.com
mailto:bookquestions@oreilly.com.
http://www.makezine.com/getstartedarduino
http://www.oreilly.com
http://www.arduino.cc
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 1.
Introduction
Arduino is an open source physical
computing platform based on a simple
input/output (I/O) board and a
development environment that implements
the Processing language (
www.processing.org). Arduino can be
used to develop standalone interactive
objects or can be connected to software
on your computer (such as Flash,
Processing, VVVV, or Max/MSP). The
boards can be assembled by hand or
purchased preassembled; the open source
IDE (Integrated Development
Environment) can be downloaded for free
from www.arduino.cc
Arduino is different from other platforms
on the market because of these features:

 It is a multiplatform environment; it

can run on Windows, Macintosh,
and Linux.

 It is based on the Processing

programming IDE, an easy-to-use
development environment used by
artists and designers.

 You program it via a USB cable,

not a serial port. This feature is
useful, because many modern
computers don't have serial ports.

 It is open source hardware and

software—if you wish, you can
download the circuit diagram, buy
all the components, and make your

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processing.org
http://www.arduino.cc
http://www.processtext.com/abcchm.html

own, without paying anything to
the makers of Arduino.

 The hardware is cheap. The USB

board costs about €20 (currently,
about US$35) and replacing a
burnt-out chip on the board is easy
and costs no more than €5 or
US$4. So you can afford to make
mistakes.

 There is an active community of

users, so there are plenty of people
who can help you.

 The Arduino Project was

developed in an educational
environment and is therefore great
for newcomers to get things
working quickly.

This book is designed to help beginners
understand what benefits they can get from
learning how to use the Arduino platform
and adopting its philosophy.

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

1.1. Intended Audience
This book was written for the "original"
Arduino users: designers and artists.
Therefore, it tries to explain things in a way
that might drive some engineers crazy.
Actually, one of them called the
introductory chapters of my first draft
"fluff". That's precisely the point. Let's face
it: most engineers aren't able to explain
what they do to another engineer, let alone
a regular human being. Let's now delve
deep into the fluff.Note: Arduino builds
upon the thesis work Hernando Barragan
did on the Wiring platform while studying
under Casey Reas and me at IDII Ivrea.
After Arduino started to become popular,
I realised how experimenters, hobbyists,
and hackers of all sorts were starting to
use it to create beautiful and crazy objects.
I realised that you're all artists and
designers in your own right, so this book is
for you as well.
Arduino was born to teach
Interaction Design, a design discipline that
puts prototyping at the centre of its
methodology. There are many definitions
of Interaction Design, but the one that I
prefer is:

1.1.1. Interaction Design is the
design of any interactive
experience.
In today's world, Interaction Design is
concerned with the creation of meaningful
experiences between us (humans) and
objects. It is a good way to explore the
creation of beautiful—and maybe even
controversial—experiences between us
and technology. Interaction Design

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

encourages design through an iterative
process based on prototypes of
ever-increasing fidelity. This
approach—also part of some types of
"conventional" design—can be extended to
include prototyping with technology; in
particular, prototyping with electronics.
The specific field of Interaction Design
involved with Arduino is Physical
Computing (or Physical Interaction
Design).

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

1.2. What Is Physical
Computing?
Physical Computing uses electronics to
prototype new materials for designers and
artists.
It involves the design of interactive objects
that can communicate with humans using
sensors and actuators controlled by a
behaviour implemented as software running
inside a microcontroller (a small computer
on a single chip).
In the past, using electronics meant having
to deal with engineers all the time, and
building circuits one small component at
the time; these issues kept creative people
from playing around with the medium
directly. Most of the tools were meant for
engineers and required extensive
knowledge. In recent years,
microcontrollers have become cheaper and
easier to use, allowing the creation of
better tools.
The progress that we have made with
Arduino is to bring these tools one step
closer to the novice, allowing people to
start building stuff after only two or three
days of a workshop.
With Arduino, a designer or artist can get
to know the basics of electronics and
sensors very quickly and can start building
prototypes with very little investment.

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 2. The
Arduino Way
The Arduino
philosophy is based on making designs
rather than talking about them. It is a
constant search for faster and more
powerful ways to build better prototypes.
We have explored many prototyping
techniques and developed ways of thinking
with our hands.
Classic engineering relies on a strict
process for getting from A to B; the
Arduino Way delights in the possibility of
getting lost on the way and finding C
instead.
This is the tinkering process that we are so
fond of—playing with the medium in an
open-ended way and finding the
unexpected. In this search for ways to
build better prototypes, we also selected a
number of software packages that enable
the process of constant manipulation of the
software and hardware medium.
The next few sections present some
philosophies, events, and pioneers that
have inspired the Arduino Way.

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

2.1. Prototyping
Prototyping is at the heart of the Arduino
Way: we make things and build objects
that interact with other objects, people,
and networks. We strive to find a simpler
and faster way to prototype in the
cheapest possible way.
A lot of beginners approaching electronics
for the first time think that they have to
learn how to build everything from scratch.
This is a waste of energy: what you want is
to be able to confirm that something's
working very quickly so that you can
motivate yourself to take the next step or
maybe even motivate somebody else to
give you a lot of cash to do it.
This is why we developed "
opportunistic prototyping": why spend time
and energy building from scratch, a
process that requires time and in-depth
technical knowledge, when we can take
ready-made devices and hack them in
order to exploit the hard work done by
large companies and good engineers?
Our hero is James Dyson, who made 5127
prototypes of his vacuum cleaner before he
was satisfied that he'd gotten it right (
www.international.dyson.com/jd/1947.asp
).

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.international.dyson.com/jd/1947.asp
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering
Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st
Edition

2.2. Tinkering
We believe that it is essential to play with technology, exploring different possibilities directly on
hardware and software'sometimes without a very defined goal.
Reusing existing technology is one of the best ways of
tinkering. Getting cheap toys or old discarded equipment and hacking them to make them do
something new is one of the best ways to get to great results.

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering
Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino,
1st Edition

2.3. Patching
I have always been fascinated by modularity and the ability to build complex systems by connecting
together simple devices. This process is very well represented by Robert Moog and his analogue
synthesizers. Musicians constructed sounds, trying endless combinations by "
patching together" different modules with cables. This approach made the synthesizer look like an old
telephone switch, but combined with the numerous knobs, that was the perfect platform for tinkering
with sound and innovating music. Moog described it as a process between "witnessing and
discovering". I'm sure most musicians at first didn't know what all those hundreds of knobs did, but
they tried and tried, refining their own style with no interruptions in the flow.
Reducing the number of interruptions to the flow is very important for creativity—the more seamless
the process, the more tinkering happens.
This technique has been translated into the world of software by "visual programming" environments
like Max, Pure Data, or VVVV. These tools can be visualised as "boxes" for the different
functionalities that they provide, letting the user build "patches" by connecting these boxes together.
These environments let the user experiment with programming without the constant interruption
typical of the usual cycle: "type program, compile, damn—there is an error, fix error, compile, run". If
you are more visually minded, I recommend that you try them out.

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

2.4. Circuit Bending

Circuit bending is one of the most interesting forms of tinkering. It's the creative short-circuiting of low-voltage,
battery-powered electronic audio devices such as guitar effect pedals, children's toys, and small synthesizers to
create new musical instruments and sound generators. The heart of this process is the "art of chance". It began in
1966 when Reed
Ghazala, by chance, shorted-out a toy amplifier against a metal object in his desk drawer, resulting in a stream of
unusual sounds. What I like about circuit benders is their ability to create the wildest devices by tinkering away with
technology without necessarily understanding what they are doing on the theoretical side.

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

It's a bit like the Sniffin' Glue fanzine shown here: during the punk era, knowing three chords on a guitar was enough
to start a band. Don't let the experts in one field tell you that you'll never be one of them. Ignore them and surprise
them.

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT
Books Software Engineering Programming Hardware Massimo Banzi
O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

2.5. Keyboard Hacks

Computer keyboards are still the main way to interact with a computer after
more than 60 years. Alex Pentland, academic head of the MIT Media
Laboratory, once remarked: "Excuse the expression, but men's urinals are
smarter than computers. Computers are isolated from what's around them."
[1]

[1]

 Quoted in Sara Reese Hedberg, "MIT Media Lab's quest for
perceptive computers," Intelligent Systems and Their Applications,
IEEE, Jul/Aug 1998.

As tinkerers, we can implement new ways to interact with software by
replacing the keys with devices that are able to sense the environment.

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Taking apart a computer keyboard reveals a very simple (and cheap)
device. The heart of it is a small board. It's normally a smelly green or
brown circuit with two sets of contacts going to two plastic layers that hold
the connections between the different keys. If you remove the circuit and
use a wire to bridge two contacts, you'll see a letter appear on the computer
screen. If you go out and buy a motion-sensing detector and connect this to
your keyboard, you'll see a key being pressed every time somebody walks
in front of the computer. Map this to your favourite software, and you have
made your computer as smart as a urinal. Learning about
keyboard hacking is a key building block of prototyping and Physical
Computing.

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software
Engineering Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started
with Arduino, 1st Edition

2.6. We Love Junk!
People throw away a lot of technology these days: old printers, computers, weird office
machines, technical equipment, and even a lot of military stuff. There has always been a big
market for this surplus technology, especially among young and/or poorer hackers and those
who are just starting out. This market become evident in Ivrea, where we developed Arduino.
The city used to be the headquarters of the Olivetti company. They had been making computers
since the 1960s; in the mid 1990s, they threw everything away in junkyards in the area. These
are full of computer parts, electronic components, and weird devices of all kinds. We spent
countless hours there, buying all sorts of contraptions for very little money and hacking into our
prototypes. When you can buy a thousand loudspeakers for very little money, you're bound to
come up with some idea in the end. Accumulate
junk and go through it before starting to build something from scratch.

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

2.7. Hacking Toys
Toys are a fantastic source of cheap technology to hack and reuse, as evidenced by the practise of circuit bending
mentioned earlier. With the current influx of thousands of very cheap high-tech toys from China, you can build
quick ideas with a few noisy cats and a couple of light swords. I have been doing this for a few years to get my
students to understand that technology is not scary or difficult to approach. One of my favourite resources is the
booklet "Low Tech Sensors and Actuators" by Usman Haque and Adam Somlai-Fischer (
lowtech.propositions.org.uk
). I think that they have perfectly described this technique in that handbook, and I have been using it every since.

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://lowtech.propositions.org.uk
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

2.8. Collaboration
Collaboration between users is one of they
key principles in the Arduino
world—through the forum at
www.arduino.cc, people from different
parts of the world help each other learn
about the platform. The Arduino team
encourages people to collaborate at a local
level as well by helping them set up users'
groups in every city they visit. We also set
up a Wiki called "Playground" (
www.arduino.cc/playground
) where users document their findings. It's
so amazing to see how much knowledge
these people pour out on the Web for
everybody to use. This culture of sharing
and helping each other is one of the things
that I'm most proud of in regard to
Arduino.

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com
http://www.arduino.cc/playground
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 3. The
Arduino Platform
Arduino is composed of two major parts:
the Arduino board, which is the piece of
hardware you work on when you build
your objects; and the Arduino IDE, the
piece of software you run on your
computer. You use the IDE to create a
sketch (a little computer program) that you
upload to the Arduino board. The sketch
tells the board what to do.
Not too long ago, working on
hardware meant building circuits from
scratch, using hundreds of different
components with strange names like
resistor, capacitor, inductor, transistor, and
so on.
Every circuit was "wired" to do one
specific application, and making changes
required you to cut wires, solder
connections, and more.
With the appearance of digital technologies
and microprocessors, these functions,
which were once implemented with wires,
were replaced by software programs.
Software is easier to modify than
hardware. With a few keypresses, you can
radically change the logic of a device and
try two or three versions in the same
amount of time that it would take you to
solder a couple of resistors.

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering
Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st
Edition

3.1. The Arduino Hardware
The Arduino board is a small microcontroller board, which is a small circuit (the board) that contains a
whole computer on a small chip (the microcontroller). This computer is at least a thousand times less
powerful than the MacBook I'm using to write this, but it's a lot cheaper and very useful to build
interesting devices. Look at the Arduino board: you'll see a black chip with 28 "legs"—that chip is the
ATmega168, the heart of your board.
We (the Arduino team) have placed on this board all the components that are required for this
microcontroller to work properly and to communicate with your computer. There are many versions
of this board; the one we'll use throughout this book is the Arduino Duemilanove, which is the simplest
one to use and the best one for learning on. However, these instructions apply to earlier versions of
the board, including the more recent Arduino Diecimila and the older Arduino NG. Figure 3-1 shows
the Arduino Duemilanove; Figure 3-2
 shows the Arduino NG.
In those illustrations, you see the Arduino board. At first, all those connectors might be a little
confusing. Here is an explanation of what every element of the board does:

3.1.1. 14 Digital IO pins (pins 0–13)
These can be inputs or outputs, which is specified by the sketch you create in the IDE.

3.1.2. 6 Analogue In pins (pins 0–5)
These dedicated analogue input pins take analogue values (i.e., voltage readings from a sensor) and
convert them into a number between 0 and 1023.

3.1.3. 6 Analogue Out pins (pins 3, 5, 6, 9, 10, and 11)
These are actually six of the digital pins that can be reprogrammed for analogue output using the
sketch you create in the IDE.
The board can be
powered from your computer's USB port, most USB chargers, or an AC adapter (9 volts
recommended, 2.1mm barrel tip, center positive). If there is no power supply plugged into the power
socket, the power will come from the USB board, but as soon as you plug a power supply, the board
will automatically use it.Note: NOTE: If you are using the older Arduino-NG or Arduino Diecimila,
you will need to set the power selection jumper (labelled PWR_SEL on the board) to specify EXT (
external) or USB power. This jumper can be found between the plug for the AC adapter and the
USB port.

Figure 3-1. The Arduino Duemilanove

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Figure 3-2. The Arduino NG

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

3.2. The Software (IDE)
The IDE (Integrated Development
Environment) is a special program running
on your computer that allows you to write
sketches for the Arduino board in a simple
language modeled after the Processing (
www.processing.org) language. The magic
happens when you press the button that
uploads the sketch to the board: the code
that you have written is translated into the
C language (which is generally quite hard
for a beginner to use), and is passed to the
avr-gcc compiler, an important piece of
open source software that makes the final
translation into the language understood by
the microcontroller. This last step is quite
important, because it's where Arduino
makes your life simple by hiding away as
much as possible of the complexities of
programming microcontrollers.
The programming
cycle on Arduino is basically as follows:

 Plug your board into a USB port

on your computer.

 Write a sketch that will bring the

board to life.

 Upload this sketch to the board

through the USB connection and
wait a couple of seconds for the
board to restart.

 The board executes the sketch that

you wrote.
Note: NOTE: Installing Arduino on Linux
is somewhat complicated at the time of this
writing. See

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processing.org
http://www.processtext.com/abcchm.html

www.arduino.cc/playground/Learning/Linu
x for complete instructions.

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/playground/Learning/Linux
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

3.3. Installing Arduino
on Your Computer
To program the Arduino board, you must
first download the development
environment (the IDE) from here:
www.arduino.cc/en/Main/Software
. Choose the right version for your
operating system.
Download the file and double-click on it to
uncompress it; this will create a folder
named arduino-[version], such as
arduino-0012. Drag that folder to
wherever you would like it to be: your
desktop, your /Applications folder (on a
Mac), or your C:\Program Files folder (on
Windows). Now whenever you want to
run the Arduino IDE, you'll open up the
arduino folder, and double-click the
Arduino icon. Don't do this just yet,
though; there is one more step to perform.
Note: NOTE: If you have any trouble
running the Arduino IDE, see Chapter 7,
Troubleshooting.
Now you must install the drivers that allow
your computer to talk to your board
through the USB port.

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.arduino.cc/en/Main/Software
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

3.4. Installing Drivers:
Macintosh
Look for the Drivers folder inside the
arduino-0012 folder and double-click the
file called
FTDIUSBSerialDriver_x_x_x.dmg (x_x_x
will be replaced with the version number of
the driver, for example
FTDIUSBSerialDriver_v2_2_9_Intel.dmg
). Double-click the
.dmg file to mount it.Note: Note: If you
are using an Intel-based Mac, such as a
MacBook, MacBook Pro, MacBook Air,
Mac Pro, or Intel-based Mac Mini or
iMac, be sure to install the driver with
"Intel" in its name, as in
FTDIUSBSerialDriver_v2_2_9_Intel.dmg.
If you aren't using an Intel-based Mac,
install the one without "Intel" in its name.
Next, install the software from the
FTDIUSBSerialDriver package by
double-clicking on it. Follow the
instructions provided by the installer and
type the password of an administrative
user if asked. At the end of this process,
restart your machine to make sure that the
drivers are properly loaded. Now plug the
board into your computer. The PWR light
on the board should come on and the
yellow LED labelled "L" should start
blinking. If not, see Chapter 7
, Troubleshooting.

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

3.5. Installing Drivers:
Windows
Plug the Arduino board into the computer;
when the Found New Hardware Wizard
window comes up, Windows will first try
to find the driver on the Windows Update
site.
Windows XP will ask you whether to
check Windows Update; if you don't want
to use Windows Update, select the "No,
not at this time" option and click Next.
On the next screen, choose "Install from a
list or specific location" and click Next.
Check the box labeled "Include this
location in the search", click Browse,
select the folder where you installed
Arduino, and select the Drivers\FTDI USB
Drivers folder as the location. Click OK,
and Next.
Windows Vista will first attempt to find the
driver on Windows Update; if that fails,
you can instruct it to look in the
Drivers\FTDI USB Drivers folder.
You'll go through this procedure twice,
because the computer first installs the
low-level driver, then installs a piece of
code that makes the board look like a
serial port to the computer.
Once the drivers are installed, you can
launch the Arduino IDE and start using
Arduino.
Next, you must figure out which serial port
is assigned to your Arduino board—you'll
need that information to program it later.
The instructions for getting this information
are in the following sections.

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

3.6. Port Identification: Macintosh
From the Tools menu in the Arduino IDE, select "Serial Port" and select the port that begins with
/dev/cu.usbserial-; this is the name that your computer uses to refer to the Arduino board. Figure 3-3 shows the
list of
ports.

Figure 3-3. The Arduino IDE's list of serial ports

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software
Engineering Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting
Started with Arduino, 1st Edition

3.7. Port Identification: Windows
On Windows, the process is a bit more complicated–at least at the beginning. Open the
Device Manager by clicking the Start menu, right-clicking on Computer (Vista) or My
Computer (XP), and choosing Properties. On Windows XP, click Hardware and
choose Device Manager. On Vista, click Device Manager (it appears in the list of tasks
on the left of the window).
Look for the Arduino device in the list under "Ports (COM & LPT)". The Arduino will
appear as a USB Serial Port and will have a name like COM3, as shown in Figure 3-4
.

Figure 3-4. The Windows Device Manager showing all available serial ports

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note: Note: On some Windows machines, the COM port has a number greater than 9;
this numbering creates some problems when Arduino is trying to communicate with it.
See Chapter 7, Troubleshooting for help on this problem.
Once you've figured out the COM port assignment, you can select that port from the
Tools > Serial Port menu in the Arduino IDE.
Now the Arduino development environment can talk to the Arduino board and program
it.

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 4. Really
Getting Started
with Arduino
Now you'll learn how to build and program
an
interactive device.

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

4.1. Anatomy of an Interactive Device
All of the objects we will build using Arduino follow a very simple pattern that we call the "Interactive Device". The
Interactive Device is an electronic circuit that is able to sense the environment using sensors (electronic components
that convert real-world measurements into electrical signals). The device processes the information it gets from the
sensors with behaviour that's implemented as software. The device will then be able to interact with the world using
actuators, electronic components that can convert an electric signal into a physical action.

Figure 4-1. The interactive device

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.2. Sensors and
Actuators
Sensors and actuators are electronic
components that allow a piece of
electronics to interact with the world.
As the microcontroller is a very simple
computer, it can process only electric
signals (a bit like the electric pulses that are
sent between neurons in our brains). For it
to sense light, temperature, or other
physical quantities, it needs something that
can convert them into electricity. In our
body, for example, the eye converts light
into signals that get sent to the brain using
nerves. In electronics, we can use a simple
device called a
light-dependent resistor (an LDR or
photoresistor) that can measure the amount
of light that hits it and report it as a signal
that can be understood by the
microcontroller.
Once the sensors have been read, the
device has the information needed to
decide how to react. The decision-making
process is handled by the microcontroller,
and the reaction is performed by actuators.
In our bodies, for example, muscles
receive electric signals from the brain and
convert them into a movement. In the
electronic world, these functions could be
performed by a light or an electric motor.
In the following sections, you will learn
how to read sensors of different types and
control different kinds of actuators.

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software
Engineering Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting
Started with Arduino, 1st Edition

4.3. Blinking an LED
The LED blinking sketch is the first program that you should run to test whether your
Arduino board is working and is configured correctly. It is also usually the very first
programming exercise someone does when learning to program a microcontroller. A
light-emitting diode (LED) is a small electronic component that's a bit like a light bulb,
but is more efficient and requires lower voltages to operate.
Your Arduino board comes with an LED preinstalled. It's marked "L". You can also add
your own LED—connect it as shown in Figure 4-2
.
K indicates the cathode (negative), or shorter lead; A indicates the anode (positive), or
longer lead.
Once the LED is connected, you need to tell Arduino what to do. This is done through
code, that is, a list of instructions that we give the microcontroller to make it do what we
want.

Figure 4-2. Connecting an LED to Arduino

On your computer, go open the folder where you copied the Arduino IDE. Double-click
the Arduino icon to start it. Select File > New and you'll be asked to choose a sketch
folder name: this is where your Arduino sketch will be stored. Name it Blinking_LED

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

and click OK. Then, type the following text (Example 4-1) into the Arduino sketch
editor (the main window of the Arduino IDE). You can also download it from
www.makezine.com/getstartedarduino. It should appear as shown in Figure 4-3.

Example 4-1. Blinking LED
#define LED 13 // LED connected to

 // digital pin 13

void setup()

{

 pinMode(LED, OUTPUT); // sets the digital

 // pin as output

}

void loop()

{

 digitalWrite(LED, HIGH); // turns the LED on

 delay(1000); // waits for a second

 digitalWrite(LED, LOW); // turns the LED off

 delay(1000); // waits for a second

}

Figure 4-3. The Arduino IDE with your first sketch loaded

Now that the code is in your IDE, you need to verify that it is correct. Press the "Verify"
button (Figure 4-3 shows its location); if everything is correct, you'll see the message
"Done compiling" appear at the bottom of the Arduino IDE. This message means that the
Arduino IDE has translated your sketch into an executable program that can be run by
the board, a bit like an .exe file in Windows or an .app file on a Mac.
At this point, you can upload it into the board: press the Upload to I/O Board button

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

(see Figure 4-3
). This will reset the board, forcing it to stop what it's doing and listen for instructions
coming from the USB port. The Arduino IDE sends the current sketch to the board,
which will store it in its memory and eventually run it.
You will see a few messages appear in the black area at the bottom of the window, and
just above that area, you'll see the message "Done uploading" appear to let you know
the process has completed correctly. There are two
LEDs, marked RX and TX, on the board; these flash every time a byte is sent or
received by the board. During the upload process, they keep flickering.
If you don't see the LEDs flicker, or if you get an error message instead of "Done
uploading", then there is a communication problem between your computer and Arduino.
Make sure you've selected the right serial port (see Chapter 3
) in the Tools > Serial Port menu. Also, check the Tools > Board menu to confirm that
the correct model of Arduino is selected there.
If you are still having problems, check Chapter 7
, Troubleshooting.
Once the
code is in your Arduino board, it will stay there until you put another sketch on it. The
sketch will survive if the board is reset or turned off, a bit like the data on your
computer's hard drive.
Assuming that the sketch has been uploaded correctly, you will see the LED "L" turn on
for a second and then turn off for a second. If you installed a separate LED as shown
back in Figure 4-2
, that LED will blink, too. What you have just written and ran is a "computer program",
or sketch, as Arduino programs are called. Arduino, as I've mentioned before, is a small
computer, and it can be programmed to do what you want. This is done using a
programming language to type a series of instructions in the Arduino IDE, which turns it
into an executable for your Arduino board.
I'll next show you how to understand the sketch. First of all, the Arduino executes the
code from top to bottom, so the first line at the top is the first one read; then it moves
down, a bit like how the playhead of a video player like QuickTime Player or Windows
Media Player moves from left to right showing where in the movie you are.

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.4. Pass Me the
Parmesan
Notice the presence of curly brackets,
which are used to group together lines of
code. These are particularly useful when
you want to give a name to a group of
instructions. If you're at dinner and you ask
somebody, "Please pass me the Parmesan
cheese," this kicks off a series of actions
that are summarised by the small phrase
that you just said. As we're humans, it all
comes naturally, but all the individual tiny
actions required to do this must be spelled
out to the Arduino, because it's not as
powerful as our brain. So to group
together a number of instructions, you stick
a { before your code and an
} after.
You can see that there are two
blocks of code that are defined in this way
here. Before each one of them there is a
strange command:void setup()
This line gives a name to a block of code.
If you were to write a list of instructions
that teach Arduino how to pass the
Parmesan, you would write void
passTheParmesan() at the beginning of a
block, and this block would become an
instruction that you can call from anywhere
in the Arduino code. These blocks are
called functions. If after this, you write
passTheParmesan() anywhere in your
code, Arduino will execute those
instructions and continue where it left off.

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.5. Arduino Is Not for
Quitters
Arduino expects two functions to
exists—one called setup() and one called
loop().
setup() is where you put all the code that
you want to execute once at the beginning
of your program and loop() contains the
core of your program, which is executed
over and over again. This is done because
Arduino is not like your regular
computer—it cannot run multiple programs
at the same time and programs can't quit.
When you power up the board, the code
runs; when you want to stop, you just turn
it off.

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.6. Real Tinkerers
Write Comments
Any text beginning with // is ignored by
Arduino. These lines are comments, which
are notes that you leave in the program for
yourself, so that you can remember what
you did when you wrote it, or for
somebody else, so that they can
understand your code.
It is very common (I know this because I
do it all the time) to write a piece of code,
upload it onto the board, and say
"Okay—I'm never going to have to touch
this sucker again!" only to realise six
months later that you need to update the
code or fix a bug. At this point, you open
up the program, and if you haven't included
any
comments in the original program, you'll
think, "Wow—what a mess! Where do I
start?" As we move along, you'll see some
tricks for how to make your programs
more readable and easier to maintain.

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.7. The Code, Step by
Step
At first, you might consider this kind of
explanation to unnecessary, a bit like when
I was in school and I had to study Dante's
Divina Commedia (every Italian student
has to go through that, as well as another
book called I promessi sposi, or The
Betrothed—oh, the nightmares). For each
line of the poems, there were a hundred
lines of commentary! However, the
explanation will be much more useful here
as you move on to writing your own
programs.
 // Example 01 :Blinking LED

A comment is a useful way for us to write
little notes. The preceding title comment
just reminds us that this program, Example
4-1
, blinks an LED.#define LED 13 //
LED connected to

 // digital pin 13

#define is like an automatic search and
replace for your code; in this case, it's
telling Arduino to write the number 13
every time the word LED appears. The
replacement is the first thing done when
you click Verify or Upload to I/O Board
(you never see the results of the
replacement as it's done behind the
scenes). We are using this command to
specify that the LED we're blinking is
connected to the Arduino pin 13.
 voidsetup()

This line tells Arduino that the next block
of code will be called
setup().
{ With this opening curly bracket, a block
of code begins.pinMode(LED,

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

OUTPUT); // sets the digital

 // pin as

output

Finally, a really interesting instruction.
pinMode tells Arduino how to configure a
certain pin. Digital pins can be used either
as INPUT or OUTPUT. In this case, we
need an output pin to control our LED, so
we place the number of the pin and its
mode inside the parentheses. pinMode is a
function, and the words (or numbers)
specified inside the parentheses are
arguments. INPUT and OUTPUT are
constants in the Arduino language. (Like
variables, constants are assigned values,
except that constant values are predefined
and never change.)
} This closing curly bracket signifies the
end of the
setup() function.void loop()
{

loop() is where you specify the main
behaviour of your interactive device. It will
be repeated over and over again until you
switch the board off.digitalWrite(
LED, HIGH); // turns the LED

on

As the comment says, digitalWrite() is able
to turn on (or off) any pin that has been
configured as an OUTPUT. The first
argument (in this case, LED) specifies
which pin should be turned on or off
(remember that LED is a constant value
that refers to pin 13, so this is the pin that's
switched). The second argument can turn
the pin on (HIGH) or off (LOW).
Imagine that every output pin is a tiny
power socket, like the ones you have on
the walls of your apartment. European
ones are 230 V, American ones are 110
V, and Arduino works at a more modest 5
V. The magic here is when software
becomes hardware. When you write
digitalWrite(LED, HIGH), it turns the
output pin to 5 V, and if you connect an
LED, it will light up. So at this point in your
code, an instruction in software makes
something happen in the physical world by
controlling the flow of electricity to the pin.
Turning on and off the pin at will now let us
translate these into something more visible

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

for a human being; the LED is our
actuator.
delay(1000); // waits for

a second

Arduino has a very basic structure.
Therefore, if you want things to happen
with a certain regularity, you tell it to sit
quietly and do nothing until it is time to go
to the next step.
delay() basically makes the processor sit
there and do nothing for the amount of
milliseconds that you pass as an argument.
Milliseconds are thousands of seconds;
therefore, 1000 milliseconds equals 1
second. So the LED stays on for one
second here.digitalWrite(LED,
LOW); // turns the LED off

This instruction now turns off the LED that
we previously turned on. Why do we use
HIGH and LOW? Well, it's an old
convention in digital electronics. HIGH
means that the pin is on, and in the case of
Arduino, it will be set at 5 V. LOW means
0 V. You can also replace these arguments
mentally with ON and OFF.
delay(1000); // waits for a

second

Here, we delay for another second. The
LED will be off for one second.
} This closing curly bracket marks end of
the
loop function.
To sum up, this program does this:

 Turns pin 13 into an
 output (just once at the beginning)

 Enters a loop

 Switches on the LED connected to

pin 13

 Waits for a second

 Switches off the LED connected to

pin 13

 Waits for a second

 Goes back to beginning of the loop

I hope that wasn't too painful. You'll learn

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

more about how to program as you go
through the later examples.
Before we move on to the next section, I
want you to play with the code. For
example, reduce the amount of delay, using
different numbers for the on and off pulses
so that you can see different
blinking patterns. In particular, you should
see what happens when you make the
delays very small, but use different delays
for on and off … there is a moment when
something strange happens; this
"something" will be very useful when you
learn about pulse-width modulation later in
this book.

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.8. What We Will Be
Building
I have always been fascinated by light and
the ability to control different light sources
through technology. I have been lucky
enough to work on some interesting
projects that involve controlling light and
making it interact with people. Arduino is
really good at this. Throughout this book,
we will be working on how to design "
interactive lamps", using Arduino as a way
to learn the basics of how
interactive devices are built.
In the next section, I'll try to explain the
basics of electricity in a way that would
bore an engineer, but won't scare a new
Arduino programmer.

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

4.9. What Is Electricity?
If you have done any plumbing at home, electronics won't be a problem for you to understand. To understand how
electricity and electric circuits work, the best way is to use something called the "water analogy". Let's take a
simple device, like the battery-powered portable fan shown in Figure 4-4
.

Figure 4-4. A portable fan

If you take a fan apart, you will see that it contains a small battery, a couple of wires, and an electric motor, and
that one of the wires going to the motor is interrupted by a switch. If you have a fresh battery in it and turn the
switch on, the motor will start to spin, providing the necessary chill. How does this work? Well, imagine that the
battery is both a
water reservoir and a pump, the switch is a tap, and the motor is one of those wheels that you see in watermills.
When you open the tap, water flows from the pump and pushes the wheel into motion.
In this simple hydraulic system, shown in Figure 4-5
, two factors are important: the pressure of the water (this is determined by the power of pump) and the amount of
water that will flow in the pipes (this depends on the size of the pipes and the resistance that the wheel will provide
to the stream of water hitting it).

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Figure 4-5. A hydraulic system

You'll quickly realise that if you want the wheel to spin faster, you need to increase the size of the pipes (but this
works only up to a point) and increase the pressure that the pump can achieve. Increasing the size of the pipes
allows a greater flow of water to go through them; by making them bigger, we have effectively reduced the pipes'
resistance to the flow of water. This approach works up to a certain point, at which the wheel won't spin any faster,
because the pressure of the water is not strong enough. When we reach this point, we need the pump to be
stronger. This method of speeding up the watermill can go on until the point when the wheel falls apart because the
water flow is too strong for it and it is destroyed. Another thing you will notice is that as the wheel spins, the axle
will heat up a little bit, because no matter how well we have mounted the wheel, the friction between the axle and
the holes in which it is mounted in will generate heat. It is important to understand that in a system like this, not all
the energy you pump into the system will be converted into movement; some will be lost in a number of
inefficiencies and will generally show up as heat emanating from some parts of the system.
So what are the important parts of the system? The pressure produced by the pump is one; the resistance that the
pipes and wheel offer to the flow of water, and the actual flow of water (let's say that this is represented by the
number of litres of water that flow in one second) are the others.
Electricity works a bit like water. You have a kind of pump (any source of electricity, like a battery or a wall plug)
that pushes electric charges (imagine them as "drops" of electricity) down pipes, which are represented by the
wires—some devices are able to use these to produce heat (your grandma's thermal blanket), light (your bedroom
lamp), sound (your stereo), movement (your fan), and much more.
So when you read that a battery's voltage is 9 V, think of this voltage like the water pressure that can potentially be
produced by this little "pump". Voltage is measured in
volts, named after Alessandro Volta, the inventor of the first battery.
Just as water pressure has an electric equivalent, the flow rate of water does, too. This is called current, and is
measured in
amperes (after André-Marie Ampčre, electromagnetism pioneer). The relationship between voltage and current

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

can be illustrated by returning to the water wheel: a higher voltage (pressure) lets you spin a wheel faster; a higher
flow rate (current) lets you spin a larger wheel.
Finally, the resistance opposing the flow of current over any path that it travels is called—you guessed
it—resistance, and is measured in ohms (after the German physicist Georg Ohm). Herr Ohm was also responsible
for formulating the most important
law in electricity—and the only formula that you really need to remember. He was able to demonstrate that in a
circuit the voltage, the current, and the resistance are all related to each other, and in particular that the resistance of
a circuit determines the amount of current that will flow through it, given a certain voltage supply.
It's very intuitive, if you think about it. Take a 9 V battery and plug it into a simple circuit. While measuring current,
you will find that the more resistors you add to the circuit, the less current will travel through it. Going back to the
analogy of water flowing in pipes, given a certain pump, if I install a valve (which we can relate to a variable resistor
in electricity), the more I close the valve—increasing resistance to water flow—the less water will flow through the
pipes. Ohm summarised his
law in these formulae:R (resistance) = V (voltage) / I (current)
V = R * I

I = V / R

This is the only rule that you really have to memorise and learn to use, because in most of your work, this is the only
one that you will really need.

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

4.10. Using a Pushbutton to Control the LED
Blinking an LED was easy, but I don't think you would stay sane if your desk lamp were to continuously blink while
you were trying to read a book. Therefore, you need to learn how to control it. In our previous example, the LED
was our actuator, and our Arduino was controlling it. What is missing to complete the picture is a sensor.
In this case, we're going to use the simplest form of sensor available: a pushbutton.
If you were to take apart a pushbutton, you would see that it is a very simple device: two bits of metal kept apart by
a spring, and a plastic cap that when pressed brings the two bits of metal into contact. When the bits of metal are
apart, there is no circulation of current in the pushbutton (a bit like when a water valve is closed); when we press it,
we make a connection.
To monitor the state of a switch, there's a new Arduino instruction that you're going to learn: the digitalRead()
function.
digitalRead() checks to see whether there is any voltage applied to the pin that you specify between parentheses, and
returns a value of HIGH or LOW, depending on its findings. The other instructions that we've used so far haven't
returned any information—they just executed what we asked them to do. But that kind of function is a bit limited,
because it will force us to stick with very predictable sequences of instructions, with no input from the outside world.
With digitalRead(), we can "ask a question" of Arduino and receive an answer that can be stored in memory
somewhere and used to make decisions immediately or later.
Build the circuit shown in Figure 4-6. To build this, you'll need to obtain some parts (these will come in handy as you
work on other projects as well):

 Solderless breadboard: RadioShack (www.radioshack.com) part number 276–002, Maker Shed (

www.makershed.com) part number MKKN3. Appendix A is an introduction to the
 solderless breadboard.

 Pre-cut
 jumper wire kit: RadioShack 276–173, Maker Shed MKKN4

 One 10K Ohm resistor: RadioShack 271–1335 (5-pack), SparkFun (www.sparkfun.com
) COM-08374

 Momentary tactile pushbutton switch: SparkFun COM-00097

Figure 4-6. Hooking up a pushbutton

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.radioshack.com
http://www.makershed.com
http://www.sparkfun.com
http://www.processtext.com/abcchm.html

Note: instead of buying precut jumper wire, you can also buy 22 AWG solid-core hookup wire in small spools and
cut and strip it using wire cutters and wire strippers.
Let's have a look at the code that we'll be using to control the
LED with our pushbutton:

Example 4-2. Turn on LED while the button is pressed
#define LED 13 // the pin for the LED

#define BUTTON 7 // the input pin where the

 // pushbutton is connected

int val = 0; // val will be used to store the state

 // of the input pin

void setup() {

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 pinMode(LED, OUTPUT); // tell Arduino LED is an output

 pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop(){

 val = digitalRead(BUTTON); // read input value and store it

 // check whether the input is HIGH (button pressed)

 if (val == HIGH) {

 digitalWrite(LED, HIGH); // turn LED ON

 } else {

 digitalWrite(LED, LOW);

 }

}

In Arduino, select File > New (if you have another sketch open, you may want to save it first). When Arduino asks
you to name your new sketch folder, type PushButtonControl. Type the Example 4-2 code into Arduino (or
download it from www.makezine.com/getstartedarduino
 and paste it into the Arduino IDE). If everything is correct, the LED will light up when you press the button.

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.11. How Does This
Work?
I have introduced two new concepts with
this example program: functions that return
the result of their work and the
if statement.
The if statement is possibly the most
important instruction in a programming
language, because it allows the computer
(and remember, the Arduino is a small
computer) to make decisions. After the if
keyword, you have to write a "question"
inside parentheses, and if the "answer", or
result, is true, the first block of code will be
executed; otherwise, the block of code
after else will be executed. Notice that I
have used the == symbol instead of =. The
former is used when two entities are
compared, and returns TRUE or FALSE;
the latter assigns a value to a variable.
Make sure that you use the correct one,
because it is very easy to make that
mistake and use just =, in which case your
program will never work. I know, because
after 25 years of programming, I still make
that mistake.
Holding your finger on the button for as
long as you need light is not practical.
Although it would make you think about
how much energy you're wasting when you
walk away from a lamp that you left on,
we need to figure out how to make the on
button "stick".

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

4.12. One Circuit, A
Thousand Behaviours
The great advantage of digital,
programmable electronics over classic
electronics now becomes evident: I will
show you how to implement many different
"behaviours" using the same electronic
circuit as in the previous section, just by
changing the software.
As I've mentioned before, it's not very
practical to have to hold your finger on the
button to have the light on. We therefore
must implement some form of "memory", in
the form of a software mechanism that will
remember when we have pressed the
button and will keep the light on even after
we have released it.
To do this, we're going to use what is
called a
variable. (We have used one already, but I
haven't explained it.) A variable is a place
in the Arduino memory where you can
store data. Think of it like one of those
sticky notes you use to remind yourself
about something, such as a phone number:
you take one, you write "Luisa 02 555
1212" on it, and you stick it to your
computer monitor or your fridge. In the
Arduino language, it's equally simple: you
just decide what type of data you want to
store (a number or some text, for
example), give it a name, and when you
want to, you can store the data or retrieve
it. For example:int val = 0;
int means that your variable will store an
integer number, val is the name of the
variable, and =
0 assigns it an initial value of zero.
A variable, as the name intimates, can be

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modified anywhere in your code, so that
later on in your program, you could write:
 val = 112;

which reassigns a new
value, 112, to your variable.Note: Have
you noticed that in Arduino, every
instruction, with one exception (#define),
ends with a semicolon? This is done so that
the compiler (the part of Arduino that turns
your sketch into a program that the
microcontroller can run) knows that your
statement is finished and a new one is
beginning. Remember to use it all the time,
excluding any line that begins with #define.
The #defines are replaced by the compiler
before the code is translated into an
Arduino executable.
In the following program, val is used to
store the result of digitalRead(); whatever
Arduino gets from the input ends up in the
variable and will stay there until another
line of code changes it. Notice that
variables use a type of memory called
RAM. It is quite fast, but when you turn off
your board, all data stored in RAM is lost
(which means that each variable is reset to
its initial value when the board is powered
up again). Your programs themselves are
stored in flash memory—this is the same
type used by your mobile phone to store
phone numbers—which retains its content
even when the board is off.
Let's now use another variable to
remember whether the LED has to stay on
or off after we release the button. Example
4-3
 is a first attempt at achieving that:

Example 4-3. Turn on LED when the
button is pressed and keep it on after
it is released

#define LED 13 // the pin

for the LED

#define BUTTON 7 // the

input pin where the

 //

pushbutton is connected

int val = 0; // val

will be used to store the

state

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // of the

input pin

int state = 0; // 0 = LED

off while 1 = LED on

void setup() {

 pinMode(LED, OUTPUT);

// tell Arduino LED is an

output

 pinMode(BUTTON, INPUT);

// and BUTTON is an input

}

void loop() {

 val =

digitalRead(BUTTON); //

read input value and store

it

 // check if the input is

HIGH (button pressed)

 // and change the state

 if (val == HIGH) {

 state = 1 - state;

 }

 if (state == 1) {

 digitalWrite(LED,

HIGH); // turn LED ON

 } else {

 digitalWrite(LED, LOW);

 }

}

Now go test this code. You will notice that
it works … somewhat. You'll find that the
light changes so rapidly that you can't
reliably set it on or off with a button press.
Let's look at the interesting parts of the
code:
state is a variable that stores either 0 or 1
to remember whether the LED is on or off.
After the button is released, we initialise it
to 0 (LED off).
Later, we read the current state of the
button, and if it's pressed (val == HIGH),
we change state from 0 to 1, or vice versa.
We do this using a small trick, as state can
be only either 1 or 0. The trick I use
involves a small mathematical expression
based on the idea that 1 – 0 is 1 and 1 – 1
is 0:
state = 1 - state;

The line may not make much sense in
mathematics, but it does in programming.
The symbol = means "assign the result of

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

what's after me to the variable name before
me"—in this case, the new value of state is
assigned the
value of 1 minus the old value of state.
Later in the program, you can see that we
use state to figure out whether the
LED has to be on or off. As I mentioned,
this leads to somewhat flaky results.
The results are flaky because of the way
we read the button. Arduino is really fast; it
executes its own internal instructions at a
rate of 16 million per second—it could
well be executing a few million lines of
code per second. So this means that while
your finger is pressing the button, Arduino
might be reading the button's position a
few thousand times and changing
state accordingly. So the results end up
being unpredictable; it might be off when
you wanted it on, or vice versa. As even a
broken clock is right twice a day, the
program might show the correct behaviour
every once in a while, but much of the time
it will be wrong.
How do we fix this? Well, we need to
detect the exact moment when the button
is pressed—that is the only moment that
we have to change state. The way I like to
do it is to store the value of
val before I read a new one; this allows me
to compare the current position of the
button with the previous one and change
state only when the button becomes HIGH
after being LOW.
Example 4-4 contains the code to do so:

Example 4-4. Turn on LED when the
button is pressed and keep it on after
it is released Now with a new and
improved formula!

#define LED 13 // the

pin for the LED

#define BUTTON 7 // the

input pin where the

 //

pushbutton is connected

int val = 0; // val

will be used to store the

state

 // of the

input pin

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

int old_val = 0; // this

variable stores the

previous

 // value

of "val"

int state = 0; // 0 =

LED off and 1 = LED on

void setup() {

 pinMode(LED, OUTPUT);

// tell Arduino LED is an

output

 pinMode(BUTTON, INPUT);

// and BUTTON is an input

}

void loop(){

 val =

digitalRead(BUTTON); //

read input value and store

it

// yum, fresh

 // check if there was a

transition

 if ((val == HIGH) &&

(old_val == LOW)){

 state = 1 - state;

 }

 old_val = val; // val is

now old, let's store it

 if (state == 1) {

 digitalWrite(LED,

HIGH); // turn LED ON

 } else {

 digitalWrite(LED, LOW);

 }

}

Test it: we're almost there!
You may have noticed that this approach is
not entirely perfect, due to another issue
with mechanical switches. Pushbuttons are
very simple devices: two bits of metal kept
apart by a spring. When you press the
button, the two contacts come together
and electricity can flow. This sounds fine
and simple, but in real life the connection is
not that perfect, especially when the button
is not completely pressed, and it generates
some spurious signals called
bouncing.
When the pushbutton is bouncing, the
Arduino sees a very rapid sequence of on

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

and off signals. There are many techniques
developed to do de-
bouncing, but in this simple piece of code
I've noticed that it's usually enough to add
a 10- to 50-millisecond delay when the
code detects a transition.
Example 4-5 is the final code:

Example 4-5. Turn on LED when the
button is pressed and keep it on after
it is released including simple
de-bouncing Now with another new and
improved formula!!
#define LED 13 // the

pin for the LED

#define BUTTON 7 // the

input pin where the

 //

pushbutton is connected

int val = 0; // val

will be used to store the

state

 // of the

input pin

int old_val = 0; // this

variable stores the

previous

 // value

of "val"

int state = 0; // 0 =

LED off and 1 = LED on

void setup() {

 pinMode(LED, OUTPUT);

// tell Arduino LED is an

output

 pinMode(BUTTON, INPUT);

// and BUTTON is an input

}

void loop(){

 val =

digitalRead(BUTTON); //

read input value and store

it

 // yum, fresh

 // check if there was a

transition

 if ((val == HIGH) &&

(old_val == LOW)){

 state = 1 - state;

 delay(10);

 }

 old_val = val; // val is

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

now old, let's store it

 if (state == 1) {

 digitalWrite(LED,

HIGH); // turn LED ON

 } else {

 digitalWrite(LED, LOW);

 }

}

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 5.
Advanced Input
and Output
What you have just learned in Chapter 4
 are the most elementary operations we
can do in Arduino: controlling digital output
and reading digital input. If Arduino were
some sort of human language, those would
be two letters of its alphabet. Considering
that there are just five letters in this
alphabet, you can see how much more
work we have to do before we can write
Arduino poetry.

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari
IT Books Software Engineering Programming Hardware Massimo
Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st
Edition

5.1. Trying Out Other On/Off Sensors
Now that you've learned how to use a pushbutton, you should
know that there are many other very basic sensors that work
according to the same principle:

5.1.1. Switches
Just like a pushbutton, but doesn't automatically change state when
released

5.1.2. Thermostats
A switch that opens when the temperature reaches a set value

5.1.3. Magnetic switches (also known as "reed
relays")
Has two contacts that come together when they are near a magnet;
used by burglar alarms to detect when a window is opened

5.1.4. Carpet switches
Small mats that you can place under a carpet or a doormat to
detect the presence of a human being (or heavy cat)

5.1.5. Tilt switches
A simple electronic component that contains two contacts and a
little metal ball (or a drop of mercury, but I don't recommend using
those) An example of a tilt switch is called a tilt sensor. Figure 5-1
 shows the inside of a typical model. When the sensor is in its
upright position, the ball bridges the two contacts, and this works
just as if you had pressed a pushbutton. When you tilt this sensor,
the ball moves, and the contact is opened, which is just as if you
had released a pushbutton. Using this simple component, you can
implement, for example, gestural interfaces that react when an
object is moved or shaken.

Figure 5-1. The inside of a tilt sensor

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Another sensor that you might want to try is the infrared sensor as
found in burglar alarms (also known as a passive infrared or PIR
sensor; see Figure 5-2
). This small device triggers when a human being (or other living
being) moves within its proximity. It's a simple way to detect
motion.

Figure 5-2. Typical PIR sensor

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

You should now experiment by looking at all the possible devices
that have two contacts that close, like the thermostat that sets a
room's temperature (use an old one that's no longer connected), or
just placing two contacts next to each other and dropping water
onto them.
For example, by using the final example from Chapter 4 and a PIR
sensor, you could make your lamp respond to the presence of
human beings, or you could use a tilt switch to build one that turns
off when it's
tilted on one side.

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software
Engineering Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting
Started with Arduino, 1st Edition

5.2. Controlling Light with PWM
With the knowledge that you have so far gained, you could build an interactive lamp that can
be controlled—and not just with a boring on/off switch, but maybe in a way that's a bit more
elegant. One of the limitations of the blinking LED examples that we have used so far is that
you can turn the light only on and off. A fancy interactive lamp needs to be dimmable. To
solve this problem, we can use a little trick that makes a lot of things such as TV or cinema
possible: persistence of vision.
As I hinted after the first example in Chapter 4, if you change the numbers in the delay function
until you don't see the LED blinking any more, you will notice that the LED seems to be
dimmed at 50% of its normal brightness. Now change the numbers so that the LED is on is
one quarter of the time that it's off. Run the sketch and you'll see that the brightness is roughly
25%. This technique is called pulse width modulation (PWM), a fancy way of saying that if
you blink the LED fast enough, you don't see it blink any more, but you can change its
brightness by changing the ratio between the on time and the off time. Figure 5-3
 shows how this works.
This technique also works with devices other than an LED. For example, you can change the
speed of a motor in the same way.
While experimenting, you will see that blinking the LED by putting delays in your code is a bit
inconvenient, because as soon as you want to read a sensor or send data on the serial port,
the LED will flicker while it's waiting for you to finish reading the sensor. Luckily, the
processor used by the Arduino board has a piece of hardware that can very efficiently blink
three LEDs while your sketch does something else. This hardware is implemented in pins 9,
10, and 11, which can be controlled by the analogWrite() instruction.

Figure 5-3. PWM in action

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

For example, writing analogWrite(9,128) will set the brightness of an LED connected to pin 9
to 50%. Why 128? analogWrite() expects a number between 0 and 255 as an argument,
where 255 means full brightness and 0 means off.
Note: Having three channels is very good, because if you buy red, green, and blue LEDs, you
can mix their lights and make light of any colour that you like!
Let's try it out. Build the circuit that you see in Figure 5-4
. Note that LEDs are polarized: the long pin (positive) should go to the right, and the short pin
(negative) to the left. Also, most LEDs have a flattened negative side, as shown in the figure.

Figure 5-4. LED connected to PWM pin

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Then, create a new sketch in Arduino and use Example 5-1 (you can also download code
examples from www.makezine.com/getstartedarduino:

Example 5-1. Fade an LED in and out like on a sleeping Apple computer

#define LED 9 // the pin for the LED

int i = 0; // We'll use this to count up and down

void setup() {

 pinMode(LED, OUTPUT); // tell Arduino LED is an output

}

void loop(){

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

 for (i = 0; i < 255; i++) { // loop from 0 to 254 (fade in)

 analogWrite(LED, i); // set the LED brightness

 delay(10); // Wait 10ms because analogWrite

 // is instantaneous and we would

 // not see any change

 }

 for (i = 255; i > 0; i--) { // loop from 255 to 1 (fade

out)

 analogWrite(LED, i); // set the LED brightness

 delay(10); // Wait 10ms

 }

}

Now you have a replicated a fancy feature
of a laptop computer (maybe it's a bit of a waste to use Arduino for something so simple).
Let's the use this knowledge to improve our lamp.
Add the circuit we used to read a button (back in Chapter 4
) to this breadboard. See if you can do this without looking at the next page, because I want
you to start thinking about the fact that each elementary circuit I show here is a "building
block" to make bigger and bigger projects. If you need to peek ahead, don't worry; the most
important thing is that you spend some time thinking about how it might look.
To create this circuit, you will need to combine the circuit you just built (shown in Figure 5-4)
with the pushbutton circuit shown in Figure 4-6. If you'd like, you can simply build both
circuits on different parts of the breadboard; you have plenty of room. However, one of the
advantages of the breadboard (see Appendix A) is that there is a pair of rails running
horizontally across the bottom and top. One is marked red (for positive) and the other blue or
black (for
ground).
These rails are used to distribute power and ground to where it's needed. In the case of the
circuit you need to build for this example, you have two components (both of them resistors)
that need to be connected to the GND (ground) pin on the Arduino. Because the Arduino has
two GND pins, you could simply connect these two circuits exactly as shown in each of the
two figures; just hook them both up to the Arduino at the same time. Or, you could connect
one wire from the breadboard's ground rail to one of the
GND pins on the Arduino, and then take the wires that are connected to GND in the figures
and connect them instead to the breadboard ground rail.
If you're not ready to try this, don't worry: simply wire up both circuits to your Arduino as
shown in Figures Figure 4-6 and Figure 5-4. You'll see an example that uses the ground and
positive breadboard rails in Chapter 6
.
Getting back to this next example, if we have just one pushbutton, how do we control the
brightness of a lamp? We're going to learn yet another interaction design technique: detecting
how long a button has been pressed. To do this, I need to upgrade Example 4-5 from
Chapter 4
 to add dimming. The idea is to build an "interface" in which a press and release action
switches the light on and off, and a press and hold action changes brightness.
Let's have a look at the sketch:

Example 5-2. Turn on LED when the button is pressed and keep it on after it is
released including simple de-bouncing. If the button is held, brightness changes.

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

#define LED 9 // the pin for the LED

#define BUTTON 7 // input pin of the pushbutton

int val = 0; // stores the state of the input pin

int old_val = 0; // stores the previous value of "val"

int state = 0; // 0 = LED off while 1 = LED on

int brightness = 128; // Stores the brightness value

unsigned long startTime = 0; // when did we begin pressing?

void setup() {

 pinMode(LED, OUTPUT); // tell Arduino LED is an output

 pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop() {

 val = digitalRead(BUTTON); // read input value and store it

 // yum, fresh

 // check if there was a transition

 if ((val == HIGH) && (old_val == LOW)) {

 state = 1 - state; // change the state from off to on

 // or vice-versa

 startTime = millis(); // millis() is the Arduino clock

 // it returns how many milliseconds

 // have passed since the board has

 // been reset.

 // (this line remembers when the button

 // was last pressed)

 delay(10);

}

// check whether the button is being held down

 if ((val == HIGH) && (old_val == HIGH)) {

 // If the button is held for more than 500ms.

 if (state == 1 && (millis() - startTime) > 500) {

 brightness++; // increment brightness by 1

 delay(10); // delay to avoid brightness going

 // up too fast

 if (brightness > 255) { // 255 is the max brightness

 brightness = 0; // if we go over 255

 // let's go back to 0

 }

 }

 }

 old_val = val; // val is now old, let's store it

 if (state == 1) {

 analogWrite(LED, brightness); // turn LED ON at the

 // current brightness level

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 } else {

 analogWrite(LED, 0); // turn LED OFF

 }

}

Now try it out. As you can see, our interaction model is taking shape. If you press the button
and release it immediately, you switch the lamp on or off. If you hold the button down, the
brightness changes; just let go when you have reached the desired brightness.
Now let's learn how to use some more interesting sensors.

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books Software
Engineering Programming Hardware
Massimo Banzi O'Reilly Media, Inc. Make
Getting Started with Arduino, 1st Edition

5.3. Use a Light Sensor
Instead of the Pushbutton
Now we're going to try an interesting
experiment. Take a light sensor, like the one
pictured in Figure 5-5. You can get a
five-pack of these from RadioShack (part
number 276–1657).

Figure 5-5. Light-dependent resistor
(LDR)

In darkness, the resistance of a
light-dependent resistor (LDR) is quite high.
When you shine some light at it, the resistance
quickly drops and it becomes a reasonably
good conductor of electricity. It is thus a kind
of light-activated switch.
Build the circuit that came with Example 4-2
(see "Using a Pushbutton to Control the
LED" in Chapter 4), then upload the code
from Example 4-2
 to your Arduino.

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Now plug the LDR onto the breadboard
instead of the pushbutton. You will notice that
if you cover the LDR with your hands, the
LED turns off. Uncover the LDR, and the
light goes on. You've just built your first real
sensor-driven LED. This is important because
for the first time in this book, we are using an
electronic component that is not a simple
mechanical device: it's a real rich sensor.

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

5.4. Analogue Input
As you learned in the previous section, Arduino is able to detect whether there is a voltage applied to one of its
pins and report it through the digitalRead() function. This kind of either/or response is fine in a lot of applications,
but the light sensor that we just used is able to tell us not just whether there is light, but also how much light there
is. This is the difference between an on/off sensor (which tells us whether something is there) and an analogue
sensor, whose value continuously changes. In order to read this type of sensor, we need a different type of pin.
In the lower-right part of the Arduino board, you'll see six pins marked "Analog In"; these are special pins that can
tell us not only whether there is a voltage applied to them, but if so, also its value. By using the analogRead()
function, we can read the voltage applied to one of the pins. This function returns a number between 0 and 1023,
which represents voltages between 0 and 5 volts. For example, if there is a voltage of 2.5 V applied to pin
number 0, analogRead(0) returns 512.
If you now build the circuit that you see in Figure 5-6, using a 10k resistor, and run the code listed in Example 5-3
, you'll see the onboard LED (you could also insert your own LED into pins 13 and GND as shown in "Blinking
an LED" in Chapter 4
) blinking at a rate that's dependent upon the amount of light that hits the sensor.

Figure 5-6. An analogue sensor circuit

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example 5-3. Blink LED at a rate specified by the value of the analogue input

#define LED 13 // the pin for the LED

int val = 0; // variable used to store the value

 // coming from the sensor

void setup() {

 pinMode(LED, OUTPUT); // LED is as an OUTPUT

 // Note: Analogue pins are

 // automatically set as inputs

}

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

void loop() {

 val = analogRead(0); // read the value from

 // the sensor

 digitalWrite(13, HIGH); // turn the LED on

 delay(val); // stop the program for

 // some time

 digitalWrite(13, LOW); // turn the LED off

 delay(val); // stop the program for

 // some time

}

Now, try Example 5-4: but before you do, you'll need to modify your circuit. Take a look at Figure 5-4 again and
hook the LED up to pin 9 as shown. Because you've already got some stuff on the breadboard, you'll need to find
a spot on the breadboard where the LED, wires, and resistor won't overlap with the LDR circuit.

Example 5-4. Set the brightness of LED to a brightness specified by the value of the analogue input
#define LED 9 // the pin for the LED

int val = 0; // variable used to store the value

 // coming from the sensor

void setup() {

 pinMode(LED, OUTPUT); // LED is as an OUTPUT

 // Note: Analogue pins are

 // automatically set as inputs

}

void loop() {

 val = analogRead(0); // read the value from

 // the sensor

 analogWrite(LED, val/4); // turn the LED on at

 // the brightness set

 // by the sensor

 delay(10); // stop the program for

 // some time

}

Note: we specify the brightness by dividing val by 4, because analogRead() returns a number up to 1023, and
analogWrite() accepts a maximum of 255.

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

5.5. Try Other Analogue
Sensors
Using the same circuit that you have seen
in the previous section, you can connect a
lot of other resistive sensors that work in
more or less the same way. For example,
you could connect a thermistor, which is a
simple device whose resistance changes
with temperature. In the circuit, I have
shown you how changes in resistance
become changes in voltage that can be
measured by Arduino.
If you do work with a thermistor, be aware
that there isn't a direct connection between
the value you read and the actual
temperature measured. If you need an
exact reading, you should read the
numbers that come out of the
analogue pin while measuring with a real
thermometer. You could put these
numbers side by side in a table and work
out a way to calibrate the analogue results
to real-world temperatures.
Until now, we have just used an LED as an
output device, but how do we read the
actual values that Arduino is reading from
the sensor? We can't make the board blink
the values in Morse code (well, we could,
but there is an easier way for humans to
read the values). For this, we can have
Arduino talk to a computer over a
serial port, which is described in the next
section.

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

5.6. Serial
Communication
You learned at the beginning of this book
that Arduino has a USB connection that is
used by the IDE to upload code into the
processor. The good news is that this
connection can also be used by the
sketches that we write in Arduino to send
data back to the computer or to receive
commands from it. For this purpose, we
are going to use a serial object (an object
is a collection of capabilities that are
bundled together for the convenience of
people writing sketches).
This object contains all the code that we
need to send and receive data. We're now
going to use the last circuit we built with
the photoresistor and send the values that
are read back to the computer. Type this
code into a new sketch (you can also
download the code from
www.makezine.com/getstartedarduino
):

Example 5-5. Send to the computer the
values read from analogue input 0
Make sure you click on "Serial
Monitor" after you upload
#define SENSOR 0 // select

the input pin for the

 // sensor

resistor

int val = 0; // variable to

store the value coming

 // from the

sensor

void setup() {

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

 Serial.begin(9600); //

open the serial port to

send

 //

data back to the computer

at

 //

9600 bits per second

}

void loop() {

 val = analogRead(SENSOR);

// read the value from

// the sensor

 Serial.println(val); //

print the value to

 //

the serial port

 delay(100); // wait 100ms

between

 // each send

}

After you've uploaded the code to your
Arduino, press the "Serial Monitor" button
on the Arduino IDE (the rightmost button
in the toolbar); you'll see the numbers
rolling past in the bottom part of the
window. Now, any software that can read
from the serial port can talk to Arduino.
There are many programming languages
that let you write programs on your
computer that can talk to the serial port.
Processing (www.processing.org) is a
great complement to Arduino, because the
languages and IDEs are so similar.

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processing.org
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

5.7. Driving Bigger
Loads (Motors, Lamps,
and the Like)
Each one of the pins on an Arduino board
can be used to power devices that use up
to 20 milliamps: this is a very small amount
of current, just enough to drive an LED. If
you try to drive something like a motor, the
pin will immediately stop working, and
could potentially burn out the whole
processor. To drive bigger loads like
motors or incandescent lamps, we need to
use an external component that can switch
such things on and off and that is driven by
an Arduino pin. One such device is called
a MOSFET transistor—ignore the funny
name—it's an electronic switch that can be
driven by applying a voltage to one of its
three pins, each of which is called a
gate. It is something like the light switch
that we use at home, where the action of a
finger turning the light on and off is
replaced by a pin on the Arduino board
sending voltage to the gate of the
MOSFET.Note: MOSFET means
"metal–oxide–semiconductor field-effect
transistor." It's a special type of transistor
that operates based on the field-effect
principle. This means that electricity will
flow though a piece of semiconductor
material (between the Drain and Source
pins) when a voltage is applied to the Gate
pin. As the Gate is insulated from the rest
through a layer of metal oxide, there is no
current flowing from Arduino into the
MOSFET, making it very simple to
interface. They are ideal for switching on
and off large loads at high frequencies.

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In Figure 5-7, you can see how you would
use a MOSFET like the IRF520 to turn on
and off a small motor attached to a fan.
You will also notice that the motor takes its
power supply from the 9 V connector on
the Arduino board. This is another benefit
of the MOSFET: it allows us to drive
devices whose power supply differs from
the one used by Arduino. As the
MOSFET is connected to pin 9, we can
also use
analogWrite() to control the speed of the
motor through PWM.

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

5.8. Complex Sensors
We define complex sensors as those that produce a type of information that requires a bit more than a digitalRead()
or an analogRead() function to be used. These usually are small circuits with a small microcontroller inside that
preprocesses the information.
Some of the complex sensors available include ultrasonic rangers, infrared rangers, and accelerometer. You can find
examples on how to use them on our website in the "Tutorials" section (www.arduino.cc/en/Tutorial/HomePage
).
Tom Igoe's
Making Things Talk (O'Reilly) has extensive coverage of these sensors and many other complex sensors.

Figure 5-7. A motor circuit for Arduino

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.arduino.cc/en/Tutorial/HomePage
http://www.processtext.com/abcchm.html

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 6.
Talking to the
Cloud
In the preceding chapters, you learned the
basics of Arduino and the fundamental
building blocks available to you. Let me
remind you what makes up the "Arduino
Alphabet":

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books
Software Engineering Programming Hardware Massimo Banzi O'Reilly Media, Inc.
Make Getting Started with Arduino, 1st Edition

6.1. Digital Output

6.1.1. Digital Output
We used it to control an LED but, with the proper circuit, it can be used to control
motors, make sounds, and a lot more.

6.1.2. Analog Output
This gives us the ability to control the brightness of the LED, not just turn it on or off.
We can even control the speed of a motor with it.

6.1.3. Digital Input
This allows us to read the state of simple sensors, like pushbuttons or tilt switches.

6.1.4. Analog Input
We can read signals from sensors that send a continuous signal that's not just on or
off, such as a potentiometer or a light sensor.

6.1.5. Serial Communication
This allows us to communicate with a computer and exchange data or simply monitor
what's going on with the sketch that's running on the Arduino.
In this chapter, we're going to see how to put together a working application using
what you have learned in the previous chapters. This chapter should show you how
every single example can be used as a building block for a complex project.
Here is where the wannabe designer in me comes out. We're going to make the
twenty-first-century version of a classic lamp by my favourite Italian designer, Joe
Colombo. The object we're going to build is inspired by a lamp called "Aton" from
1964.

Figure 6-1. The finished lamp

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The lamp, as you can see in Figure 6-1, is a simple sphere sitting on a base with a
large hole to keep the
sphere from rolling off your desk. This design allows you to orient the lamp in
different directions.
In terms of functionality, we want to build a device that would connect to the
Internet, fetch the current list of articles on the Make blog (blog.makezine.com
) and count how many times the words "peace", "love", and "Arduino" are
mentioned. With these values, we're going to generate a colour and display it on the
lamp. The lamp itself has a button we can use to turn it on and off, and a light sensor
for automatic activation.

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://blog.makezine.com
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

6.2. Planning
Let's look at what we want to achieve and
what bits and pieces we need. First of all,
we need Arduino to be able to connect to
the Internet. As the Arduino board has
only a USB port, we can't plug it directly
into an Internet connection, so we need to
figure out how to bridge the two. Usually
what people do is run an application on a
computer that will connect to the Internet,
process the data, and send Arduino some
simple bit of distilled information.
Arduino is a simple computer with a small
memory; it can't process large files easily,
and when we connect to an RSS feed we'll
get a very verbose XML file that would
require a lot more RAM. We'll implement
a proxy to simplify the XML using the
Processing language.

Processing
Processing is where Arduino came
from. We love this language and
use it to teach programming to
beginners as well as to build
beautiful code. Processing and
Arduino are the perfect
combination. Another advantage is
that Processing is open source and
runs on all the major platforms
(Mac, Linux, and Windows). It
can also generate standalone
applications that run on those
platforms. What's more, the
Processing community is lively and
helpful, and you can find thousands
of premade example programs.

The proxy does the following work for us:
it downloads the RSS feed from
makezine.com

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://makezine.com
http://www.processtext.com/abcchm.html

 and extracts all the words from the
resulting XML file. Then, going through all
of them, it counts the number of times
"peace", "love", and "Arduino" appear in
the text. With these three numbers, we'll
calculate a colour value and send it to
Arduino. The board will send back the
amount of light measured by the sensor
and show it on the computer screen.
On the hardware side, we'll combine the
pushbutton example, the light sensor
example, the PWM LED control
(multiplied by 3!) and serial
communication.
As Arduino is a simple device, we'll need
to codify the colour in a simple way. We'll
use the standard way that colours are
represented in HTML: # followed by six
hexadecimal digits.
Hexadecimal numbers are handy, because
each 8-bit number is stored in exactly two
characters; with decimal numbers this
varies from one to three characters.
Predictability also makes the code simpler:
we wait until we see an #, then we read the
six characters that follow into a buffer (a
variable used as a temporary holding area
for data). Finally, we turn each group of
two characters into a byte that represents
the brightness of one of the three LEDs.

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

6.3. Coding
There are two sketches that you'll be
running: one Processing sketch, and one
Arduino sketch. Here is the code for the
Processing sketch. You can download it
from
www.makezine.com/getstartedarduino
.

Example 6-1. Arduino networked lamp
parts of the code are inspired by a blog
post by Tod E. Kurt (todbot.com)

import processing.serial.*;

String feed =

"http://blog.makezine.com/i

ndex.xml";

int interval = 10; //

retrieve feed every 60

seconds;

int lastTime; // the

last time we fetched the

content

int love = 0;

int peace = 0;

int arduino = 0;

int light = 0; // light

level measured by the lamp

Serial port;

color c;

String cs;

String buffer = ""; //

Accumulates characters

coming from Arduino

PFont font;

void setup() {

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

 size(640,480);

 frameRate(10); // we

don't need fast updates

 font =

loadFont("HelveticaNeue-Bol

d-32.vlw");

 fill(255);

 textFont(font, 32);

 // IMPORTANT NOTE:

 // The first serial port

retrieved by Serial.list()

 // should be your

Arduino. If not, uncomment

the next

 // line by deleting the

// before it, and re-run

the

 // sketch to see a list

of serial ports. Then,

change

 // the 0 in between [and

] to the number of the port

 // that your Arduino is

connected to.

 //println(Serial.list());

 String arduinoPort =

Serial.list()[0];

 port = new Serial(this,

arduinoPort, 9600); //

connect to Arduino

 lastTime = 0;

 fetchData();

}

void draw() {

 background(c);

 int n = (interval -

((millis()-lastTime)/1000))

;

 // Build a colour based

on the 3 values

 c = color(peace, love,

arduino);

 cs = "#" + hex(c,6); //

Prepare a string to be sent

to Arduino

 text("Arduino Networked

Lamp", 10,40);

 text("Reading feed:", 10,

100);

 text(feed, 10, 140);

 text("Next update in "+ n

+ " seconds",10,450);

 text("peace" ,10,200);

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 text(" " + peace, 130,

200);

 rect(200,172, peace, 28);

 text("love ",10,240);

 text(" " + love, 130,

240);

 rect(200,212, love, 28);

 text("arduino ",10,280);

 text(" " + arduino, 130,

280);

 rect(200,252, arduino,

28);

 // write the colour

string to the screen

 text("sending", 10, 340);

 text(cs, 200,340);

 text("light level", 10,

380);

 rect(200,

352,light/10.23,28); //

this turns 1023 into 100

 if (n <= 0) {

 fetchData();

 lastTime = millis();

 }

 port.write(cs); // send

data to Arduino

 if (port.available() > 0)

{ // check if there is data

waiting

 int inByte =

port.read(); // read one

byte

 if (inByte != 10) { //

if byte is not newline

 buffer = buffer +

char(inByte); // just add

it to the buffer

 }

 else {

 // newline reached,

let's process the data

 if (buffer.length() >

1) { // make sure there is

enough data

 // chop off the

last character, it's a

carriage return

 // (a carriage

return is the character at

the end of a

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // line of text)

 buffer =

buffer.substring(0,buffer.l

ength() -1);

 // turn the buffer

from string into an integer

number

 light = int(buffer);

 // clean the buffer

for the next read cycle

 buffer = "";

 // We're likely

falling behind in taking

readings

 // from Arduino. So

let's clear the backlog of

 // incoming sensor

readings so the next

reading is

 // up-to-date.

 port.clear();

 }

 }

 }

}

void fetchData() {

 // we use these strings

to parse the feed

 String data;

 String chunk;

 // zero the counters

 love = 0;

 peace = 0;

 arduino = 0;

 try {

 URL url = new

URL(feed); // An object to

represent the URL

 // prepare a connection

 URLConnection conn =

url.openConnection();

 conn.connect(); // now

connect to the Website

 // this is a bit of

virtual plumbing as we

connect

 // the data coming from

the connection to a

buffered

 // reader that reads

the data one line at a

time.

 BufferedReader in = new

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 BufferedReader(new

InputStreamReader(conn.getI

nputStream()));

 // read each line from

the feed

 while ((data =

in.readLine()) != null) {

 StringTokenizer st =

 new

StringTokenizer(data,"\"<>,

.()[] ");// break it down

 while

(st.hasMoreTokens()) {

 // each chunk of

data is made lowercase

 chunk=

st.nextToken().toLowerCase(

) ;

 if

(chunk.indexOf("love") >= 0

) // found "love"?

 love++; //

increment love by 1

 if

(chunk.indexOf("peace") >=

0) // found "peace"?

 peace++; //

increment peace by 1

 if

(chunk.indexOf("arduino")

>= 0) // found "arduino"?

 arduino++; //

increment arduino by 1

 }

 }

 // Set 64 to be the

maximum number of

references we care about.

 if (peace > 64) peace

= 64;

 if (love > 64) love

= 64;

 if (arduino > 64)

arduino = 64;

 peace = peace * 4;

// multiply by 4 so that

the max is 255,

 love = love * 4;

// which comes in handy

when building a

 arduino = arduino * 4;

// colour that is made of 4

bytes (ARGB)

 }

 catch (Exception ex) { //

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

If there was an error, stop

the sketch

 ex.printStackTrace();

System.out.println("ERROR:

"+ex.getMessage());

 }

}

There are two things you need to do
before the Processing sketch will run
correctly. First, you need to tell Processing
to generate the font that we are using for
the sketch. To do this, create and save this
sketch. Then, with the sketch still opened,
click Processing's Tools menu, then select
Create Font. Select the font named
HelveticaNeue-Bold, choose 32 for the
font size, and then click OK.
Second, you will need to confirm that the
sketch is using the correct serial
port for talking to Arduino. You'll need to
wait until you've assembled the Arduino
circuit and uploaded the Arduino sketch
before you can confirm this. On most
systems, this Processing sketch will run
fine. However, if you don't see anything
happening on the Arduino and you don't
see any information from the light sensor
appearing onscreen, find the comment
labeled "IMPORTANT NOTE" in the
Processing sketch and follow the
instructions there.
Here is the Arduino sketch (also available
at www.makezine.com/getstartedarduino):

Example 6-2. Arduino Networked
Lamp
#define SENSOR 0

#define R_LED 9

#define G_LED 10

#define B_LED 11

#define BUTTON 12

int val = 0; // variable to

store the value coming from

the sensor

int btn = LOW;

int old_btn = LOW;

int state = 0;

char buffer[7] ;

int pointer = 0;

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.makezine.com/getstartedarduino
http://www.processtext.com/abcchm.html

byte inByte = 0;

byte r = 0;

byte g = 0;

byte b = 0;

void setup() {

 Serial.begin(9600); //

open the serial port

 pinMode(BUTTON, INPUT);

}

void loop() {

 val = analogRead(SENSOR);

// read the value from the

sensor

 Serial.println(val);

// print the value to

// the serial port

if (Serial.available() >0)

{

 // read the incoming

byte:

 inByte = Serial.read();

 // If the marker's found,

next 6 characters are the

colour

 if (inByte == '#') {

 while (pointer < 6) {

// accumulate 6 chars

 buffer[pointer] =

Serial.read(); // store in

the buffer

 pointer++; // move

the pointer forward by 1

 }

 // now we have the 3

numbers stored as hex

numbers

 // we need to decode

them into 3 bytes r, g and

b

 r =

hex2dec(buffer[1]) +

hex2dec(buffer[0]) * 16;

 g =

hex2dec(buffer[3]) +

hex2dec(buffer[2]) * 16;

 b =

hex2dec(buffer[5]) +

hex2dec(buffer[4]) * 16;

 pointer = 0; // reset

the pointer so we can reuse

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

the buffer

 }

 }

 btn =

digitalRead(BUTTON); //

read input value and store

it

 // Check if there was a

transition

 if ((btn == HIGH) &&

(old_btn == LOW)){

 state = 1 - state;

 }

 old_btn = btn; // val is

now old, let's store it

 if (state == 1) { // if

the lamp is on

 analogWrite(R_LED, r);

// turn the leds on

 analogWrite(G_LED, g);

// at the colour

 analogWrite(B_LED, b);

// sent by the computer

 } else {

 analogWrite(R_LED, 0);

// otherwise turn off

 analogWrite(G_LED, 0);

 analogWrite(B_LED, 0);

 }

 delay(100);

// wait 100ms between each

send

}

int hex2dec(byte c) { //

converts one HEX character

into a number

 if (c >= '0' && c <=

'9') {

 return c - '0';

 } else if (c >= 'A' &&

c <= 'F') {

 return c - 'A' + 10;

 }

}

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

6.4. Assembling the Circuit
Figure 6-2 shows how to assemble the circuit. You need to use 10K resistors for all of the resistors shown in the
diagram, although you could get away with lower values for the resistors connected to the LEDs.
Remember from the PWM example in Chapter 5
 that LEDs are polarized: in this circuit, the long pin (positive) should go to the right, and the short pin (negative) to
the left. (Most LEDs have a flattened negative side, as shown in the figure.)

Figure 6-2. The "Arduino Networked Lamp" circuit

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Build the circuit as shown, using one red, one green, and one blue LED. Next, load the sketches into Arduino and
Processing, then run the sketches and try it out. If you run into any problems, check Chapter 7, "Troubleshooting".
Now let's complete the construction by placing the breadboard into a glass sphere. The simplest and cheapest way
to do this is to buy an
IKEA "FADO" table lamp. It's now selling for about US$14.99/ €14.99/L8.99 (ahh, the luxury of being European).
Instead of using three separate LEDs, you can use a single RGB LED, which has four leads coming off it. You'll
hook it up in much the same way as the LEDs shown in Figure 6-2
, with one change: instead of three separate connections to the ground pin on Arduino, you'll have a single lead
(called the "common cathode") going to ground.
SparkFun sells a 4-lead RGB LED for a few dollars (www.sparkfun.com
; part number COM-00105). Also, unlike discrete single-color LEDs, the longest lead on this RGB LED is the one
that goes to ground. The three shorter leads will need to connect to Arduino pins 9, 10, and 11 (with a resistor
between the leads and the pins, just as with the separate red, green, and blue LEDs).

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sparkfun.com
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

6.5. Here's How to
Assemble It:
Unpack the lamp and remove the cable
that goes into the lamp from the bottom.
You will no longer be plugging this into the
wall.
Strap the Arduino on a breadboard and
hot-glue the breadboard onto the back of
the lamp.
Solder longer wires to the RGB LED and
glue it where the lightbulb used to be.
Connect the wires coming from the LED to
the breadboard (where it was connected
before you removed it). Remember that
you will only need one connection to
ground if you are using a
4-lead RGB LED.
Either find a nice piece of wood with a
hole that can be used as a stand for the
sphere or just cut the top of the cardboard
box that came with the lamp at
approximately 5cm (or 2") and make a
hole with a diameter that cradles the lamp.
Reinforce the inside of the cardboard box
by using hot glue all along the inside edges,
which will make the base more stable.
Place the sphere on the stand and bring the
USB cable out of the top and connect it to
the computer.
Fire off your Processing code, press the
on/off button, and watch the lamp come to
life.
As an exercise, try to add code that will
turn on the lamp when the room gets dark.
Other possible enhancements are:

 Add tilt sensors to turn the lamp on

or off by rotating it in different
directions.

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Add a small PIR sensor to detect

when somebody is around and turn
it off when nobody is there to
watch.

 Create different modes so that you

can get manual control of the
colour or make it fade through
many colours.

Think of different things, experiment, and
have fun!

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Chapter 7.
Troubleshooting
There will come a moment in your
experimentation when nothing will be
working and you will have to figure out
how to fix it. Troubleshooting and
debugging are ancient arts in which there
are a few simple rules, but most of the
results are obtained through a lot of work.
The more you work with electronics and
Arduino, the more you will learn and gain
experience, which will ultimately make the
process less painful. Don't be discouraged
by the problems that you will find—it's all
easier than it seems at the beginning.
As every Arduino-based project is made
both of hardware and software, there will
be more than one place to look if
something goes wrong. While looking for a
bug, you should operate along three lines:

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.1. Understanding

7.1.1. Understanding
Try to understand as much as possible
how the parts that you're using work and
how they're supposed to contribute to the
finished project. This approach will allow
you to devise some way to test each
component separately.

7.1.2. Simplification and
segmentation
The Ancient Romans used to say divide et
impera: divide and rule. Try to break down
(mentally) the project into its components
by using the understanding you have and
figure out where the responsibility of each
component begins and ends.

7.1.3. Exclusion and certainty
While investigating, test each component
separately so that you can be absolutely
certain that each one works by itself. You
will gradually build up confidence about
which parts of project are doing their job
and which ones are dubious.
Debugging is the term used to describe this
process as applied to software. The legend
says it was used for the first time by Grace
Hopper back in the 1940s, when
computers where mostly
electromechanical, and one of them
stopped working because actual insects
got caught in the mechanisms.
Many of today's bugs are not physical
anymore: they're virtual and invisible, at
least in part. Therefore they require a
sometimes lengthy and boring process to

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

be identified.

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.2. Testing the Board
What if the very first example, "blink an
LED," didn't work? Wouldn't that be a bit
depressing? Let's figure out what to do.
Before you start blaming your project, you
should make sure that a few things are in
order, as airline pilots do when they go
through a checklist to make sure that the
airplane will be flying properly before
takeoff:
Plug your
Arduino into a USB plug on your
computer.

 Make sure the computer is on

(yes, it sounds silly, but it has
happened). If the green light
marked PWR turns on, this means
that the computer is

 powering the board. If the LED
seems very faint, something is
wrong with the power: try a
different USB cable and inspect
the computer's USB port and the
Arduino's USB plug to see
whether there is any damage. If all
else fails, try a different USB port
on your computer or a different
computer entirely.

 If the Arduino is brand new, the

yellow LED marked L will start
blinking in a bit of a nervous
pattern; this is the

 test program that was loaded at
the factory to test the board.

 If you have been using an external

power supply and are using an old

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Arduino (Extreme, NG, or
Diecimila), make sure that the
power supply is plugged in and
that the jumper marked

 SV1 is connecting the two pins
that are nearest to the external
power supply connector.

Note: When you are having trouble with
other sketches and need to confirm that the
board is functioning, open the first "blink an
LED" example in the Arduino IDE and
upload it to the board. The on-board LED
should blink in a regular pattern.
If you have gone through all these steps
successfully, then you can be confident that
your Arduino is working correctly.

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.3. Testing Your
Breadboarded Circuit
Now connect the board to your
breadboard by running a jumper from the
5 V and GND connections to the positive
and negative rails of the breadboard. If the
green PWR LED turns off, remove the
wires immediately. This means there is a
big mistake in your circuit and you have a "
short circuit" somewhere. When this
happens, your board draws too much
current and the power gets cut off to
protect the computer.
Note: If you're a concerned that you may
damage your computer, remember that on
many computers, the current protection is
usually quite good and responds quickly.
Also, the Arduino board is fitted with a "
PolyFuse," a current-protection device that
resets itself when the fault is removed.If
you're really paranoid, you can always
connect the Arduino board through a
self-powered USB hub. In this case, if it all
goes horribly wrong, the USB hub is the
one that will be pushing up daisies, not
your computer.
If you're getting a short circuit, you have to
start the "simplification and segmentation"
process. What you must do is go through
every sensor in the project and connect
just one at a time.
The first thing to start from is always the
power supply (the connections from 5 V
and GND). Look around and make sure
that each part of the circuit is powered
properly.
Working step by step and making one
single modification at a time is the number
one rule for fixing stuff. This rule was

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

hammered into my young head by my
school professor and first employer,
Maurizio
Pirola. Every time I'm debugging something
and things don't look good (and believe
me, it happens a lot), his face pops in my
head saying "one modification at a time …
one modification at a time" and that's
usually when I fix everything. This is very
important, because you will know what
fixed the problem (it's all too easy to lose
track of which modification actually solved
the problem, which is why it's so important
to make one at a time).
Each debugging experience will build up in
your head a "knowledge base" of defects
and possible fixes. And before you know
it, you'll
become an expert. This will make you look
very cool, because as soon as a newbie
says "This doesn't work!" you'll give it a
quick look and have the answer in a split
second.

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.4. Isolating Problems
Another important rule is to find a reliable
way to reproduce a problem. If your
circuit behaves in a funny way at random
times, try really hard to figure out the exact
moment the problem occurs and what is
causing it. This process will allow you to
think about a possible cause. It is also very
useful when you need to explain to
somebody else what's going on.
Describing the problem as precisely as
possible is also a good way to find a
solution. Try to find somebody to explain
the problem to—in many cases, a solution
will pop into your head as you articulate
the problem. Brian W. Kernighan and
Rob Pike, in The Practice of Programming
(Addison-Wesley, 1999), tell the story of
one university that "kept a teddy bear near
the help desk. Students with mysterious
bugs were required to explain them to the
bear before they could speak to a human
counselor."

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.5. Problems with the
IDE
In some cases, you may have a problem
using the Arduino IDE, particularly on
Windows.
If you get an error when you double-click
on the Arduino icon, or if nothing happens,
try double-clicking the
run.bat file as an alternative method to
launch Arduino.
Windows users may also run into a
problem if the operating system assigns a
COM port number of COM10 or greater
to Arduino. If this happens, you can usually
convince Windows to assign a lower port
number to Arduino. First, open up the
Device Manager by clicking the Start
menu, right-clicking on Computer (Vista)
or My Computer (XP), and choosing
Properties. On Windows XP, click
Hardware and choose Device Manager.
On Vista, click on Device Manager (it
appears in the list of tasks on the left of the
window).
Look for the serial devices in the list under
"Ports (COM & LPT)." Find a serial
device that you're not using that is
numbered COM9 or lower. Right-click it
and choose Properties from the menu.
Then, choose the Port Settings tab and
click Advanced. Set the COM
port number to COM10 or higher, click
OK and click OK again to dismiss the
Properties dialog.
Now, do the same with the USB Serial
Port device that represents Arduino, with
one change: assign it the COM port
number (COM9 or lower) that you just
freed up.

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

If these suggestions don't help, or if you're
having a problem not described here,
check out the Arduino troubleshooting
page at
www.arduino.cc/en/Guide/Troubleshooting
.

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.arduino.cc/en/Guide/Troubleshooting
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

7.6. How to Get Help
Online
If you are stuck, don't spend days running
around alone—ask for help. One of the
best things about Arduino is its community.
You can always find help if you can
describe your problem well.
Get the habit of cutting and pasting things
into a search engine and see whether
somebody is talking about it. For example,
when the Arduino IDE spits out a nasty
error message, copy and paste it into a
Google search and see what comes out.
Do the same with bits of code you're
working on or just a specific function
name. Look around you: everything has
been invented already and it's stored
somewhere on a web page.
For further investigation, start from the
www.arduino.cc main website and look at
the FAQ (www.arduino.cc/en/Main/FAQ
), then move on to the playground (
www.arduino.cc/playground), a freely
editable wiki that any user can modify to
contribute
documentation. It's one of the best parts of
the whole open source philosophy. People
contribute documentation and examples of
anything you can do with Arduino. Before
you start a project, search the playground
and you'll find a bit of code or a circuit
diagram to get you started.
If you still can't find an answer that way,
search the forum (
www.arduino.cc/cgi-bin/yabb2/YaBB.pl).
If that doesn't help, post a question there.
Pick the correct board for your problem:
there are different areas for software or
hardware issues and even

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.arduino.cc
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/playground
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.processtext.com/abcchm.html

forums in five different languages. Please
post as much information as you can:

 What Arduino board are you

using?

 What operating system are you

using to run the Arduino IDE?

 Give a general description of what

you're trying to do. Post links to
datasheets of strange parts you're
using.

The number of answers you get depends
on how well you formulate your question.
Your chances increase if you
avoid these things at all cost (these rules
are good for any online forums, not just
Arduino's):

 Typing your message all in

CAPITALS. It annoys people a
lot and is like walking around with
"newbie" tattooed on your
forehead (in online communities,
typing in all capitals is considered
"shouting").

 Posting the same message in

several different parts of the forum.

 "Bumping" your message by

posting follow-up comments
asking "Hey, how come no one
replied?" or even worse, simply
posting the text "bump." If you
didn't get a reply, take a look at
your posting. Was the subject
clear? Did you provide a
well-worded description of the
problem you are having? Were
you nice? Always be nice.

 Writing messages like "I want to

build a space shuttle using arduino
how do I do that". This means that
you want people to do your work
for you, and this approach is
simply not fun for a real tinkerer.
It's better to explain what you want

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

to build and then ask a specific
question about one part of the
project and take it from there.

 A variation of the previous point is

when the question is clearly
some-thing the poster of the
message is getting paid to do. If
you ask specific questions people
are happy to help, but if you ask
them to do all your work (and you
don't share the money), the
response is likely to be less nice.

 Posting messages that look

suspiciously like school
assignments and asking the forum
to do your homework. Professors
like me roam the forums and slap
such students with a large trout.

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st Edition

Appendix A. The Breadboard
The process of getting a circuit to work involves making lots of changes to it until it behaves properly; it's a very fast,
iterative process that's something like an electronic equivalent to sketching. The design evolves in your hands as you
try different combinations. For the best results, use a system that allows you to change the connections between
components in the fastest, most practical, and least destructive way. These requirements clearly rule out soldering,
which is a time-consuming procedure that puts components under stress every time you heat them up and cool them
down.
The answer to this problem is a very practical device called the solderless breadboard. As you can see from Figure
A-1
, it's a small plastic board full of holes, each of which contains a spring-loaded contact. You can push a component's
leg into one of the holes, and it will establish an electrical connection with all of the other holes in the same vertical
column of holes. Each hole is a distance of 2.54 mm from the others.
Because most of the components have their legs (known to techies as "pins") spaced at that standard distance, chips
with multiple legs fit nicely. Not all of the contacts on a breadboard are created equal—there are some differences.
The top and bottom rows (coloured in red and blue and marked with + and –) are connected horizontally and are
used to carry the power across the board so that when you need power or ground, you can provide it very quickly
with a
jumper (a short piece of wire used to connect two points in the circuits). The last thing you need to know about
breadboards is that in the middle, there is a large gap that is as wide as the size of a small chip. Each vertical line of
holes is interrupted in the middle, so that when you plug in a chip, you don't short-circuit the pins that are on the two
sides of the chip. Clever, eh?

Figure A-1. The solderless breadboard

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Appendix B.
Reading Resistors
and Capacitors
In order to use electronic parts, you need
to be able to identify them, which can be a
difficult task for a beginner. Most of the
resistors that you find in a shop have a
cylindrical body with two legs sticking out
and have strange coloured markings all
around them. When the first commercial
resistors were made, there was no way to
print numbers small enough to fit on their
body, so clever engineers decided that
they could just represent the values with
strips of coloured paint.
Today's beginners have to figure out a way
to interpret these signs. The "key" is quite
simple: generally, there are four stripes,
and each colour represents a number. One
of rings is usually gold-coloured; this one
represents the precision of that resistor. To
read the stripes in order, hold the resistor
so the gold (or silver in some cases) stripe
is to the right. Then, read the colours and
map them to the corresponding numbers.
In the following table, you'll find a
translation between the colours and their
numeric values.
Colour Value

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Green 5

Blue 6

Purple 7

Grey 8

White 9

Silver 10%

Gold 5%

For example, brown, black, orange, and
gold markings mean 103±5%. Easy, right?
Not quite, because there is a twist: the
third ring actually represents the number of
zeros in the value. Therefore 1 0 3 is
actually 1 0 followed by 3 zeros, so the
end result is 10,000 ohms ±5%.
Electronics geeks tend to shorten values by
expressing them in kilo ohm (for thousands
of ohms) and mega ohms (for millions of
ohms), so a 10,000 ohm resistor is usually
shortened to 10k, while 10,000,000
becomes 10M. Please note that because
engineers are fond of optimising everything,
on some schematic diagrams you might
find values expressed as 4k7, which means
4.7 kilo ohms, or 4700.
Capacitors are a bit easier: the
barrel-shaped capacitors (electrolytic
capacitors) generally have their values
printed on them. A capacitor's value is
measured in farads (F), but most
capacitors that you encounter will be
measured in micro farads (µF). So if you
see a capacitor labelled 100 µF, it's a 100
micro farad capacitor.
Many of the disc-shaped capacitors
(ceramic capacitors) do not have their units
listed, and use a three-digit numeric code
indicating the number of pico farads (pF).
There are 1,000,000 pF in one µF. Similar
to the resistor codes, you use the third
number to determine the number of zeros
to put after the first two, with one
difference: if you see 0–5, that indicates the
number of zeros. 6 and 7 are not used, and
8 and 9 are handled differently. If you see
8, multiply the number that the first two
digits form by 0.01, and if you see 9,

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

multiply it by 0.1.
So, a capacitor labelled 104 would be
100,000 pF or 0.1 µF. A capacitor
labeled 229 would be 2.2 pF.

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

Appendix C.
Arduino Quick
Reference
Here is a quick explanation of all the
standard instructions supported by the
Arduino language.
For a more detailed reference, see:
arduino.cc/en/Reference/HomePage

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://arduino.cc/en/Reference/HomePage
http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.1. STRUCTURE
An Arduino sketch runs in two parts:
void setup()

This is where you place the initialisation
code—the instructions that set up the
board before the main loop of the sketch
starts.void loop()
This contains the main code of your
sketch. It contains a set of instructions that
get repeated over and over until the board
is switched off.

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.2. SPECIAL
SYMBOLS
Arduino includes a number of symbols to
delineate lines of code, comments, and
blocks of code.

C.2.1. ; (semicolon)
Every instruction (line of code) is
terminated by a semicolon. This syntax lets
you format the code freely. You could
even put two instructions on the same line,
as long as you separate them with a
semicolon. (However, this would make the
code harder to read.)
Example:delay(100);

C.2.2. {} (curly braces)
This is used to mark blocks of code. For
example, when you write code for the
loop() function, you have to use curly
braces before and after the code.
Example:void loop() {
 Serial.println("ciao");

}

C.2.3. comments
These are portions of text ignored by the
Arduino processor, but are extremely
useful to remind yourself (or others) of
what a piece of code does.
There are two styles of
comments in Arduino:// single-line:
this text is ignored until the

end of the line

/* multiple-line:

 you can write

 a whole poem in here

*/

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.3. CONSTANTS
Arduino includes a set of predefined
keywords with special values. HIGH and
LOW are used, for example, when you
want to turn on or off an Arduino pin.
INPUT and OUTPUT are used to set a
specific pin to be either and input or an
output
true and false
 indicate exactly what their names suggest:
the truth or falsehood of a condition or
expression.

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.4. VARIABLES
Variables are named areas of the
Arduino's memory where you can store
data that you can use and manipulate in
your sketch. As the name suggests, they
can be changed as many times as you like.
Because Arduino is a very simple
processor, when you declare a variable
you have to specify its type. This means
telling the processor the size of the value
you want to store.
Here are the datatypes that are available:

C.4.1. boolean
Can have one of two values: true or false.

C.4.2. char
Holds a single character, such as A. Like
any computer, Arduino stores it as a
number, even though you see text. When
chars are used to store numbers, they can
hold values from –128 to 127.
Note: There are two major sets of
characters available on computer systems:
ASCII and UNICODE. ASCII is a set of
127 characters that was used for, among
other things, transmitting text between
serial terminals and time-shared computer
systems such as mainframes and
minicomputers. UNICODE is a much
larger set of values used by modern
computer operating systems to represent
characters in a wide range of languages.
ASCII is still useful for exchanging short
bits of information in languages such as
Italian or English that use Latin characters,
Arabic numerals, and common typewriter
symbols for punctuation and the like.

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

C.4.3. byte
Holds a number between 0 and 255. As
with chars, bytes use only one byte of
memory.

C.4.4. int
Uses 2 bytes of memory to represent a
number between –32,768 and 32,767; it's
the most common data type used in
Arduino.

C.4.5. unsigned int
Like int, uses 2 bytes but the unsigned
prefix means that it can't store negative
numbers, so its range goes from 0 to
65,535.

C.4.6. long
This is twice the size of an int and holds
numbers from –2,147,483,648 to
2,147,483,647.

C.4.7. unsigned long
Unsigned version of
long; it goes from 0 to 4,294,967,295.

C.4.8. float
This quite big and can hold floating-point
values, a fancy way of saying that you can
use it to store numbers with a decimal
point in it. It will eat up 4 bytes of your
precious RAM and the functions that can
handle them use up a lot of code memory
as well. So use floats sparingly.

C.4.9. double
Double-precision floating-point number,
with a maximum value of
1.7976931348623157 x 10308. Wow,
that's huge!

C.4.10. string
A set of ASCII characters that are used to
store textual information (you might use a
string to send a message via a serial port,
or to display on an LCD display). For
storage, they use one byte for each
character in the string, plus a null character
to tell Arduino that it's the end of the string.

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The following are equivalent:
char string1[] = "Arduino"; //

7 chars + 1 null char

char string2[8] = "Arduino"; //

Same as above

C.4.11. array
A list of variables that can be accessed via
an index. They are used to build tables of
values that can easily be accessed. For
example, if you want to store different
levels of brightness to be used when fading
an LED, you could create six variables
called light01, light02, and so on. Better
yet, you could use a simple array like:
int light[6] = {0, 20, 50, 75,

100};

The word "array" is not actually used in the
variable declaration: the symbols [] and {}
do the job.

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.5. CONTROL
STRUCTURES
Arduino includes keywords for controlling
the logical flow of your sketch.

C.5.1. if … else
This structure makes decisions in your
program. if must be followed by a question
specified as an expression contained in
parentheses. If the expression is true,
whatever follows will be executed. If it's
false, the block of code following else will
be executed. It's possible to use just if
without providing an
else clause.
Example:if (val == 1) {
 digitalWrite(LED,HIGH);

}

C.5.2. for
Lets you repeat a block of code a
specified number of times.
Example:
for (int i = 0; i < 10; i++) {

 Serial.print("ciao");

}

C.5.3. switch case
The if statement is like a fork in the road
for your program. switch case is like a
massive roundabout. It lets your program
take a variety of directions depending on
the value of a variable. It's quite useful to
keep your code tidy as it replaces long lists
of if statements.
Example:switch (sensorValue) {
 case 23:

 digitalWrite(13,HIGH);

 break;

 case 46:

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 digitalWrite(12,HIGH);

 break;

 default: // if nothing

matches this is executed

 digitalWrite(12,LOW);

 digitalWrite(13,LOW);

}

C.5.4. while
Similar to if, this executes a block of code
while a certain condition is true.
Example:// blink LED while sensor
is below 512

sensorValue = analogRead(1);

while (sensorValue < 512) {

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,HIGH);

 delay(100);

 sensorValue = analogRead(1);

}

C.5.5. do … while
Just like while, except that the code is run
just before the the condition is evaluated.
This
structure is used when you want the code
inside your block to run at least once
before you check the condition.
Example:do {
 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,HIGH);

 delay(100);

 sensorValue = analogRead(1);

} while (sensorValue < 512);

C.5.6. break
This term lets you leave a loop and
continue the execution of the code that
appears after the loop. It's also used to
separate the different sections of a
switch case statement.
Example:// blink LED while sensor
is below 512

do {

 // Leaves the loop if a

button is pressed

 if (digitalRead(7) == HIGH)

 break;

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,HIGH);

 delay(100);

 sensorValue = analogRead(1);

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

} while (sensorValue < 512);

C.5.7. continue
When used inside a loop,
continue lets you skip the rest of the code
inside it and force the condition to be
tested again.
Example:for (light = 0; light <
255; light++)

{

 // skip intensities between 140

and 200

 if ((x > 140) && (x < 200))

 continue;

 analogWrite(PWMpin, light);

 delay(10);

}

C.5.8. return
Stops running a function and returns from
it. You can also use this to return a value
from inside a function.
For example, if you have a function called
computeTemperature() and you want to
return the result to the part of your code
that invoked the function you would write
something like:
int computeTemperature() {

 int temperature = 0;

 temperature = (analogRead(0)

+ 45) / 100;

 return temperature;

}

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.6. ARITHMETIC
AND FORMULAS
You can use Arduino to make complex
calculations using a special syntax. +
and – work like you've learned in school,
and multiplication is represented with an *
and division with a /.
There is an additional operator called "
modulo" (%), which returns the remainder
of an integer division. You can use as many
levels of parentheses as necessary to group
expressions. Contrary to what you might
have learned in school, square brackets
and curly brackets are reserved
for other purposes (array indexes and
blocks, respectively).
Examples:a = 2 + 2;
light = ((12 * sensorValue) - 5

) / 2;

remainder = 3 % 2; // returns 2

because 3 / 2 has remainder 1

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.7. COMPARISON
OPERATORS
When you specify conditions or tests for if,
while, and for statements, these are the
operators you can use:
== equal to!= not equal to< less than>
greater than<= less than or equal to>=
greater than or equal to

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.8. BOOLEAN
OPERATORS
These are used when you want to combine
multiple conditions. For example, if you
want to check whether the value coming
from a sensor is between 5 and 10, you
would write:
if ((sensor => 5) && (sensor

<=10))

There are three operators: and,
represented with &&; or, represented
with ||; and finally not, represented with
!.

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.9. COMPOUND
OPERATORS
These are special operators used to make
code more concise for some very common
operations like incrementing a value.
For example, to increment
value by 1 you would write:value =
value +1;

but using a
compound operator, this becomes:
value++;

C.9.1. increment and
decrement (–– and ++)
These increment or decrement a value by
1. Be careful, though. If you write i++ this
increments i by 1 and evaluates to the
equivalent of i+1; ++i evaluates to the
value of i then increments i. The same
applies to ––.

C.9.2. += , –=, *= and /=
These make it shorter to write certain
expressions. The following two
expressions are equivalent:a = a + 5;
a += 5;

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.10. INPUT AND
OUTPUT FUNCTIONS
Arduino includes functions for handling
input and output. You've already seen
some of these in the example programs
throughout the book.

C.10.1. pinMode(pin, mode)
Reconfigures a digital pin to behave either
as an input or an output.
Example:pinMode(7,INPUT); //
turns pin 7 into an input

C.10.2. digitalWrite(pin, value)
Turns a digital pin either on or off. Pins
must be explicitly made into an output
using pinMode before digitalWrite will
have any effect.
Example:digitalWrite(8,HIGH); //
turns on digital pin 8

C.10.3. int digitalRead(pin)
Reads the state of an input pin, returns
HIGH if the pin senses some voltage or
LOW if there is no voltage applied.
Example:val = digitalRead(7); //
reads pin 7 into val

C.10.4. int analogRead(pin)
Reads the voltage applied to an analog
input pin and returns a number between 0
and 1023 that represents the voltages
between 0 and 5 V.
Example:val = analogRead(0); //
reads analog input 0 into val

C.10.5. analogWrite(pin, value)
Changes the PWM rate on one of the pins
marked PWM. pin may be 11,10, 9, 6, 5,

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. value may be a number between 0 and
255 that represents the scale between 0
and 5 V output voltage.
Example:analogWrite(9,128); //
Dim an LED on pin 9 to 50%

C.10.6. shiftOut(dataPin,
clockPin, bitOrder, value)
Sends data to a shift register, devices that
are used to expand the number of digital
outputs. This protocol uses one pin for
data and one for clock. bitOrder indicates
the ordering of bytes (least significant or
most significant) and value is the actual
byte to be sent out.
Example:shiftOut(dataPin,
clockPin, LSBFIRST, 255);

C.10.7. unsigned long
pulseIn(pin, value)
Measures the duration of a pulse coming in
on one of the digital inputs. This is useful,
for example, to read some infrared sensors
or accelerometers that output their value as
pulses of changing duration.
Example:time = pulsein(7,HIGH);
// measures the time the next

 // pulse

stays high

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.11. TIME
FUNCTIONS
Arduino includes functions for measuring
elapsed time and also for pausing the
sketch.

C.11.1. unsigned long millis()
Returns the number of milliseconds that
have passed since the sketch started.
Example:duration =
millis()-lastTime; // computes

time elapsed since "lastTime"

C.11.2. delay(ms)
Pauses the program for the amount of
milliseconds specified.
Example:delay(500); // stops the
program for half a second

C.11.3. delayMicroseconds(us)
Pauses the program for the given amount
of microseconds.
Example:delayMicroseconds(1000);
// waits for 1 millisecond

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.12. MATH
FUNCTIONS
Arduino includes many common
mathematical and trigonometric functions:

C.12.1. min(x, y)
Returns the smaller of x and y.
Example:val = min(10,20); // val
is now 10

C.12.2. max(x, y)
Returns the larger of x and y.
Example:val = max(10,20); // val
is now 20

C.12.3. abs(x)
Returns the absolute value of x, which
turns negative numbers into positive. If x is
5 it will return 5, but if x is –5, it will still
return 5.
Example:val = abs(-5); // val is
now 5

C.12.4. constrain(x, a, b)
Returns the value of x, constrained
between a and b. If x is less than a, it will
just return a and if x is greater than b, it will
just return b.
Example:val =
constrain(analogRead(0), 0,

255); // reject values bigger

than 255

C.12.5. map(value, fromLow,
fromHigh, toLow, toHigh)
Maps a value in the range fromLow and
maxLow to the range toLow and
toHigh. Very useful to process values from
analogue sensors.

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example:val =
map(analogRead(0),0,1023,100,

200); // maps the value of

 // analog 0 to a value

 // between 100 and 200

C.12.6. double pow(base,
exponent)
Returns the result of raising a number
(base) to a value (exponent).
Example:double x = pow(y, 32); //
sets x to y raised to the 32nd

power

C.12.7. double sqrt(x)
Returns the square root of a number.
Example:double a = sqrt(1138); //
approximately 33.73425674438

C.12.8. double sin(rad)
Returns the sine of an angle specified in
radians.
Example:double sine = sin(2); //
approximately 0.90929737091

C.12.9. double cos(rad)
Returns the cosine of an angle specified in
radians.
Example:double cosine = cos(2);
// approximately -0.41614685058

C.12.10. double tan(rad)
Returns the tangent of an angle specified in
radians.
Example:double tangent = tan(2);
// approximately -2.18503975868

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.13. RANDOM
NUMBER FUNCTIONS
If you need to generate random numbers,
you can use Arduino's pseudorandom
number generator.

C.13.1. randomSeed(seed)
Resets Arduino's pseudorandom number
generator. Although the distribution of the
numbers returned by random() is
essentially random, the sequence is
predictable. So, you should reset the
generator to some random value. If you
have an unconnected analog pin, it will
pick up random noise from the surrounding
environment (radio waves, cosmic rays,
electromagnetic interference from cell
phones and fluorescent lights, and so on).
Example:
randomSeed(analogRead(5)); //

randomize using noise from pin 5

C.13.2. long random(max) long
random(min, max)
Returns a pseudorandom long integer value
between min and max – 1. If min is not
specified, the lower bound is 0.
Example:long randnum = random(0,
100); // a number between 0 and

99

long randnum = random(11);

// a number between 0 and 10

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C
Microprocessors Safari IT Books
Software Engineering Programming
Hardware Massimo Banzi O'Reilly Media,
Inc. Make Getting Started with Arduino,
1st Edition

C.14. SERIAL
COMMUNICATION
As you saw in Chapter 5, you can
communicate with devices over the USB
port using a serial communication protocol.
Here are the serial functions.

C.14.1. Serial.begin(speed)
Prepares Arduino to begin sending and
receiving serial data. You'll generally use
9600 bits per second (bps) with the
Arduino IDE serial monitor, but other
speeds are available, usually no more than
115,200 bps.
Example:Serial.begin(9600);

C.14.2. Serial.print(data)
Serial.print(data, encoding)
Sends some data to the serial port. The
encoding is optional; if not supplied, the
data is treated as much like plain text as
possible.
Examples:Serial.print(75);
// Prints "75"

Serial.print(75, DEC); // The

same as above.

Serial.print(75, HEX); // "4B"

(75 in hexadecimal)

Serial.print(75, OCT); // "113"

(75 in octal)

Serial.print(75, BIN); //

"1001011" (75 in binary)

Serial.print(75, BYTE); // "K"

(the raw byte happens to

 // be 75

in the ASCII set)

C.14.3. Serial.println(data)
Serial.println(data, encoding)
Same as Serial.print(), except that it adds a

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

carriage return and linefeed (
\r\n) as if you had typed the data and then
pressed Return or Enter.
Examples:Serial.println(75);
 // Prints "75\r\n"

Serial.println(75, DEC); // The

same as above.

Serial.println(75, HEX); //

"4B\r\n"

Serial.println(75, OCT); //

"113\r\n"

Serial.println(75, BIN); //

"1001011\r\n"

Serial.println(75, BYTE); //

"K\r\n"

C.14.4. int Serial.available()
Returns how many unread bytes are
available on the Serial port for reading via
the read() function. After you have read()
everything available,
Serial.available() returns 0 until new data
arrives on the serial port.
Example:int count =
Serial.available();

C.14.5. int Serial.read()
Fetches one byte of incoming serial data.
Example:int data = Serial.read();

C.14.6. Serial.flush()
Because data may arrive through the serial
port faster than your program can process
it, Arduino keeps all the incoming data in a
buffer. If you need to clear the buffer and
let it fill up with fresh data, use the
flush() function.
Example:Serial.flush();

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Safari IT Books Open Source Methods C Microprocessors Safari IT Books Software Engineering
Programming Hardware Massimo Banzi O'Reilly Media, Inc. Make Getting Started with Arduino, 1st
Edition

Appendix D. Reading Schematic Diagrams
So far, we have used very detailed illustrations to describe how to assemble our circuits, but as you can
imagine, it's not exactly a quick task to draw one of those for any experiment you want to document.
Similar issues arise, sooner or later, in every discipline. In music, after you write a nice song, you need to
write it down using musical notation.
Engineers, being practical people, have developed a quick way to capture the essence of a circuit in order to
be able to document it and later rebuild it or pass it to somebody else.
In electronics, schematic diagrams allow you to describe your circuit in a way that is understood by the rest
of the community. Individual components are represented by symbols that are a sort of abstraction of either
the shape of the component or the essence of them. For example, the capacitor is made of two metal plates
separated by either air or plastic; therefore, its symbol is:

Another clear example is the inductor, which is built by winding copper wire around a cylindrical shape;
consequently the symbol is:

The connections between components are usually made using either wires or tracks on the printed circuit
board and are represented on the diagram as simple lines. When two wires are connected, the connection is
represented by a big dot placed where the two lines cross:

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

This is all you need to understand basic schematics. Here is a more comprehensive list of symbols and their
meanings:

You may encounter variations in these symbols (for example, both variants of resistor symbols are shown
here). See en.wikipedia.org/wiki/Electronic_symbol
 for a larger list of electronics symbols. By convention, diagrams are drawn from left to right. For example, a
radio would be drawn starting with the antenna on the left, following the path of the radio signal as it makes
its way to the speaker (which is drawn on the right).
The following schematic describes the push-button circuit shown earlier in this book:

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://en.wikipedia.org/wiki/Electronic_symbol
http://www.processtext.com/abcchm.html

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [
H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]
[T] [U] [V] [W] [X] [Y]

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

	[Trial version] Getting Started with Arduino, 1st Edition
	[Trial version] Table of Contents
	[Trial version] Copyright
	[Trial version] Preface
	[Trial version] Chapter 1. Introduction
	[Trial version] 1.1. Intended Audience
	[Trial version] 1.2. What Is Physical Computing?

	[Trial version] Chapter 2. The Arduino Way
	[Trial version] 2.1. Prototyping
	[Trial version] 2.2. Tinkering
	[Trial version] 2.3. Patching
	[Trial version] 2.4. Circuit Bending
	[Trial version] 2.5. Keyboard Hacks
	[Trial version] 2.6. We Love Junk!
	[Trial version] 2.7. Hacking Toys
	[Trial version] 2.8. Collaboration

	[Trial version] Chapter 3. The Arduino Platform
	[Trial version] 3.1. The Arduino Hardware
	[Trial version] 3.2. The Software (IDE)
	[Trial version] 3.3. Installing Arduino on Your Computer
	[Trial version] 3.4. Installing Drivers: Macintosh
	[Trial version] 3.5. Installing Drivers: Windows
	[Trial version] 3.6. Port Identification: Macintosh
	[Trial version] 3.7. Port Identification: Windows

	[Trial version] Chapter 4. Really Getting Started with Arduino
	[Trial version] 4.1. Anatomy of an Interactive Device
	[Trial version] 4.2. Sensors and Actuators
	[Trial version] 4.3. Blinking an LED
	[Trial version] 4.4. Pass Me the Parmesan
	[Trial version] 4.5. Arduino Is Not for Quitters
	[Trial version] 4.6. Real Tinkerers Write Comments
	[Trial version] 4.7. The Code, Step by Step
	[Trial version] 4.8. What We Will Be Building
	[Trial version] 4.9. What Is Electricity?
	[Trial version] 4.10. Using a Pushbutton to Control the LED
	[Trial version] 4.11. How Does This Work?
	[Trial version] 4.12. One Circuit, A Thousand Behaviours

	[Trial version] Chapter 5. Advanced Input and Output
	[Trial version] 5.1. Trying Out Other On/Off Sensors
	[Trial version] 5.2. Controlling Light with PWM
	[Trial version] 5.3. Use a Light Sensor Instead of the Pushbutton
	[Trial version] 5.4. Analogue Input
	[Trial version] 5.5. Try Other Analogue Sensors
	[Trial version] 5.6. Serial Communication
	[Trial version] 5.7. Driving Bigger Loads (Motors, Lamps, and the Like)
	[Trial version] 5.8. Complex Sensors

	[Trial version] Chapter 6. Talking to the Cloud
	[Trial version] 6.1. Digital Output
	[Trial version] 6.2. Planning
	[Trial version] 6.3. Coding
	[Trial version] 6.4. Assembling the Circuit
	[Trial version] 6.5. Here's How to Assemble It:

	[Trial version] Chapter 7. Troubleshooting
	[Trial version] 7.1. Understanding
	[Trial version] 7.2. Testing the Board
	[Trial version] 7.3. Testing Your Breadboarded Circuit
	[Trial version] 7.4. Isolating Problems
	[Trial version] 7.5. Problems with the IDE
	[Trial version] 7.6. How to Get Help Online

	[Trial version] Appendix A. The Breadboard
	[Trial version] Appendix B. Reading Resistors and Capacitors
	[Trial version] Appendix C. Arduino Quick Reference
	[Trial version] C.1. STRUCTURE
	[Trial version] C.2. SPECIAL SYMBOLS
	[Trial version] C.3. CONSTANTS
	[Trial version] C.4. VARIABLES
	[Trial version] C.5. CONTROL STRUCTURES
	[Trial version] C.6. ARITHMETIC AND FORMULAS
	[Trial version] C.7. COMPARISON OPERATORS
	[Trial version] C.8. BOOLEAN OPERATORS
	[Trial version] C.9. COMPOUND OPERATORS
	[Trial version] C.10. INPUT AND OUTPUT FUNCTIONS
	[Trial version] C.11. TIME FUNCTIONS
	[Trial version] C.12. MATH FUNCTIONS
	[Trial version] C.13. RANDOM NUMBER FUNCTIONS
	[Trial version] C.14. SERIAL COMMUNICATION

	[Trial version] Appendix D. Reading Schematic Diagrams
	[Trial version] Index

